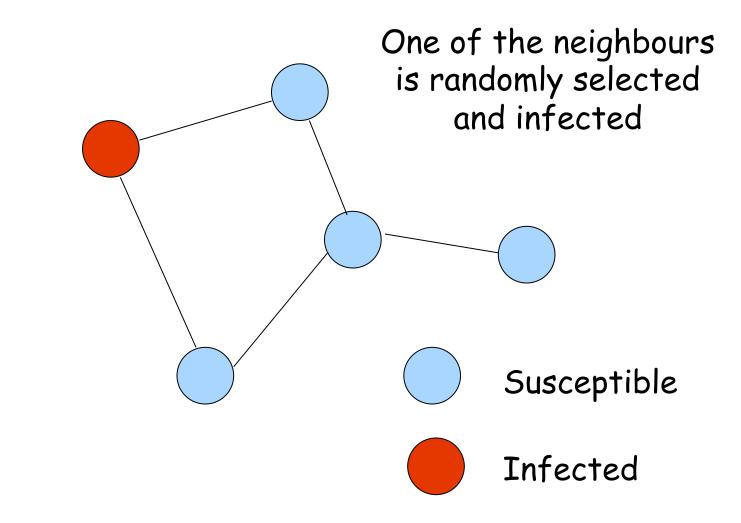
Performance Evaluation

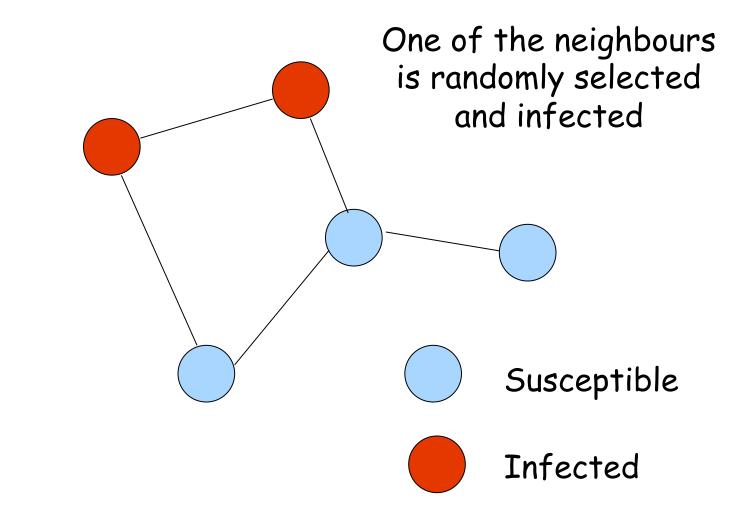
Lecture 2: Epidemics

Giovanni Neglia INRIA – EPI Maestro 12 December 2012

Epidemics on a graph: SI model



Epidemics on a graph: SI model



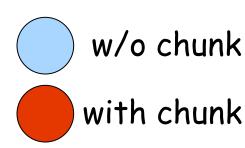
Any interest for Computer Networks?

