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Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  Extensions 

-  Epidemics on graphs 
-  Reference: ch. 9 of Barrat, Barthélemy, 

Vespignani “Dynamical Processes on 
Complex Networks”, Cambridge press 

•  Applications to networks 



SI on a graph 

Susceptible 

Infected 
At each time slot,  each link outgoing 
from an infected node spreads the 
disease with probability pg 



Can we apply Mean Field theory? 
❒ Formally not, because in a graph the 

different nodes are not equivalent… 
❒ …but we are stubborn 



Derive a Mean Field model 
❒ Consider all the nodes equivalent 
❒ e.g. assume that at each slot the graph 

changes, while keeping the average degree <d> 
•  Starting from an empty network we add a link 

with probability <d>/(N-1) 

k=1 



Derive a Mean Field model 
❒ Consider all the nodes equivalent 
❒ e.g. assume that at each slot the graph 

changes, while keeping the average degree <d> 
•  Starting from an empty network we add a link 

with probability <d>/(N-1) 

k=2 



Derive a Mean Field model 
❒  i.e. at every slot we consider a sample of an ER 

graph with N nodes and probability <d>/(N-1) 
•  Starting from an empty network we add a link 

with probability <d>/(N-1) 

k=2 



Derive a Mean Field model 
❒ If I(k)=I, the prob. that a given susceptible 

node is infected is qI=1-(1-<d>/(N-1) pg)I 

❒  and (I(k+1)-I(k)|I(k)=I) =d Bin(N-I, qI) 

k=2 



Derive a Mean Field model 
❒ If I(k)=I, the prob. that a given susceptible 

node is infected is qI=1-(1-<d>/(N-1) pg)I 

❒  and (I(k+1)-I(k)|I(k)=I) =d Bin(N-I, qI) 
•  Equivalent to first SI model where p=<d>/(N-1) pg 
•  We know that we need p(N)=p0/N2 

❒  i(N)(k) ≈ µ2 (kε(N))=1/((1/i0-1) exp(-k p0/N)+1)= 
 = 1/((1/i0-1) exp(-k <d> pg)+1) 

•  The percentage of infected nodes becomes 
significant after the outbreak time 1/(<d>pg) 

❒ How good is the approximation practically? 
•  It depends on the graph! 

 



Let’s try on Erdös-Rényi graph 

❒ Remark: in the calculations above we had a 
different sample of an ER graph at each 
slot, in what follows we consider a single 
sample 



ER <d>=20, pg=0.1, 10 runs 
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i(N)(k) ≈ 1/((1/i0-1) exp(-k <d> pg)+1) 
 



Lesson 1 

❒ System dynamics is more deterministic  
the larger the network is 

❒  For given <d> and pg, the MF solution shows 
the same relative error   



ER <d>=20, 10 runs 
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Lesson 2 

❒  For given <d>, the smaller the infection 
probability pg the better the MF 
approximation 

–  Why? 



Changing the degree 
ER N=1000, <d>pg=0.1, 10 runs 
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i(N)(k) ≈ 1/((1/i0-1) exp(-k <d> pg)+1) 
 

Model 
<d>=10 
<d>=100 



Lesson 3 

❒ Given <d>pg, the more the graph is 
connected, the better the MF 
approximation 
❍ Why?  

 



A different graph Ring(N,k) 



Ring vs ER, N=2000, <k>=10 
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Lesson 4 

❒ The smaller the clustering coefficient, the 
better the MF approximation 
❍ Why?  



Heterogeneous Networks 

❒ Denote P(d) the probability that a node has 
degree d 

❒ If the degree does not change much, we 
can replace d with <d> 
–  what we have done for ER graphs (N,p) 

•  Binomial with parameters (N-1,p) 

❒ How should we proceed (more) correctly? 
–  Split the nodes in degree classes 
–  Write an equation for each class 

❒ Remark: following derivation will not be as 
rigorous as previous ones 



Heterogeneous Networks 

❒ Nd number of nodes with degree d (=N*P(d)) 
❒ Id: number of infected nodes with degree d  
❒ Given node i with degree d and a link eij, what 

is the prob. that j has degree d’? 
–  P(d’)? NO 

❒ and if degrees are uncorrelated? i.e. 
Prob(neighbour has degree d'|node has a 
degree d) independent from d, 
–  P(d’)? NO 
– Is equal to  d'/<d> P(d') 



