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Outline 

❒  Limit of Markovian models 
❒ Mean Field (or Fluid) models 

•  exact results 
•  extensions 
•  Applications 
-  Bianchi’s model 

•  (Heterogeneous networks) 
•  Applications 
-  Epidemic routing 



Heterogeneous Networks 

❒ Denote P(d) the probability that a node has 
degree d 

❒ If the degree does not change much, we 
can replace d with <d> 
–  what we have done for ER graphs (N,p) 

•  Binomial with parameters (N-1,p) 

❒ How should we proceed (more) correctly? 
–  Split the nodes in degree classes 
–  Write an equation for each class 

❒ Remark: following derivation will not be as 
rigorous as previous ones 



Heterogeneous Networks 

❒ Nd number of nodes with degree d (=N*P(d)) 
❒ Id: number of infected nodes with degree d  
❒ Given node i with degree d and a link eij, what 

is the prob. that j has degree d’? 
–  P(d’)? NO 

❒ and if degrees are uncorrelated? i.e. 
Prob(neighbour has degree d'|node has a 
degree d) independent from d, 
–  P(d’)? NO 
– Is equal to  d'/<d> P(d') 



Heterogeneous Networks 

❒ Given node i with degree d and a link eij  
❒ Prob. that j has degree d’ is 

– d'/<d> P(d’) 
❒ Prob. that j has degree d’ and is infected  

– d'/<d> P(d’) Id’/Nd’ 
– more correct (d’-1)/<d> P(d’) Id’/Nd’ 

❒ Prob. that i is infected through link eij is 
– p = pg Σd’ (d’-1)/<d> P(d’) Id’/Nd’ 

❒ Prob. that i is infected through one link 
–  1-(1-p)d 



Heterogeneous Networks 

❒ E[(Id (k+1)-Id (k)|I (k)=I)] = (Nd’-Id)(1-(1-p)d) 
−  p = pg Σd’ (d’-1)/<d> P(d’) Id’/Nd’ 

❒ fd
(N)(i)=(1-id)(1-(1-p)d) 

−  id = Id/Nd 
−  if we choose pg = pg0 /N 
−  fd(i)=(1-id) pg0 d Σd’(d’-1)/<d> P(d’) id’ 
 
 

❒ did(t)/dt=fd(i(t))=pg0 (1-id(t)) Θ(t) 
Θ 



Heterogeneous Networks 

❒ did(t)/dt=fd(i(t))=pg0 (1-id(t)) d Θ(t),  
−  for d=1,2… 
−  Θ(t)=Σd’(d’-1)/<d> P(d’) id’(t) 
−  id(0)=id0, for d=1,2…  

❒ If id(0)<<1, for small t 
−  did(t)/dt ≈ pg0 d Θ(t)  
−  dΘ(t)/dt = Σd’(d’-1)/<d> P(d’) did’(t)/dt 

      ≈ pg0 Σd’(d’-1)/<d> P(d’) d’ Θ(t) = 
       = pg0 (<d2> - <d>)/<d> Θ(t) 



Heterogeneous Networks 

❒ dΘ(t)/dt ≈ pg0(<d2>-<d>)/<d> Θ(t) 
−  Outbreak time: <d>/((<d2>-<d>) pg0) 

•  For ER <d2>=<d>(<d>+1), we find the 
previous result, 1/(<d>pg0) 

•  What about for Power-law graphs, 
P(d)~d-γ? 

❒ For the SIS model: 
−  dΘ(t)/d ≈ pg0(<d2>-<d>)/<d> Θ(t) – r0 Θ(t) 
−  Epidemic threshold: pg0 (<d2>-<d>)/(<d>r0) 
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Epidemic Style Routing 

Epidemic Routing [Vahdat&Becker00] 
Propagation of a pkt -> Disease Spread  
achieve min. delay, at the cost of transm. power, 

storage 
trade-off delay for resources 

K-hop forwarding, probabilistic forwarding, 
limited-time forwarding, spray and wait… 



2-Hop Forwarding 
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Limited Time Forwarding 
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Epidemic Style Routing 

Epidemic Routing [Vahdat&Becker00] 
Propagation of a pkt -> Disease Spread  
achieve min. delay, at the cost of transm. power, 

storage 
trade-off delay for resources 

K-hop forwarding, probabilistic forwarding, 
limited-time forwarding, spray and wait… 