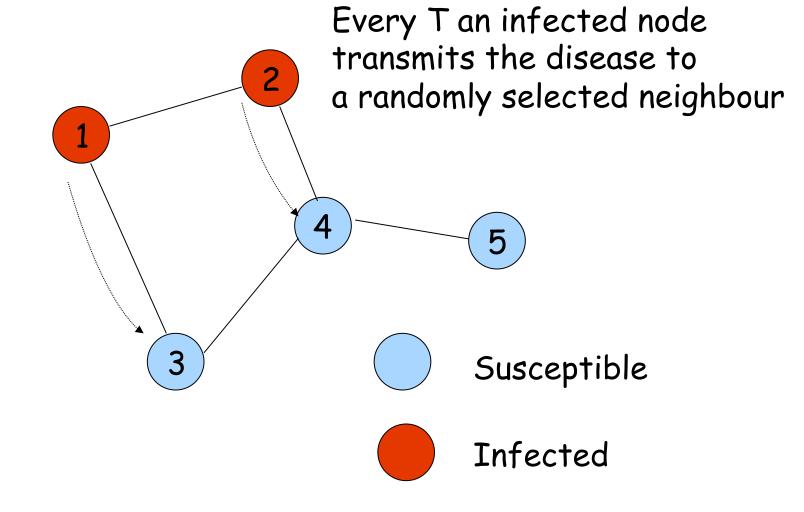
Flooding

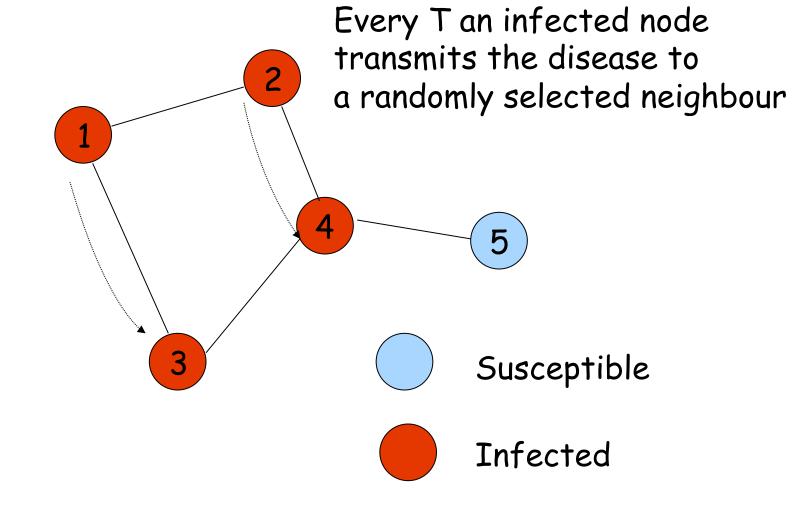
• Epidemic Routing in Delay Tolerant Networks

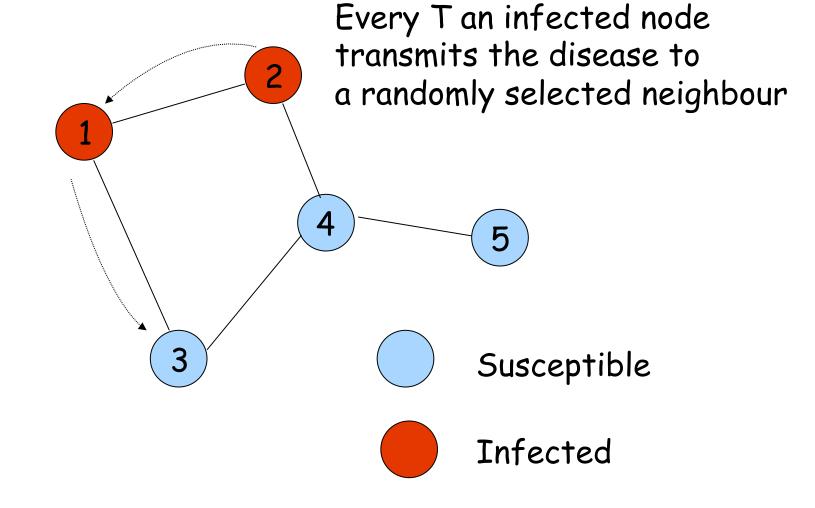
Chunk distribution in a P2P streaming system (push algorithms)

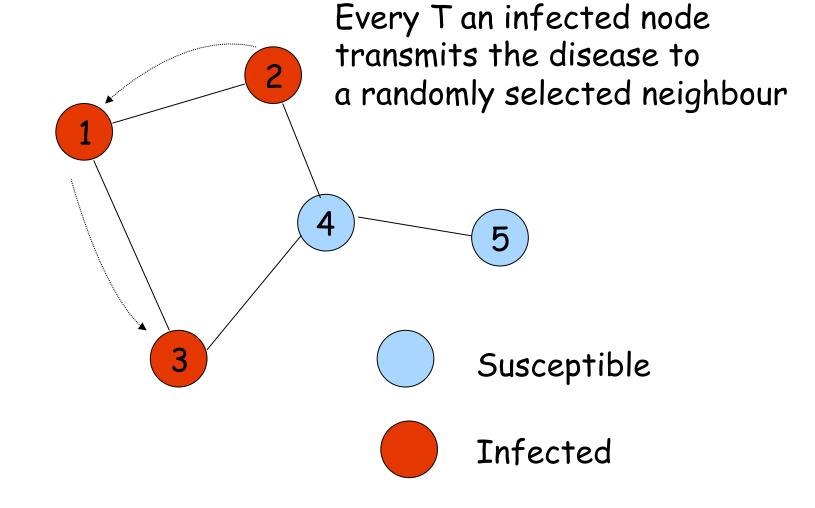
A copy of the chunk is pushed to a randomly selected neighbour







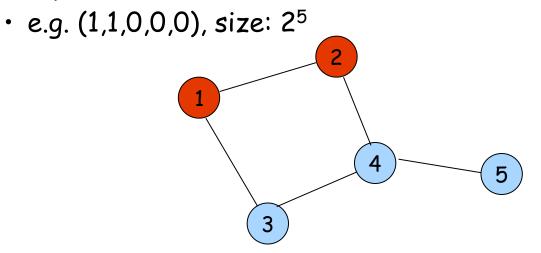




How do you model it?