Heterogeneous Networks 

❒ Given node i with degree d and a link eij  
❒ Prob. that j has degree d’ is 
– d'/<d> P(d’) 

❒ Prob. that j has degree d’ and is infected  
– d'/<d> P(d’) Id’/Nd’ 
– more correct (d’-1)/<d> P(d’) Id’/Nd’ 

❒ Prob. that i is infected through link eij is 
– p = pg Σd’ (d’-1)/<d> P(d’) Id’/Nd’ 

❒ Prob. that i is infected through one link 
–  1-(1-p)d 



Heterogeneous Networks 

❒ E[(Id (k+1)-Id (k)|I (k)=I)] = (Nd-Id)(1-(1-p)d) 
−  p = pg Σd’ (d’-1)/<d> P(d’) Id’/Nd’ 

❒ fd
(N)(i)=(1-id)(1-(1-p)d) 

−  id = Id/Nd 
−  if we choose pg = pg0 /N 
−  fd(i)= pg0 (1-id) d Σd’(d’-1)/<d> P(d’) id’ 
 
 

❒ did(t)/dt=fd(i(t))=pg0 (1-id(t)) d Θ(t) 
Θ 



Heterogeneous Networks 

❒ did(t)/dt=fd(i(t))=pg0 (1-id(t)) d Θ(t),  
−  for d=1,2… 
−  Θ(t)=Σd’(d’-1)/<d> P(d’) id’(t) 
−  id(0)=id0, for d=1,2…  

❒ If id(0)<<1, for small t 
−  did(t)/dt ≈ pg0 d Θ(t)  
−  dΘ(t)/dt = Σd’(d’-1)/<d> P(d’) did’(t)/dt 

      ≈ pg0 Σd’(d’-1)/<d> P(d’) d’ Θ(t) = 
       = pg0 (<d2> - <d>)/<d> Θ(t) 



Heterogeneous Networks 

❒ dΘ(t)/dt ≈ pg0(<d2>-<d>)/<d> Θ(t) 
−  Outbreak time: <d>/((<d2>-<d>) pg0) 

•  For ER <d2>=<d>(<d>+1), we find the 
previous result, 1/(<d>pg0) 

•  What about for Power-law graphs, 
P(d)~d-γ? 

❒ For the SIS model: 
−  dΘ(t)/d ≈ pg0(<d2>-<d>)/<d> Θ(t) – r0 Θ(t) 
−  Epidemic threshold: pg0 (<d2>-<d>)/(<d>r0) 



Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions 
•  Applications 

-  Bianchi’s model 
-  Epidemic routing 



Decoupling assumption in 
Bianchi’s model 
❒ Assuming that retransmission processes at 

different nodes are independent 
•  Not true: if node i has a large backoff window, 

it is likely that also other nodes have large 
backoff windows 

❒ We will provide hints about why it is 
possible to derive a Mean Field model… 

❒  then the decoupling assumption is 
guaranteed asymptotically 
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Bianchi’s model 

❒ N nodes,  
❒  K possible stages for each node, in stage i 

(i=1,…V) the node transmit with probability 
q(N)

i (e.g. q(N)
i =1/W(N)

i) 
❒  If a node in stage i experiences a collision, 

it moves to stage i+1  
❒  If a node transmits successfully, it moves 

to stage 0  



Mean Field model 

❒ We need to scale the transmission 
probability: q(N)

i =qi/N 
❒  f(N)(m)=E[M(N)(k+1)-M(N)(k)|M(N)(k)=m] 
❒  f1

(N)
 (m)=E[M1

(N)(k+1)-M1
(N)(k)|M1

(N)(k)=m] 
❒  Pidle=Πi=1,…V(1-qi

(N))m
i
N 

❒ The number of nodes in stage 1  
•  increases by one if there is one successful 

transmission by a node in stage i<>1 
•  Decreases if a node in stage 1 experiences a 

collision 
 



Mean field model 
❒  Pidle=Πi=1,…V(1-qi

(N))m
i
N -> exp(-Σiqi mi) 

•  Define τ(m)= Σiqi mi 
❒ The number of nodes in stage 1  

•  increases by one if there is one successful 
transmission by a node in stage i<>1 
-  with prob. Σi>1 mi N qi

(N) Pidle/(1-qi
(N)) 

