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- Extensions
- Epidemics on graphs

- Reference: ch. 9 of Barrat, Barthélemy,
Vespignani "Dynamical Processes on
Complex Networks", Cambridge press

- Applications to networks



ST on a graph

‘/Q

At each time slot, each link outgoing
from an infected node spreads the
disease with probability p,



Can we apply Mean Field theory?

3 Formally not, because in a graph the
dif ferent nodes are not equivalent...

7 ..but we are stubborn
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Derive a Mean Field model

3 Consider all the nodes equivalent
7 e.g. assume that at each slot the graph
changes, while keeping the average degree <d>

Starting from an empty network we add a link
with probability <d>/(N-1)

— k=1
—O
O




Derive a Mean Field model

3 Consider all the nodes equivalent
7 e.g. assume that at each slot the graph
changes, while keeping the average degree <d>

Starting from an empty network we add a link
with probability <d>/(N-1)




Derive a Mean Field model

Ji.e. at every slot we consider a sample of an ER
graph with N nodes and probability <d>/(N-1)

Starting from an empty network we add a link
with probability <d>/(N-1)

k=2
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Derive a Mean Field model

A If I(k)=I, the prob. that a given susceptible
hode is infected is q;=1-(1-<d>/(N-1) p )

3 and (I(k+1)-I(k)|I(k)=T) =4 Bin(N-I, q;)

k=2

e e



Derive a Mean Field model

3 If I(k)=I, the prob. that a given susceptible
hode is infected is q;=1-(1-<d>/(N-1) p )
7 and (I(k+1)-I(k)|I(k)=I) =4 Bin(N-I, g;)
Equivalent to first SI model where p=<d>/(N-1) p,
We know that we need pM™=p,/N?
3 iMN(k) & p, (ke(N))=1/((1/i4-1) exp(-k po/N)+1)=
= 1/((1/iy-1) exp(-k <d> p,)+1)

The percentage of infected nodes becomes
significant after the outbreak time 1/(<d>p,)

7 How good is the approximation practically?
It depends on the graphl!



Let's try on Erdds-Rényi graph

7 Remark: in the calculations above we had a
different sample of an ER graph at each
slot, in what follows we consider a single
sample



ER <d>=20, p,=0.1, 10 runs

iMN(k) = 1/((1/i5-1) exp(-k <d> p )+1)
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Lesson 1

7 System dynamics is more deterministic
the larger the network is

3 For given <d> and p,, the MF solution shows
the same relative error



ER <d>=20, 10 runs
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Lesson 2

3 For given <d>, the smaller the infection
probability p, the better the MF
approximation

—  Why?



Changing the degree
ER N=1000, <d>p,=0.1, 10 runs

0
0 50 70 %0 100 110

N(K) » 1/((1/.0 1) exp( k <d> p,)+1)



Lesson 3

7 Given <d>p,, the more the graph is
connec’red the better the MF
approximation

O Why?



A different graph Ring(N k)




Ring vs ER, N=2000, <k>=10
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Lesson 4

7 The smaller the clustering coefficient, the
better the MF approximation

O Why?



Heterogeneous Networks

7 Denote P(d) the probability that a node has
degree d

I If the degree does not change much, we
can replace d with <d>
— what we have done for ER graphs (N,p)
* Binomial with parameters (N-1,p)
3 How should we proceed (more) correctly?
— Split the nodes in degree classes
— Write an equation for each class

3 Remark: following derivation will not be as
rigorous as previous ones



Heterogeneous Networks

3 Ny number of nodes with degree d (=N*P(d))
3 I number of infected nodes with degree d

7 Given node i with degree d and a link e;;, what
is the prob. that j has degree d?

— P(d')? NO

7 and if degrees are uncorrelated? i.e.
Prob(neighbour has degree d'|node has a
degree d) independent from d,
—P(d)? NO
—Is equal to d'/<d>P(d")