A Markov Chain

 System state at time k is a vector specifying if every node is infected (1) or not (0)



Probability transitions among states

e.g. Prob((1,1,0,0,0)->(1,1,1,0,0))=1/4

Asynchronous behaviour

3

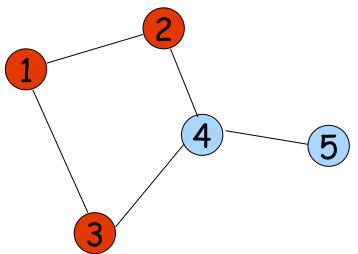
4

Every infected node transmits the disease on each of its links according to a Poisson Process with rate β

5

How to model it?

- A Continuous-time Markov process/Chain (C-MC)
 - System state at time t is a vector specifying if every node is infected (1) or not (0)
 - Rate transitions between state pairs
 - e.g, q((1,1,1,0,0)->(1,1,1,1,0))=2β



What to study and how

- \square P the transition matrix (2^Nx2^N)
- Transient analysis
 - $\odot \pi(k+1)=\pi(k)P$,
 - $\odot \pi(k+1)=\pi(0)P^{k+1}$,
- Stationary distribution (equilibrium)

 - If the Markov chain is irreducible and aperiodic
 - Computational cost:
 - $O((2^N)^3)$ if we solve the system
 - O(K M) where M is the number of non-null entries in P if we adopt the iterative procedure (K is the number of iterations), in our case $M=O((2^N)^2)$

Similar for C-MC

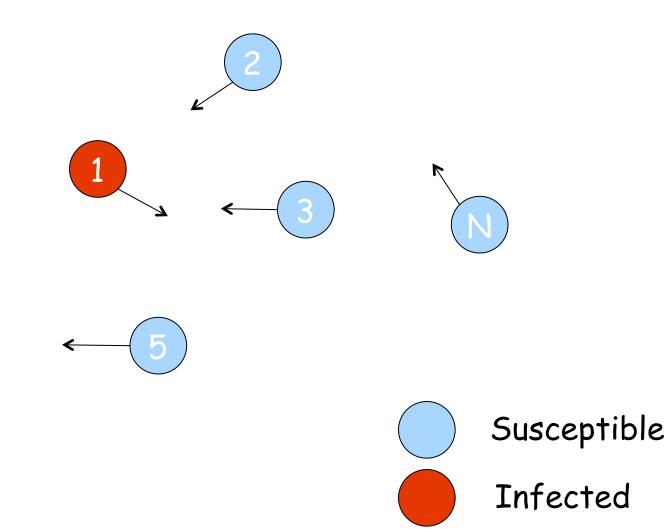
- □ Stationary distribution (equilibrium) $\circ \pi = \pi P$, D-MC
 - πQ=0, C-MC

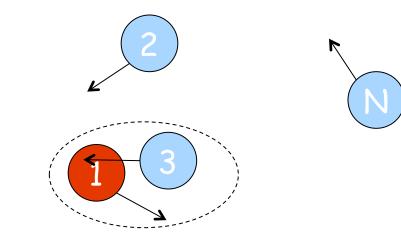
Transient analysis

 π(k+1)=π(k)P, D-MC
 dπ(t)/dt=π(t)Q, C-MC

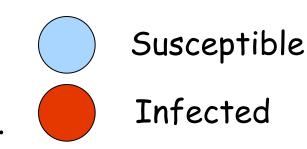
Outline

- Limit of Markovian models
- Mean Field (or Fluid) models
 - exact results
 - extensions to graphs
 - applications

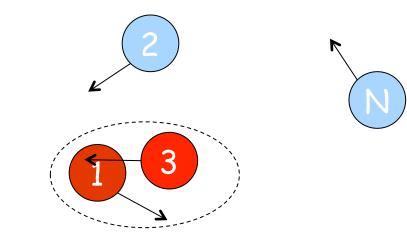




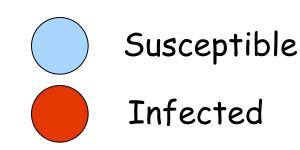
At each slot there is a probability p that two given nodes meet. Assume meetings to be independent.



