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Game Trees (Extensive form) 

❒ Sequential play 
❍  players take turns in making choices 
❍  previous choices may be available to players 

❒ Game represented as a tree 
❍  each non-leaf node represents a decision point for 

some player 
❍  edges represent available choices 



Game Trees: simplified poker 

❒  Rose and Colin put 1$ each in the pot and 
take a card (Ace or King) 

❒  Colin may bet other 2$ or drop 
❒  If Colin bets 

❍ Rose can put other 2$ and call (and the highest 
card wins)  

❍  or can fold (and Colin takes the money) 
❒  If Colin drops 

❍ Rose takes all the money in the pot 



Tree of the simplified poker 

Arc joins states of a player in the same information set:  
•  when playing the player cannot distinguish these states 

- the known sequence of past events is the same 
- the set of future actions is the same 

Chance 

Colin 

A,A 
1/4 A,K 

1/4 
K,A 
1/4 

K,K 
1/4 

Rose 

bet drop 

call fold 

Colin 

Rose 
bet 

call fold 

Colin 

Rose 
bet drop 

call fold 

Colin 

bet drop 

call fold 

(0,0) (0,0) (3,-3) (-3,3) (-1,1) (-1,1) (-1,1) (-1,1) 

drop 

(1,-1) (1,-1) (1,-1) (1,-1) 
Rose 



Game trees:  
more formal definition 
1.  each node is labeled by the player (including 

Chance) who makes a choice at that node 
2.  each branch leading by a node corresponds to 

a possible choice of the player at the node 
3.  each branch corresponding to a choice made 

by Chance is labeled with the corresponding 
probability  

4.  each leaf is labeled by players payoffs  
5.  nodes of each player are partitioned  in 

information sets 



Game trees and matrix games 

❒  Each game tree can be converted in a matrix 
game! 

❒  Connecting idea: strategy in game tree 
❍  it specifies a priori all the choices of the player in 

each situation 
•  only need to specify for each information set 

❍  e.g. in simplified poker  
•  for Colin 4 possible strategies 

–  “always bet” (bb), “bet only if ace” (bd), “bet only if 
king” (db), “always drop” (dd) 

•  for Rose 4 possible strategies 
–  “always call” (cc), “call only if ace” (cf), “call only if 

king” (fc), “always fold” (ff) 



Game trees and matrix games 

❒  Each game tree can be converted in a 
matrix game! 

❒ Once identified the strategies of every 
player… 

❒ …use the expected payoffs of the game 
tree as payoffs of the matrix game 



Game trees and matrix games 
Chance 

Colin 

A,A 
1/4 A,K 

1/4 
K,A 
1/4 

K,K 
1/4 

Rose 
bet drop 

call fold 

Colin 

Rose 
bet 

call fold 

Colin 

Rose 
bet drop 

call fold 

Colin 
bet drop 

call fold 

(0,0) (0,0) (3,-3) (-3,3) (-1,1) (-1,1) (-1,1) (-1,1) 

drop 

(1,-1) (1,-1) (1,-1) (1,-1) 
Rose 

Study this game 



Game trees and matrix games 

bb bd db dd 

cc 0 -1/4 5/4 1 

cf 1/4 1/4 1 1 

fc -5/4 -1/2 1/4 1 

ff -1 0 0 1 

Colin 

Ro
se

 

Chance 

Colin 

A,A 
1/4 A,K 

1/4 
K,A 
1/4 

K,K 
1/4 

Rose 
bet drop 

call fold 

Colin 

Rose 
bet 

call fold 

Colin 

Rose 
bet drop 

call fold 

Colin 
bet drop 

call fold 

(0,0) (0,0) (3,-3) (-3,3) (-1,1) (-1,1) (-1,1) (-1,1) 

drop 

(1,-1) (1,-1) (1,-1) (1,-1) 
Rose 

Study this game 



Game trees and matrix games 

❒  Each game tree can be converted in a 
matrix game! 