Heterogeneous Networks

7 Given node i with degree d and a link e;;

I Prob. that j has degree d' is
—d'/«d> P(d)

I Prob. that j has degree d' and is infected
—d"/<«d> P(d") I,/N
— more correct (d'-1)/<d> P(d") I,/N,

7 Prob. that i is infected through link e;; is
—p = pg 24 (d-1)/<d> P(d’) T4/Ny

3 Prob. that i is infected through one link
- 1-(1-p)?



Heterogeneous Networks

3 E[(T4(k+1)-I4 (KT (K)=I)] = (N4-I5)(1-(1-p)?)
~ p=p, 2y (d-1)/<d>P(d) I4/Ny
3 £4MN(0)=(1-ig)(1-(1-p)%)
— ig= I/N,
— if we choose p, = pyg /N
= f4(i)= pgo (1-ig) d Zy(d'-1)/<d> P(d') ig

e
3 dig(t)/dt=f4(i(1))=pyo (1-i4(1)) d O(*)



Heterogeneous Networks

3 dig(t)/dt=f4(i(1))=pyo (1-i4(t)) d O(1),
— ford=12..
— O(t)=Z 4(d'-1)/<d> P(d") i4(t)
— i4(0)=ig4g, for d=1,2...
3 If iy(0O)<1, for smallt
- diy(t)/dt # p o d O(Y)
— dO(t)/dt = Z4(d'-1)/<d> P(d") di(t)/dt
R pgo Zg(d-1)/<d> P(d) d O(F) =
= Pgo (<d?> - <d>)/<d> O(t)



Heterogeneous Networks

7 dO(H)/dt # po(<d?>-<d>)/<d> O(t)
— Qutbreak time: <d>/((<d?>-<d>) Pg0)

For ER <d?>=<d>(<d>+1), we find the
previous result, 1/ (<d>p90)

What about for Power-law graphs,
P(d)~d¥?
3 For the SIS model:
- dO(1)/d # po(<d?>-<d>)/<d> O(F) - ry O(t)
— Epidemic threshold: p,q (<d*>-<d>)/(<d>r)
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Applications
- Bianchi's model
- Epidemic routing



Decoupling assumption in
Bianchi's model

J Assuming that retransmission processes at
different nodes are independent

Not true: if node i has a large backoff window,
it is likely that also other nodes have large
backoff windows
3 We will provide hints about why it is
possible to derive a Mean Field model...

7 then the decoupling assumption is
guaranteed asymptotically
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Bianchi's model

7 N nodes,

7 K possible stages for each node, in stage i
(i=1,..V) the node transmit with probability
Q™ (e.9. g, =1/ W)

7 If a node in stage i experiences a collision,
It moves to stage i+1

I If a node transmits successfully, it moves
to stage O



Mean Field model

7 We need to scale the transmission
probability: gN). =q./N

3 FN(M)=E[MN)(k+1)-MMN(K) [ MMN)(k)=m]

3 £, (m)=E[M;NV(k+1)-M;MN(k) | M;MN(k)=m]

3 Pigie=Mig y(1-gMN)mN

7 The number of nodes in stage 1

increases by one if there is one successful
transmission by a node in stage i<>1

Decreases if a node in stage 1 experiences a
collision



Mean field model

3 Pigie=Mizg _y(1-gN)MN -> exp(-Z,q; m;)
Define T(m)= Z,q; m.
7 The number of nodes in stage 1

increases by one if there is one successful
transmission by a node in stage i<>1

- with prob. Z.; m: N g™ P.,./(1-qN)
Decreases if a node in stage 1 experiences a
collision

- with prob. m; N q,™) (1-P,,./(1-q,(\))
7 £, (m)=E[M;M(k+1)-M;MN(K) | MMN(k)=m]=
= Z51migMPig./ (1-¢N)
- m,q;N(1-P, ./ (1-9,N))