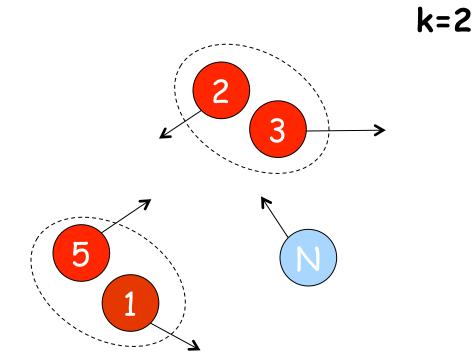
k=1



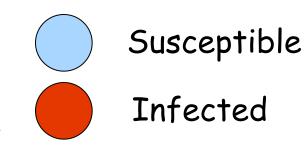
At each slot there is a probability p that two given nodes meet. Assume meetings to be independent.



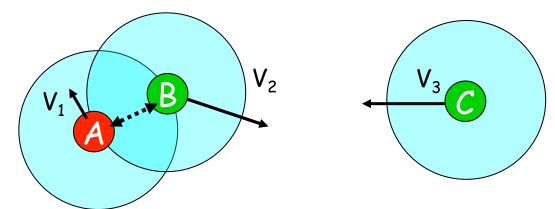
k=1



At each slot there is a probability p that two given nodes meet. Assume meetings to be independent.



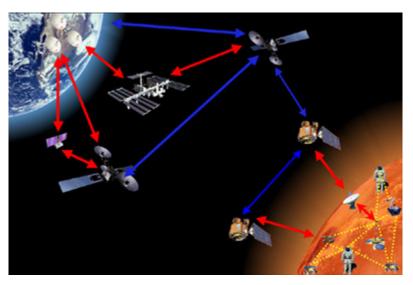
Delay Tolerant Networks (a.k.a. Intermittently Connected Networks)



mobile wireless networks
no path at a given time instant between two nodes
because of power contraint, fast mobility dynamics
maintain capacity, when number of nodes (N) diverges
Fixed wireless networks: C = O(sqrt(1/N)) [Gupta99]
Mobile wireless networks: C = O(1), [Grossglauser01]
a really challenging network scenario
No traditional protocol works

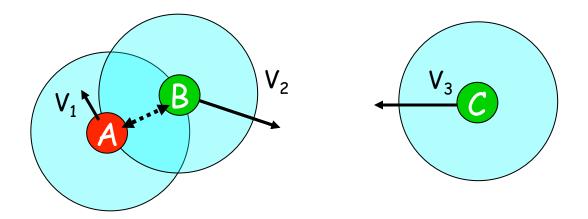
Some examples

- Network for disaster relief team
- Military battle-field network



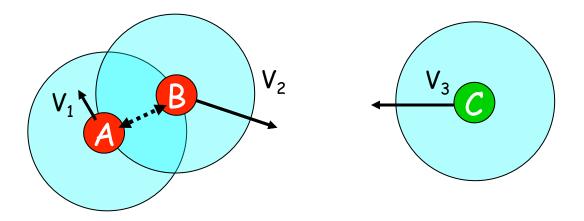
Inter-planetary backbone

Epidemic Routing



Message as a disease, carried around and transmitted

Epidemic Routing



Message as a disease, carried around and transmitted

Store, Carry and Forward paradigm

How do you model it?

A Markov Chain

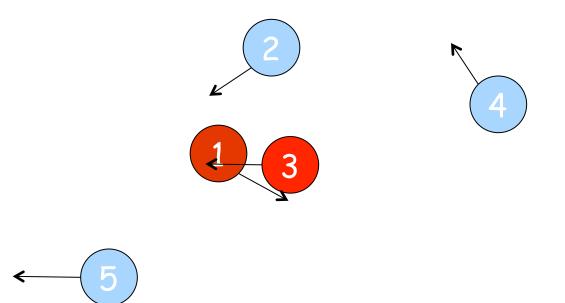
 System state at time k is a vector specifying if every node is infected (1) or not (0)

• e.g. (1,0,1,0,0), size: 2⁵ 3 4 5

Probability transitions among states

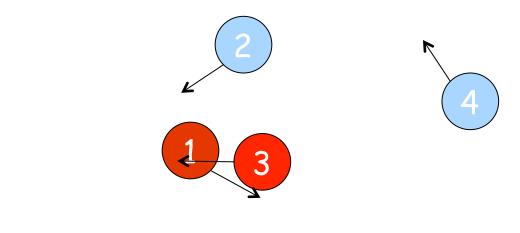
• e.g. Prob((1,0,1,0,0)->(1,1,1,0,0))=?