❒  Problem: this approach does not scale with 
the size of the tree 
❍  exponential growth in the number of strategies 

•  consider how many strategies are available in chess to 
White and to Black for their respective first move 

❒ Try to study directly the game tree 



Game trees  
with perfect information 
❒ Definition 

1.  no nodes are labeled by Chance 
2.  all information sets consist of a single node 

❒ Test: which among the following is a game 
with perfect information and why? 
❍  poker 
❍  tic, tac, toe 
❍  rock, scissor, paper  

•  honestly and dishonestly played… 
❍  chess 
❍  guess the number  



Perfect information: an example 

❒  Strategy sets  
❍  for Player 1: {L, R} 
❍  for Player 2: {LL,LR,RL,RR} 

❒  Convert it to a matrix game and 
solve it 

Player 1 

Player 2 Player 2 
L 

L 

R 

R R L 

3, -3 0, 0 -2, 2 1, -1 

Payoff to 
Player 2 

Payoff to 
Player 1 



Converting to Matrix Game 

LL LR RL RR 
L 3 3 0 0 

R -2 1 -2 1 

Player 1 

L 

L 

R 

R R L 

3, -3 0, 0 -2, 2 1, -1 
Player 2 



Solving the game by backward 
induction  

❒ Starting from terminal nodes 
❍ move up game tree making best choice 

L 

L 

R 

R R L 

3, -3 0, 0 -2, 2 1, -1 

Best strategy 
for P2: RL 

L R 

0, 0 -2, 2 

Best strategy 
for P1: L 

❒  Saddle point:  
 P1 chooses L, P2 chooses RL 

Equilibrium 
outcome 



Kuhn’s Theorem 
❒  Backward induction always leads to saddle point 

(on games with perfect information) 
❍  game value at equilibrium is unique (for zero-sum) 
 

❒  Consequences for chess? 

Chess is a simple game! (Zermelo 1913) 

  
❍  at the saddle point  

•  or White wins, value = 1 -> White has winning strategy no 
matter what Black does 

•  or Black wins, value = -1 -> Black has winning strategy, no 
matter what White does 

•  or they draw, value = 0 -> Both White and Black have a 
strategy guaranteeing at least drawing  



More on Game Trees 

❒ We will talk more on about 
❍  games with imperfect information 
❍  and mixed strategies 

❒ when presenting repeated games (a special 
case of game trees). 



Game Theory: introduction  
and applications to computer networks 

Two-person non zero-sum games 
Giovanni Neglia 

INRIA – EPI Maestro 
 

Slides are based on a previous course  
with D. Figueiredo (UFRJ) and H. Zhang (Suffolk University) 



Outline 
❒  Two-person zero-sum games 

❍  Matrix games 
•  Pure strategy equilibria (dominance and saddle points), ch 2 
•  Mixed strategy equilibria, ch 3 

❍  Game trees, ch 7 
❒  Two-person non-zero-sum games 

❍  Nash equilibria… 
•  …And its limits (equivalence, interchangeability, Prisoner’s 

dilemma), ch. 11 and 12 
❍  Strategic games, ch. 14 
❍  Subgame Perfect Nash Equilibria (not in the book) 
❍  Repeated Games, partially in ch. 12 
❍  Evolutionary games, ch. 15 

❒  N-persons games 



Two-person Non-zero Sum Games 

❒  Players are not strictly opposed 
❍  payoff sum is non-zero 

A B 
A 3, 4 2, 0 

B 5, 1 -1, 2 
Player 1 

Player 2 

❒ Situations where interest is not directly opposed 
❍  players could cooperate 
❍  communication may play an important role 

•  for the moment assume no communication is possible 



What do we keep  
from zero-sum games? 

❒ Dominance 
❒ Movement diagram 

❍  pay attention to which payoffs have to be 
considered to decide movements 

❒  Enough to determine pure strategies equilibria 
❍  but still there are some differences (see after) 

A B 
A 5, 4 2, 0 

B 3, 1 -1, 2 

Player 
1 

Player 2 



What can we keep  
from zero-sum games? 

❒ As in zero-sum games, pure strategies 
equilibria do not always exist… 

❒ …but we can find mixed strategies equilibria 

A B 
A 5, 0 -1, 4 

B 3, 2 2, 1 

Player 1 

Player 2 



Mixed strategies equilibria 

❒ Same idea of equilibrium 
❍  each player plays a mixed strategy (equalizing 

strategy), that equalizes the opponent payoffs 
❍  how to calculate it?  