Mean field model

3 Pigie=Miz y(1-gM)mN -> exp(-Z,q; m;)
Define T(m)= Z.q, m.
3 £, (m)=2;, ;miq NP/ (1-M))
- mq;M(1-P,y../(1-q,M))
3,0 (m) ~ 1/N (Z;,,mq; e™™-myq,(1-e 7))

3 f,N) (m) vanishes and £(N)=1/N, continuously
differentiable in m and in 1/N

3 This holds also for the other components
3 Number of transitions bounded
=> We can apply the Theorem



Outline

3J Limit of Markovian models
A3 Mean Field (or Fluid) models
exact results
extensions
Applications
- Bianchi's model
- Epidemic routing



Mean fluid for Epidemic routing
(and similar)

1. Approximation: pairwise intermeeting times
modeled as independent exponential random
variables

2. Markov models for epidemic routing
3. Mean Fluid Models



Inter-meeting tfimes under random
m0b|||1'y (from Lucile Sassatelli's course)

Inter-meeting times mobile/mobile have shown to
follow an exponential distribution

[Groenevelt et al.: The message delay in mobile ad hoc networks.
Performance Evalation, 2005]

Pr{ X = x } = py exp(- px)
CDF: Pr{ X <x}=1-exp(- ux), CCDF: Pr{ X > x } = exp(- px)
Log(CCDF) - RWP model
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M. Ibrahim, Routing and Performance Evaluation of Disruption Tolerant Networks, PB[;D')
defense, UNS 2008



Pairwise Inter-meeting time
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Pairwise Inter-meeting time
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Pairwise Inter-meeting time

Complementary cdf
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2-hop routing

Model the number of occurrences of the message
as an absorbing Continuous Time Markov Chain (C-
MC):

(N-DA (N=3)A 3\ 20 A

3/, 0000

(N-2)A

2\

State i€{1,.. N} represents the number of
occurrences of the message in the network.

State A represents the destination node
receiving (a copy of) the message.



Epidemic routing

Model the number of occurrences of the message
as an absorbing C-MC:

N-DA 2IN-2)A — 3(N=-3)A N-3)3A N-2)2h N-DA
1( ) 2/( ) 3/( )H".( )( )( )
A 2\ 3\ (N-2)A (N-DA

A)
State i€{1,.. N} represents the number of
occurrences of the message in the network.

State A represents the destination node
receiving (a copy of) the message.



A mean-field interaction model for modeling dissemination
(from Lucile Sassatelli's course)

- Time t € N is discrete. There are N objects.
- Object n has state Z,SN)(t) in S ={0,1}.
- We assume that Y(V)(¢) = (Zl(N)(t), . .,Z,(\,N)(t)) is a

homogeneous Markov chain on SV,

- We assume that we can observe the state of an object but not its
label, i.e.,

KN(ivy oo ity i) =
Pr{iZMt+1) =i,....ZMt+1)=inZM@)=il,...,Z" () = in}
is stable under any permutation.

— The process Y(N)(t) is called a mean-field interaction model
with N objects.

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication 5)41%5,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



A mean-field interaction model for modeling dissemination

(from Lucile Sassatelli's course)

- Define the occupancy measure M(V)(¢) as the vector of
frequencies of states i € S at t:

I\/I,-(N)(t) = % Z,lyzl 1{2_(N)(t):i}. MV)(t) that takes vales in A.
M) (t) is a homogeneous Markov chain.

- Let us define the drift f(m) for m € A as the expected change to
M) () in one time-slot:

fMm) = EMM(t+1) - MM () MM (¢) = m]

= Y miPl(m)(er —e))
{i,i"}e€S, i’

where PI.(II.\,I) is the marginal transition probability:

PN (m) = Priz{M(t + 1) = 2" (t) = i, MM)() = m}.