•  Decreases if a node in stage 1 experiences a 
collision 
-  with prob. m1 N q1

(N) (1-Pidle/(1-q1
(N)) 

❒  f1
(N)

 (m)=E[M1
(N)(k+1)-M1

(N)(k)|M1
(N)(k)=m]= 

 = Σi>1miqi
(N)Pidle/(1-qi

(N))  
 – m1q1

(N)(1-Pidle/(1-q1
(N))) 

 



Mean field model 
❒  Pidle=Πi=1,…V(1-qi

(N))m
i
N -> exp(-Σiqi mi) 

•  Define τ(m)= Σiqi mi 
❒  f1

(N)
 (m)=Σi>1miqi

(N)Pidle/(1-qi
(N))  

 – m1q1
(N)(1-Pidle/(1-q1

(N))) 
❒  f1

(N)
 (m) ~ 1/N (Σi>1miqi e-τ(m)–m1q1(1-e-τ(m))) 

❒  f1
(N)

 (m) vanishes and ε(N)=1/N, continuously 
differentiable in m and in 1/N 

❒ This holds also for the other components 
❒ Number of transitions bounded 
=> We can apply the Theorem  
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❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions 
•  Applications 

-  Bianchi’s model 
-  Epidemic routing 



Mean fluid for Epidemic routing 
(and similar) 
1.  Approximation: pairwise intermeeting times 

modeled as independent exponential random 
variables 

2.  Markov models for epidemic routing 
3.  Mean Fluid Models 
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Inter-meeting times under random 
mobility (from Lucile Sassatelli’s course) 

Inter-meeting times mobile/mobile have shown to 
follow an exponential distribution  

 [Groenevelt et al.: The message delay in mobile ad hoc networks. 
Performance Evalation, 2005]  

 

Pr{ X = x } = µ exp(- µx) 
CDF: Pr{ X ≤ x } = 1 - exp(- µx),           CCDF: Pr{ X > x } = exp(- µx) 
 

M. Ibrahim, Routing and Performance Evaluation of Disruption Tolerant Networks, PhD 
defense, UNS 2008 
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2-hop routing 

Model the number of occurrences of the message 
as an absorbing Continuous Time Markov Chain (C-
MC): 

•  State i∈{1,…,N} represents the number of 
occurrences of the message in the network. 

•  State A represents the destination node 
receiving (a copy of) the message. 



Model the number of occurrences of the message 
as an absorbing C-MC: 

•  State i∈{1,…,N} represents the number of 
occurrences of the message in the network. 

•  State A represents the destination node 
receiving (a copy of) the message. 

Epidemic routing 
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A further issue 

Model the number of occurrences of the message 
as an absorbing Continuous Time Markov Chain (C-
MC): 

•  We need a different convergence result 
[Kurtz70] Solution of ordinary differential equations as limits of 

pure jump markov processes, T. G. Kurtz, Journal of Applied 
Probabilities, pages 49-58, 1970 

 



[Kurtz1970] 

{XN(t), N natural} 
a family of Markov process in Zm 

with rates rN(k,k+h),   k,h in Zm   
It is called density dependent if it exists a 

continuous function f() in Rm such that 
rN(k,k+h) = N f(1/N k, h),  h<>0 

Define F(x)=Σh h f(x,h) 
Kurtz’s theorem determines when {XN(t)} are close 

to the solution of the differential equation: 
  
  

€ 

∂x(s)
∂s

= F(x(s)),



The formal result [Kurtz1970] 
Theorem. Suppose there is an open set E in Rm and a 
constant M such that 
    |F(x)-F(y)|<M|x-y|,  x,y in E 
    supx in EΣh|h| f(x,h) <∞,  
  limd->∞supx in EΣ|h|>d|h| f(x,h) =0 
 
 Consider the set of processes in {XN(t)} such that  
 limN->∞ 1/N XN(0) = x0 in E 
 and a solution of the differential equation 
 
 
 such that x(s) is in E for 0<=s<=t, then for each δ>0 
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Application to epidemic routing 

rN(nI)=λ nI (N-nI) = N (λN) (nI/N) (1-nI/N) 
assuming β = λ N keeps constant (e.g. node 

density is constant) 
f(x,h)=f(x)=x(1-x), F(x)=f(x) 
as N→∞, nI/N → i(t), s.t. 

 
with initial condition  
 
multiplying by N 
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