A B 
A 5, 0 -1, 4 

B 3, 2 2, 1 

Rose 

Colin 



Mixed strategies equilibria 

❒ Same idea of equilibrium 
❍  each player plays a mixed strategy, that 

equalizes the opponent payoffs 
❍  how to calculate it?  

A B 
A -0 -4 

B -2 -1 

Rose 

Colin Rose considers  
Colin’s game 

4 

1 

1/5 

4/5 



Mixed strategies equilibria 

❒ Same idea of equilibrium 
❍  each player plays a mixed strategy, that 

equalizes the opponent payoffs 
❍  how to calculate it?  

A B 
A 5 -1 

B 3 2 

Rose 

Colin Colin considers  
Rose’s game 

3/5 2/5 



Mixed strategies equilibria 

❒ Same idea of equilibrium 
❍  each player plays a mixed strategy, that 

equalizes the opponent payoffs 
❍  how to calculate it?  

A B 
A 5, 0 -1, 4 

B 3, 2 2, 1 

Rose 

Colin Rose playing (1/5,4/5) 
Colin playing (3/5,2/5) 
is an equilibrium 
 
Rose gains 13/5 
Colin gains 8/5 
 



Good news: 
Nash’s theorem [1950] 
❒  Every two-person games has at least one 

equilibrium either in pure strategies or in 
mixed strategies 
❍  Proved using fixed point theorem 
❍  generalized to N person game 

❒ This equilibrium concept called Nash 
equilibrium in his honor 
❍ A vector of strategies (a profile) is a Nash 

Equilibrium (NE) if no player can unilaterally 
change its strategy and increase its payoff 



A useful property 

❒ Given a finite game,  a profile is a mixed 
NE of the game if and only if for every 
player i, every pure strategy used by i with 
non-null probability is a best response to 
other players mixed strategies in the 
profile 
❍  see Osborne and Rubinstein, A course in game 

theory, Lemma 33.2 



Bad news: what do we lose? 

❒  equivalence 
❒  interchangeability 
❒  identity of equalizing strategies with 

prudential strategies 
❒  main cause 

❍  at equilibrium every player is considering the 
opponent’s payoffs ignoring its payoffs. 

❒  New problematic aspect 
❍  group rationality versus individual rationality 

(cooperation versus competition) 
❍  absent in zero-sum games 

Ø  we lose the idea of the solution  



Game of Chicken 

2 

2 

❒ Game of Chicken (aka. Hawk-Dove Game) 
❍  driver who swerves looses 

swerve stay 
swerve 0, 0 -1, 5 

stay 5, -1 -10, -10 D
ri

ve
r 

1 

Driver 2 Drivers want to do 
opposite of one another 

Two equilibria: 
not equivalent 
not interchangeable! 
•  playing an equilibrium strategy 
does not lead to equilibrium 



The Prisoner’s Dilemma 
❒ One of the most studied and used games 

❍  proposed in 1950 
❒ Two suspects arrested for joint crime 

❍  each suspect when interrogated separately, has 
option to confess 

NC C 
NC 2, 2 10, 1 

C 1, 10 5, 5 
Suspect 1 

Suspect 2 

payoff is years in jail 
(smaller is better) 

single NE better  
outcome 



Pareto Optimal 

NC C 
NC 2, 2 10, 1 
C 1, 10 5, 5 

Suspect 1 

Suspect 2 

❒  Def: outcome o* is Pareto Optimal if no other 
outcome would give to all the players a payoff not 
smaller and a payoff higher to at least one of them 

❒  Pareto Principle: to be acceptable as a solution of a 
game, an outcome should be Pareto Optimal 
o  the NE of the Prisoner’s dilemma is not! 

❒  Conflict between group rationality (Pareto principle) 
and individual rationality (dominance principle) 

Pareto Optimal 



Payoff polygon 

❒ All the points in the convex hull of the pure 
strategy payoffs correspond to payoffs 
obtainable by mixed strategies 

❒ The north-east boundary contains the 
Pareto optimal points 

A B 
A 5, 0 -1, 4 

B 3, 2 2, 1 Ro
se

 

Colin 

A,A 

B,A 

A,B 

B,B 

NE 

Rose’s  
payoff 

Colin’s 
payoff 



Another possible approach to 
equilibria 
❒ NE óequalizing strategies 
❒ What about prudential strategies? 