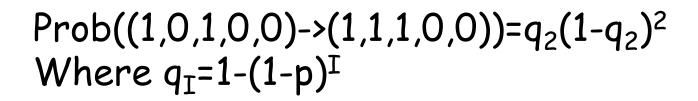
Transition probabilities Prob((1,0,1,0,0)->(1,1,1,0,0))=?



At slot k, when there are I(=I(k)) infected nodes, the prob. that node 2 gets infected is: $q_I=1-(1-p)^I$

Transition probabilities Prob((1,0,1,0,0)->(1,1,1,0,0))=?





What to study and how

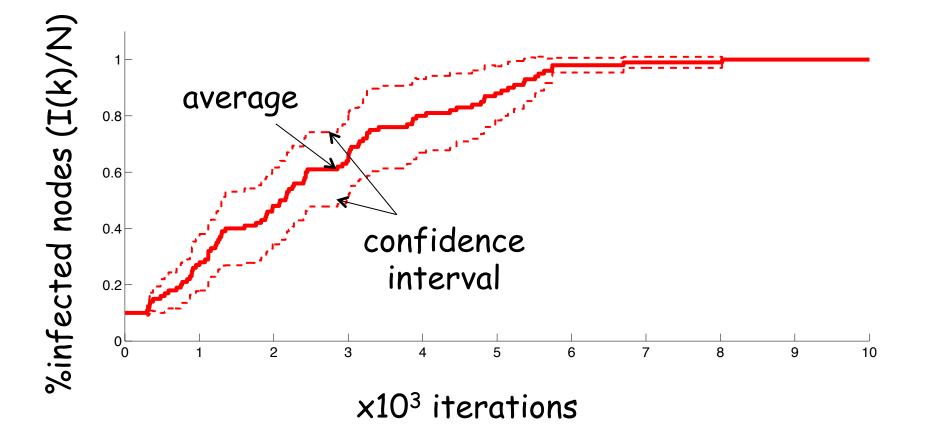
- \square P the transition matrix (2^Nx2^N)
- Transient analysis
 - $\odot \pi(k+1)=\pi(k)P$,
 - $\odot \pi(k+1)=\pi(0)P^{k+1}$,
- Stationary distribution (equilibrium)

 - If the Markov chain is irreducible and aperiodic
 - Computational cost:
 - $O((2^N)^3)$ if we solve the system
 - O(K M) where M is the number of non-null entries in P if we adopt the iterative procedure (K is the number of iterations), in our case $M=O((2^N)^2)$

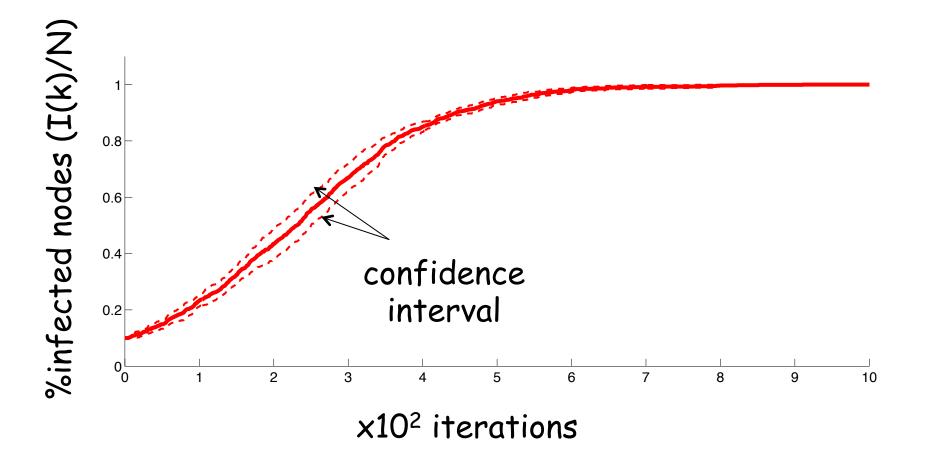
Can we simplify the problem?