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication s4f2ns,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



Convergence to the mean-field limit

(from Lucile Sassatelli's course)

If limpyoo FON) (M) = f(m) exists for all m € A,
Then MV)(t) converges to a deterministic process j(t) that

satisfies: dut)
{ T = f(u(t))
1(0)

= uo constant in N/

More exactly (Kurtz Th 3.1), V¢:

lim Pr{sup||MM(¢) — u(t)|| > 6} =0
Noo SSt

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication 547‘3:5,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



Performance modeling of dissemination under two-hop

routing or epidemic routing
(from Lucile Sassatelli's course)

1= MM
L MM

- Two-hop routing: fi(m1) = As(1 — my1), where s is the fraction
of sources (constant in V)

- Epidemic routing: fi(m1) = Amy(1 — my)

- Let us rename u1(t) as x(t), standing for the fraction of infected
nodes.

- Let X(M)(¢t) be the number of infected nodes: X(N)(t) can be
approximated by Nx(t).

MV (t) =

MM (t) ]
MM (2)

T. 6. Kurtz, Solutions of Ordinary Differential Equations as Limits of Pure Jump Markov Processes, Journal of Applied
Probability, vol. 7, no. 1, pp. 49-58, 1970.
M. Bendaim and J.-Y. Le Boudec, A class of mean field interaction models for computer and communication 547415,
Performance Evaluation, vol. 65, no. 11-12, pp. 823-838, 2008.



Performance modeling of dissemination under two-hop

routing or epidemic routing
(from Lucile Sassatelli's course)

From that we approximate X(M)(t) by the solution of:

C
@\5@“‘ dX(:t)(t) _ aXM((N - XM(5)), XM (0) = 1
\
»(\NOX\O dX(C/;/t)(t) _ BN — xM(8)), xM(0) =0

- Defining T, as the packet delivery delay, we can derive
P(t) = Pr{Td < t}:

Proof: Exercise class

MAESTRO

Zhang, X., Neglia, 6., Kurose, J., Towsley, D.: Performance Modeling of Epidemic Routing. Computer lﬁjgorks
51, 2867-2891 (2007)



A further issue

Model the number of occurrences of the message
as an absorbing Continuous Time Markov Chain (C-

MC):

(N-DA (N=2)A (N=-3)A 3\ 20 A

0000

- We need a different convergence result

[Kurtz70] Solution of ordinary differential equations as limits of

ure ng? markov processes, T. 6. Kurtz, Journal of Applied
robabilities, pages 49-58, 1970



[Kurtz1970]

{Xn(1), N natural}

a family of Markov process in Z™
with rates ry(k,k+h), khinZnm

It is called density dependent if it exists a

continuous function f() in R™ such that

ru(kkeh) = N F(I/N K, h), hoO
Define F(x)=Z, h f(x,h)
Kurtz's theorem determines when {X\(1)} are close

to the solution of the differential equation:

0x(S)
A

= F(x(s)),



The formal result [Kurtz1970]

Theorem. Suppose there is an open set E in R™ and a
constant M such that

F(x)-F(y)[<M|x-y|, xyinE
sup, i eZ,lh| f(x,h) <eo,
imd_>°°SUPx in Ez|h|>d|h| f(x,h) =0

Consider the set of processes in {X\(t)} such that
limye 1/N X ((0) = x5 in E
and a solution of the differential equation
ox(s
WP, x(0)=
such that x(s) is in E for O<=s<=t, then for each &0

>5}=O

L X, ()= x(s)

lim Prlsu
foupi

N—0

O<s<t



Application to epidemic routing

ra(np)=A np (N-ng) = N (AN) (n/N) (1-n/N)
assuming p = A N keeps constant (e.g. node
density is constant)

f(x,h)=Ff(x)=x(1-x), F(x)=f(x)
as N—o, n;/N — i(t), s.t.
i'(1) = pi()(1-i(2))

with initial condition
i(0) =limn,(0)/N

N —0

multiplying by N
I'(t) = AL(t)(N - 1(1))