Prudential strategies 

❒  Each player tries to minimize its maximum 
loss (then it plays in its own game) 

A B 
A 5, 0 -1, 4 

B 3, 2 2, 1 

Rose 

Colin 



Prudential strategies 

❒  Rose assumes that Colin would like to minimize 
her gain 

❒  Rose plays in Rose’s game 
❒  Saddle point in BB 
❒  B is Rose’s prudential strategy and guarantees 

to Rose at least 2 (Rose’s security level) 

A B 
A 5 -1 

B 3 2 

Rose 

Colin 



Prudential strategies 

❒  Colin assumes that Rose would like to minimize 
his gain (maximize his loss) 

❒  Colin plays in Colin’s game 
❒  mixed strategy equilibrium,  
❒  (3/5,2/5) is Colin’s prudential strategy and 

guarantees Colin a gain not smaller than 8/5 

A B 
A 0 -4 

B -2 -1 

Rose 

Colin 



Prudential strategies 

❒  Prudential strategies 
❍  Rose plays B, Colin plays A w. prob. 3/5, B w. 2/5 
❍  Rose gains 13/5 (>2),  Colin gains 8/5 

❒  Is it stable? 
❍  No, if Colin thinks that Rose plays B, he would be 

better off by playing A (Colin’s counter-prudential 
strategy) 

A B 
A 5, 0 -1, 4 

B 3, 2 2, 1 

Rose 

Colin 



Prudential strategies 

❒  are not the solution neither: 
❍  do not lead to equilibria 
❍  do not solve the group rationality versus 

individual rationality conflict 
❒  dual basic problem: 

❍  look at your payoff, ignoring the payoffs of the 
opponents 



Exercises 

❒  Find NE and Pareto optimal outcomes: 
NC C 

NC 2, 2 10, 1 

C 1, 10 5, 5 

A B 
A 2, 3 3, 2 

B 1, 0 0, 1 

swerve stay 
swerve 0, 0 -1, 5 

stay 5, -1 -10, -10 

A B 
A 2, 4 1, 0 

B 3, 1 0, 4 



Game Trees Revisited 
❒  Microsoft and Mozilla are deciding on adopting new 

browser technology (.net or java) 
❍  Microsoft moves first, then Mozilla makes its move 

Microsoft 

Mozilla Mozilla 
.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 
❒  Non-zero sum game 

❍  what are the NEs? 
❍  remember: a (pure) strategy has to specify the action at 

each information set 



NN NJ JN JJ 
.net 3,1 3,1 1,0 1,0 

java 0,0 2,2 0,0 2,2 

NE and Threats 

❒  Convert the game 
to normal form 

Microsoft 

Mozilla 

.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 

❒ A strategy specifies the action in each 
information set 
❍  “NN” = Mozilla chooses .net in both the 

information sets, i.e. both if Microsoft 
chooses .net and if it chooses java 



NE and Threats 

❒  Convert the game 
to normal form 

NN NJ JN JJ 
.net 3,1 3,1 1,0 1,0 

java 0,0 2,2 0,0 2,2 
Microsoft 

Mozilla 

.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 

NE 

❒ Mozilla’s JJ is a threat to Microsoft 
❍  I will play Java, no matter what you do 
❍  harmful to Microsoft, but also to Mozilla if 

Microsoft plays .net 



NE and Threats 

❒  Convert the game 
to normal form 

NN NJ JN JJ 
.net 3,-1 3,-1 1,0 1,0 

java 0,-2 2,2 0,-2 2,2 
Microsoft 

Mozilla 

.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 

NE 

❒ Mozilla’s JJ is a threat to Microsoft 
❒ Mozilla may declare that it will never adopt .net 

(loss of image when adopting .net equal to -2) 



NE and Incredible Threats 

❒  Convert the game 
to normal form 

NN NJ JN JJ 
.net 3,1 3,1 1,0 1,0 

java 0,0 2,2 0,0 2,2 
Microsoft 

Mozilla 

.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 

NE 

❒  Mozilla’s JJ is a threat to Microsoft 
❒  If loss of image is negligible, the threat is incredible 
❒  Even if the threat is incredible, (java,JJ) is still a NE 

❍  How to get rid of this unconvincing NE? 