- all the nodes in the same state (infected or susceptibles) are equivalent
- If we are interested only in the number of nodes in a given status, we can have a more succinct model
 - o state of the system at slot k: I(k)
 - it is still a MC
 - $O \operatorname{Prob}(I(k+1)=I+n | I(k)=I) = C_{N-I}^{n} q_{I}^{n} (1-q_{I})^{N-n-I}$
 - $(I(k+1)-I(k) | I(k)=I) \sim Bin(N-I,q_I)$
 - q_I=1-(1-p)^I

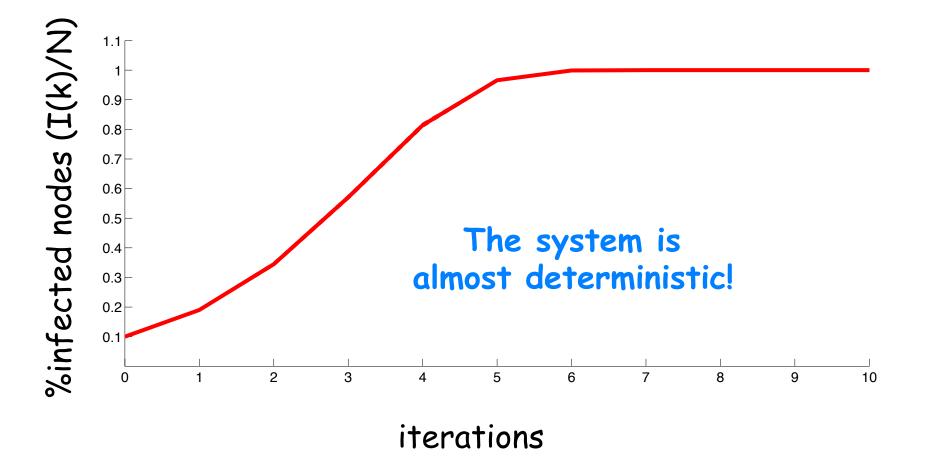
Some numerical examples p=10⁻⁴, N=10, I(0)=N/10, 10 runs



Some numerical examples p=10⁻⁴, N=100, I(0)=N/10, 10 runs



Some numerical examples p=10⁻⁴, N=10000, I(0)=N/10, 10 runs



Summary

- For a large system of interacting equivalent objects, the Markov model can be untractable...
- but a deterministic description of the system seems feasible in terms of the empirical measure (% of objects in each status)
 - intuition: kind of law of large numbers
- Mean field models describe the deterministic limit of Markov models when the number of objects diverges

- i^(N)(k), fraction of infected nodes at time k
 Solve
 - di(t)/dt=i(t)(1-i(t)), with i=i₀
 - Solution: i(t)=1/((1/i₀-1) e⁻⁺+1)
- If $i^{(N)}(0)=i_0$, $i^{(N)}(k) \approx i(k p_0/N)=1/((1/i_0-1) \exp(-k p_0/N)+1)$ $=1/((1/i_0-1) \exp(-k N p)+1)$

Outline

Limit of Markovian models
Mean Field (or Fluid) models

- exact results
- extensions to graphs
- applications

References

- Results here for discrete time Markov Chains
 - Benaïm, Le Boudec "A Class of Mean Field Interaction Models for Computer and Communication Systems", LCA-Report-2008-010
- A survey with pointers to continuous time Markov processes and links to stochastic approximation and propagation of chaos
 - Ch. 2 of Nicolas Gast's PhD thesis "Optimization and Control of Large Systems, Fighting the Curse of Dimensionality"

Necessary hypothesis: Objects' Equivalence

Π π(k+1)=π(k)P

□ A state $\sigma = (v_1, v_2, ..., v_N), v_j \in V(|V|=V, finite)$

E.g. in our example V={0,1}

 \Box P is invariant under any label permutation φ :

•
$$P_{\sigma,\sigma'}=Prob((v_1,v_2,...v_N)-(u_1,u_2,...u_N))=$$

 $Prob((v_{\phi(1)},v_{\phi(2)},...v_{\phi(N)})-(u_{\phi(1)},u_{\phi(2)},...u_{\phi(N)}))$