Removing Incredible Threats and 
other poor NE 

❒  Apply backward induction 
to game tree 

.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 

.net java 

3, 1 2, 2 

❒  Single NE remains 
.net for Microsoft, 
.net, java for Mozilla 

❒  In general, multiple NEs are possible after 
backward induction 
❍  cases with no strict preference over payoffs 

❒  Corollary: be careful with reduction to normal 
form, when the game is not zero-sum! 



Subgame Perfect Nash Equilibrium 
❒ Def: a subgame is any subtree of the original 

game that also defines a proper game 
❍  only it makes sense in games with perfect information 

❒ Def: a NE is subgame perfect if its restriction 
to every subgame is also a NE of the subgame 

❒ The one deviation property: s* is a Subgame 
Perfect Nash Equilibrium (SPNE) if and only if 
no player can gain by deviating from s* in a 
single stage. 

❒  Kuhn’s Thr: every finite extensive form game 
with complete information has one SPNE 
❍  based on backward induction 



NE and Incredible Threats 

Microsoft 

Mozilla 

.net 

.net 

java 

java java .net 

3, 1 1, 0 0, 0 2, 2 

NE 

❒  JJ is an incredible threat and java-JJ is not an SPNE 
❒  NN is not really a threat (it motivates more Microsoft 

to play net), but net-NN is not an SPNE  

NN NJ JN JJ 
.net 3,1 3,1 1,0 1,0 

java 0,0 2,2 0,0 2,2 SPNE 



Weakness of SPNE  
(or when GT does not predict people’s behaviour) 

❒  Centipede Game 
❍  two players alternate decision to continue or stop for k rounds 
❍  stopping gives better payoff than next player stopping in next 

round (but not if next player continues) 

1, 0 0, 2 3, 1 2, 4 5, 3 4, 6 7, 5 6, 8 

8, 7 C C C C C C C 

S S S S S S S S 

C 

❒  Backward induction leads to unique SPNE 
❍  both players choose S in every turn 

❒  How would you play this game with a stranger? 
❍  empirical evidence suggests people continue for many rounds  



Stackelberg Game 

❒ A particular game tree 
❒ Two moves, leader then follower(s) 

❍  can be modeled by a game tree 

❒ Stackelberg equilibrium 
❍  Leader chooses strategy knowing that follower(s) 

will apply best response 
❍  It is a SPNE for this particular game tree 



Stackelberg Game and  
Computer Networking 

❒  "Achieving Network Optima Using Stackelberg 
Routing Strategies."  
 Yannis A. Korilis, Aurel A. Lazar, Ariel Orda. 
IEEE/ACM Transactions on Networking, 1997.  

❒  "Stackelberg scheduling strategies".  
 Tim Roughgarden. STOC 2001. 
 



Promises 

❒  Example: in a sequential prisoner’s dilemma 
“I will not confess, if you not confess”. 

❒   Similar issues about credibility as for 
threats 

NC C 
NC 2, 2 10, 1 

C 1, 10 5, 5 

Su
sp

ec
t 

1 

Suspect 2 



Outline 
❒  Two-person zero-sum games 

❍  Matrix games 
•  Pure strategy equilibria (dominance and saddle points), ch 2 
•  Mixed strategy equilibria, ch 3 

❍  Game trees, ch 7 
❍  About utility, ch 9 

❒  Two-person non-zero-sum games 
❍  Nash equilibria… 

•  …And its limits (equivalence, interchangeability, Prisoner’s 
dilemma), ch. 11 and 12 

❍  Strategic games, ch. 14 
❍  Subgame Perfect Nash Equilibria (not in the book) 
❍  Repeated Games, partially in ch. 12 
❍  Evolutionary games, ch. 15 

❒  N-persons games 



Repeated games 

❒  players face the same “stage game” in 
every period, and the player’s payoff is a 
weighted average of the payoffs in each 
stage. 

❒ moves are simultaneous in each stage game. 
❒  finitely repeated (finite-horizon) and 

infinitely repeated (infinite-horizon) games 
❒  in this talk, we assume: 

❍  players perfectly observed the actions that had 
been played. 



Repeated games are game trees 

3,1 1,0 
0,0 2,2 P1 

P2 

L 
R 

left right 

P2 

L 

left 

R 

right right left 

P1 
stage 1 

(3,1) (1,0) (0,0) (2,2) 

❒  normal form simultaneous game 
o  transform it in a game tree 



Repeated games are game trees 

P2 

L 

left 

R 

right right left 

P1 

P1 P1 P1 P1 

P2 P2 P2 P2 

stage 1 

stage 
2 

L R 

le
ft

 
ri

gh
t 

L R L R L R 

(6,2) (4,1) 

3,1 1,0 
0,0 2,2 

P1 

P2 

L 

R 

left right 

(3,1) (5,3) (4,1) 

if payoffs are just summed without any discount 



Repeated games 
❒  Ai=(ai1, ai2, …, ai|Ai|): action space for player i at each stage. 
❒  at=(a1

t,..., an
t): the actions that are played in stage t. 

❒  ht=(a0, a1..., at-1): the history of stage t, the realized 
choices of actions at all stages before t. 

❒  As common in game trees a pure strategy si for player i 
maps all its information sets to actions ai in Ai  
❍  in this case it means mapping possible stage-t histories ht to 

actions ai in Ai  
❍  player strategy needs to specify his actions also after histories 

that are impossible if he carries out his plan (see Osborne and 
Rubinstein section 6.4) 

P2 
L 

left 

R 

right right left 

P1 

P1 P1 P1 P1 

P2 P2 P2 P2 

5 possible information sets and two 
actions available for each player. 

Ø player 1 has 25 pure strategies 

Ø player 2 has 25 pure strategies 



Repeated games 
❒  A mixed strategy xi is a probability distribution over all 

possible pure strategies. 
❒  A behavioral strategy bi is a function which assigns to 

each information set a probability distribution over 
available actions, that is, randomizing over the actions 
available at each node. 
❍  see Osborne and  Rubinstein, section 11.4 

5 possible information sets and two 
actions available for each player. 

Ø a mixed strategy for player 1 is 
specified by 25-1 values in [0,1] 

Ø a behavioral strategy for player 1 is 
specified by 5 values in [0,1]  

P2 
L 

left 

R 

right right left 

P1 

P1 P1 P1 P1 

P2 P2 P2 P2 



Repeated games 
❒  behavioral strategies are outcome-equivalent to mixed 

strategies and vice versa in games with perfect recall, 
❍  perfect recall=a player remembers whatever he knew in the past 

❒  two games with imperfect recall 
1.  P1 forgets that he has already played 
2.  P1 forgets what he played 

L 

left 
R 

right 

P1 

P1 P1 

P2 L 
left 

R 
right right left 

P1 

P1 
L L R R 

P1 behavioral strategy: play L with prob. p 
•  can give LL with prob. p2, LR with prob.    
p(1-p) 
P1 pure strategies: play L and play R 
•  no mixed strategy can be outcome 
equivalent to the behavioral strategy 

L R L R L R L R 
A possible P1 mixed strategy: play LL with 
prob. 1/2, RR with prob. 1/2 
P1 behavioral strategy: 1st time play L with 
prob. p, 2nd time play L with prob. q  
•  can give LL with prob. pq,                           
RR with prob. (1-p)(1-q) 
•  not possible to obtain the mixed strategy 



❒  stage games are played infinitely. 
❒  payoff to each player is the sum of the payoffs over all 

periods, weighted by a discount factor δ, with 0< δ <1. 
❍  δ can be interpreted also as the probability to continue the 

game at each stage (1-δ is the prob. to stop playing) 
  
❒  Central result: Folk Theorem. 

Infinite-horizon games 



❒  We may have new equilibrium outcomes that do not 
arise when the game is played only once. 

❍  Reason: players’ actions are observed at the end of each 
period, players can condition their play on the past play of 
their opponents.  

❍  Example: cooperation can be a NE in  Prisoner’s Dilemma 
Game in infinitely repeated game. 