Some notation and definitions

- $\Box X_n^{(N)}(k)$: state of node n at slot k
- \square $M_{(N)}(k)$: occupancy measure of state v at slot k
 - $M_{u}^{(N)}(k) = \sum_{n} \mathbf{1}(X_{n}^{(N)}(k) = v)/N$
 - SI model: $M_2^{(N)}(k) = I^{(N)}(k) / N = i^{(N)}(k)$,

 $M_1^{(N)}(k) = S^{(N)}(k) / N = s^{(N)}(k) = 1 - i^{(N)}(k)$

- $\square M^{(N)}(k) = (M_1^{(N)}(k), M_2^{(N)}(k), \dots M_V^{(N)}(k))$

 $\Box f^{(N)}(m) = E[M^{(N)}(k+1) - M^{(N)}(k)]M^{(N)}(k) = m]$

Drift or intensity, it is the mean field

- - SI model: $(1-i^{(N)}(k),i^{(N)}(k))$

Other hypotheses

 \Box Intensity vanishes at a rate $\varepsilon(N)$

 $- \operatorname{Lim}_{N \rightarrow \infty} \mathbf{f}^{(N)}(\mathbf{m}) / \epsilon(N) = \mathbf{f}(\mathbf{m})$

- Second moment of number of object transitions per slot is bounded
 - #transitions< $W^{N}(k)$,
 - $\mathsf{E}[W^{\mathsf{N}}(\mathsf{k})^2 | \mathbf{M}^{(\mathsf{N})}(\mathsf{k}) = \mathbf{m}] < c \mathsf{N}^2 \varepsilon(\mathsf{N})^2$
- Drift is a smooth function of m and 1/N
 - $f^{(N)}(m)/\epsilon(N)$ has continuous derivatives in m and in 1/N on $[0,1]^{V} \times [0,\beta]$, with $\beta > 0$

Convergence Result

 \Box Define <u>**M**</u>^(N)(t) with t real, such that

- $\underline{\mathbf{M}}^{(N)}(k \epsilon(N)) = \mathbf{M}^{(N)}(k)$ for k integer
- $\underline{\mathbf{M}}^{(N)}(t)$ is affine on [k $\varepsilon(N),(k+1)\varepsilon(N)$]
- Consider the Differential Equation
 - $-d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$

Theorem

– For all T>O, if $\mathbf{M}^{(N)}(0) \rightarrow \mathbf{m}_0$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) - \mu(t)|| \rightarrow 0$ in probability (/ mean square)

Convergence of random variables

The sequence of random variables X^(N) converges to X in probability if

- for all δ >0 Lim_{N→∞} Prob(|X^(N) - X|> δ)=0

The sequence of random variables X^N converges to X in mean square if

$$- \text{Lim}_{N \to \infty} \mathbb{E}[|X^{(N)} - X|^2] = 0$$

Convergence in mean square implies convergence in probability

- Assumptions' check
 - Nodes are equivalent
 - Intensity vanishes at a rate $\varepsilon(N)$ $f^{(N)}(m) = E[M^{(N)}(k+1) - M^{(N)}(k)]M^{(N)}(k) = m]$ $M_{2}^{(N)}(k)=I^{(N)}(k)/N=i^{(N)}(k), M_{1}^{(N)}(k)=1-M_{2}^{(N)}(k)$ $(I^{(N)}(k+1)-I^{(N)}(k) | I^{(N)}(k)=I) \sim Bin(N-I_{q_T}) =>$ $E[I^{(N)}(k+1)-I^{(N)}(k) | I^{(N)}(k)=I] = q_T(N-I)$ $E[i^{(N)}(k+1)-i^{(N)}(k)|i^{(N)}(k)=i] = (1-i) q_T$ = $(1-i)(1-(1-p)^{iN}) \rightarrow (1-i)$ when N diverges!