Nash equilibrium in repeated game 



Finite-horizon Prisoner’s dilemma 

❒  A Prisoner’s Dilemma game is played 100 times. 
❒  At the last play, h=299x299≈4x1059 histories, so there 

are 2h pure strategies ! 
❒  One unique subgame perfect NE: always “defect” 

❍  same criticism that for the centipede game (people play 
differently) 

Prisoner’s Dilemma Game 
(Payoff Matrix) 

P2 
Cooperate Defect 

 

P1 
Cooperate 5, 5 -3, 8 

Defect 8, -3 0, 0 



Infinite-horizon Prisoner’s Dilemma 

❒  How to find Nash equilibrium? 
❍  we cannot use Backward induction. 

❒  Let’s guess: trigger strategy can be subgame perfect 
NE if δ (discount factor) is close to one. 

Prisoner’s Dilemma Game 
(Payoff Matrix) 

P2 

Cooperate Defect 

 

P1 
Cooperate 5, 5 -3, 8 

Defect 8, -3 0, 0 



Trigger Strategy 

❒  Def: follow one course of action until a certain 
condition is met and then follow a different 
strategy for the rest of the repeated game. 

❒  Idea: each player will be deterred from 
abandoning the cooperative behavior by being 
punished. Punishments from other player are 
triggered by deviations 

❒  examples:  
❍  trigger strategy 1: I cooperate as long as the other 

player cooperates, and I defect forever if the other 
player defects in one stage. 

❍  trigger strategy 2: I alternates C, D, C, … as long as the 
other player alternates D, C, D, … , if the other player 
deviates from this pattern, then I deviate forever.  



Infinite-horizon Prisoner’s Dilemma 

❒  Trigger strategy 1: cooperate as long as the other 
player cooperates, and defect forever if the other 
player defects in one stage. 

❒  Trigger strategy 1 can be subgame perfect NE if the 
discount factor δ is close to one. 
 Proof:  

❍  if both players cooperate, then payoff is 5/(1- δ)=5*(1+ δ+ δ2+…) 
❍  suppose one player could defect at some round, in order to 

discourage this behavior, we need 5/(1- δ) ≥ 8, or δ ≥ 3/8. 
❍  so, as long as δ ≥ 3/8, the pair of trigger strategies is subgame 

perfect NE 

Cooperation can happen at Nash equilibrium ! 



Infinite-horizon Prisoner’s Dilemma 

❒  Trigger strategy 2: player 1 alternates C, D, C, … as 
long as player 2 alternates D, C, D, … , if player 2 
deviates from this pattern, then player 1 deviates 
forever. This is also true for player 2.  

❒  This pair of trigger strategies is also subgame 
perfect NE if δ is sufficiently close to one.  

❒  In fact, there are lots of subgame perfect NEPs if δ 
is sufficiently close to one. 

❒  What is happening here? 



Infinite-horizon Prisoner’s Dilemma 

E (-3, 8) 
(C,D) 

F (8, -3) 
(D,C) 

B (5, 5) 
(C,C) 

A 

C 
O 

(D,D) 

Region EOFBE 
contains the 
payoffs of all 
possible mixed 
strategy pairs. 

payoff of 
player 2 

payoff of 
player 1 



Infinite-horizon Prisoner’s Dilemma 

E (-3, 8) 
(C,D) 

F (8, -3) 
(D,C) 

B (5, 5) 
(C,C) 

A 

C 
O 

(D,D) 

Any point in the 
region OABC can be 

sustained as a 
subgame perfect 

NE of the repeated 
game given the 

discount factor of 
the players is close 

to one (that is, 
players are patient 

enough) ! 

payoff of 
player 2 

payoff of 
player 1 



Folk Theorem 
❒  For any two-player stage game with a Nash equilibrium 

with payoffs (a, b) to the players. Suppose there is a 
pair of strategies that give the players (c, d). Then, if 
c>=a and d>=b, and the discount factors of the players 
are sufficiently close to one, there is a subgame 
perfect NE with payoffs (c, d) in each period. 

(C,D) 

(D,C) 

(C,C) 
A

C 
O 

(D,D) 

(c,d) (a,b) 