Out of the impasse: introduce a scaling for p

- If $p^{(N)}=p_0/N^a a>1 => (1-i)(1-(1-p^{(N)})^{i})>0$
- Consider a=2
 - $(1-i)(1-(1-p^{(N)})^{iN}) \sim (1-i) i p_0/N$ (for N large)
- ε(N)=p₀/N
- $f_2(m) = f_2((s,i)) = s i = i (1-i)$
- Lesson to keep: often we need to introduce some parameter scaling

- Assumptions' check
 - Nodes are equivalent
 - Intensity vanishes at a rate $\epsilon(N)=p_0/N$
 - Second moment of number of object transitions per slot is bounded

#transitions<W^N(k),

 $\mathsf{E}[\mathsf{W}^{\mathsf{N}}(\mathsf{k})^2 | \mathbf{M}^{(\mathsf{N})}(\mathsf{k}) = \mathbf{m}] < c \mathsf{N}^2 \varepsilon(\mathsf{N})^2$

 $W^{N}(k)$ =#trans. ~ Bin(N-I(k),q_I)

 $E[W^{N}(k)^{2}]=((N-I(k))q_{I})^{2} + (N-I(k))q_{I}(1-q_{I})$ is in $O(N^{2} \epsilon(N)^{2})$

- Assumptions' check
 - Nodes are equivalent
 - ✓ Intensity vanishes at a rate $\epsilon(N)=p_0/N$
 - Second moment of number of object transitions per slot is bounded
 - \checkmark Drift is a smooth function of **m** and 1/N
 - $f_2^{(N)}(\mathbf{m})/\epsilon(N) =$ =(1-i) (1 - (1-(p_0/N^2))^{i} N)/(p_0/N)
 - continuous derivatives in i and in 1/N (not evident)

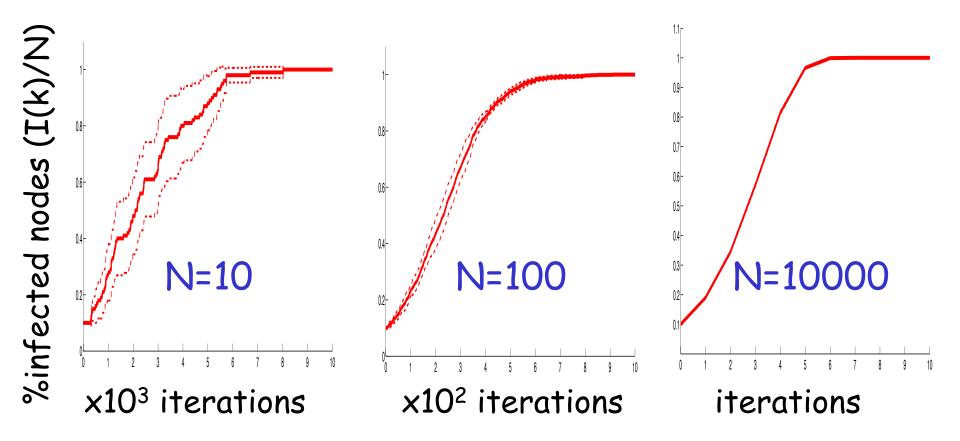
Practical use of the convergence result

Theorem

- For all T>O, if $\mathbf{M}^{(N)}(0) \rightarrow \mathbf{m}_0$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) - \mu(t)|| \rightarrow 0$ in probability (/ mean square)
- Where $\mu(t)$ is the solution of $d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$
- $\square \mathbf{M}^{(N)}(0) = \mathbf{m}_{0}, \ \mathbf{M}^{(N)}(k) = \underline{\mathbf{M}}^{(N)}(k\varepsilon(N)) \approx \boldsymbol{\mu}(k\varepsilon(N))$

- □ $f_2(\mathbf{m})=f_2((s,i))=i(1-i)$ □ $d\mu_2(t)/dt=f_2(\mu_2(t))=\mu_2(t)(1-\mu_2(t)),$ with $\mu_2(0)=\mu_{0,2}$
 - Solution: $\mu_2(t)=1/((1/\mu_{0,2}-1)e^{-t}+1)$
- □ If $i^{(N)}(0)=i_0$, $i^{(N)}(k) \approx \mu_2 (k\epsilon(N))=1/((1/i_0-1) \exp(-k p_0/N)+1)$ $=1/((1/i_0-1) \exp(-k N p)+1)$

Back to the numerical examples p=10⁻⁴, I(0)=N/10, 10 runs



Advantage of Mean Field

- □ If $i^{(N)}(0)=i_0$, $i^{(N)}(k) \approx \mu_2 (k\epsilon(N))=1/((1/i_0-1) \exp(-k p_0/N)+1)$ =1/((1/i_0-1) exp(-k N p)+1)
 - solved for each N with negligible computational cost
- In general: solve numerically the solution of a system of ordinary differential equations (size = #of possible status)
 - simpler than solving the Markov chain