Recovery: deletion of obsolete copies after 
delivery to dest., e.g., 
TIMERS: when time expires all the copies are 

erased 
IMMUNE: dest. cures infected nodes 
VACCINE: on pkt delivery, dest propagates anti-

pkt through network 



IMMUNE Recovery 
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Outline 

Introduction to Epidemic Routing 
Markovian models 

the key to Markov model 
Markovian analysis of epidemic routing  

Fluid models 
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The setting we consider 
 N+1 nodes 

moving independently in an finite 
area A 

with a fixed transmission range r 
and no interference 

1 source, 1 destination 
Performance metrics: 

Delivery delay Td 
Avg. num. of copies at delivery C 
Avg. total num. of copies made G  
Avg. buffer occupancy 
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Standard random mobility models 

X1 

X2 

V1 

V2 

•  Directions (αi) are uniformly 
distributed (0, 2π)  

•  Speeds (Vi) are uniformly 
distributed (Vmin,Vmax)  

•  Travel times (Ti) are exponentially /
generally distributed 

R 
T1, V1 

T2, V2 

R 

•   Next positions (Xi)s are 
uniformly distributed 

•   Speeds (Vi)s are uniformly 
distributed (Vmin,Vmax)  
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Random Waypoint model 
(RWP) 

Random Direction model 
(RD) 



The key to Markov model 

[Groenevelt05] 
if nodes move according to standard random 
mobility model (random waypoint, random direction) 
with average relative speed E[V*], 
and if Nr2 is small in comparison to A 
pairwise meeting processes are almost independent 
Poisson processes with rate: 
 
 
 
 

A
wrV *2

≈λ w: mobility specific constant 



Exponential distribution finds its roots in the 
independence assumptions of each mobility model: 
•  Nodes move independently of each other 
•  Random waypoint: future locations of a node 

are independent of past locations of that node. 
•  Random direction: future speeds and directions 

of a node are independent of past speeds and 
directions of that node. 

There is some probability q that two nodes will 
meet before the next change of direction. At 
the next change of direction the process 
repeats itself, almost independently. 

  

Intuitive explanation 



Why “almost”? 

pairwise meeting processes are almost 
independent Poisson processes with rate: 
 
 
1. inter-meeting times are not exponential 

if N1 and N2 have met in the near past they are more 
likely to meet (they are close to each other) 

the more the bigger it is r2 in comparison to A 
2. meeting processes are not independent 

if in [t,t+τ] N1 meets N2 and  N2 meets N3, it is more 
likely that N1 meets N3 in the same interval 

the more the bigger it is r2 in comparison to A 

moreover if Nr2 is comparable with A (dense network) a 
lot of meeting happen at the same time. 

 
 
 
 

A
wrV *2

≈λ w: mobility specific constant 



Nodes move on a square of size 4x4 km2 (L=4 km) 
Different transmission radii (R=50,100,250 m) 

 
Random waypoint and random direction: 

    no pause time 
    [vmin,vmax]=[4,10] km/hour 

Random direction:  travel time ~ exp(4) 
 

Examples 



Pairwise Inter-meeting time 
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Assume a node in position (x1,y1) moves in a straight 
line with speed V1. 

Position of the other node comes from steady-state 
distribution with pdf π(x,y). 

 
Look at the area A covered in Δt time: 

The derivation of λ 

V* 

V*Δt 



The derivation of λ 
Probability that nodes meet given by 
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For small r the points in π(x,y) in A can be 
 approximated by π(x1,y1) to give 
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Proposition: Let r<<L. The inter-meeting time for the 
random direction and the random waypoint 
mobility models is approximately exponentially 
distributed with parameter 

 
      

 
Here E[V*] is the average relative speed between 

two nodes and             is the pdf  in the point 
(x,y). 

The derivation of λ 
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The derivation of λ 

Proposition: Let r<<L. The inter-meeting time for the 
random direction and the random waypoint 
mobility models is approximately exponentially 
distributed with parameter 
     

 
Here E[V*] is the average relative speed between 

two nodes and ω ≈ 1.3683 is the Waypoint 
constant. € 
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If speeds of the nodes are constant and equal to v, 
then  



Summary up to now 

First steps of this research 
a good intuition 
some simulations validating the intuition for a 

reasonable range of parameters  
What could have been done more 

prove that the results is asymptotically (r->0) 
true “in some sense” 

What can be built on top of this? 
Markovian models for routing in DTNs 



2-hop routing 

Model the number of occurrences of the message 
as an absorbing Continuous Time Markov Chain (C-
MC): 

•  State i∈{1,…,N} represents the number of 
occurrences of the message in the network. 

•  State A represents the destination node 
receiving (a copy of) the message. 



Model the number of occurrences of the message 
as an absorbing C-MC: 

•  State i∈{1,…,N} represents the number of 
occurrences of the message in the network. 

•  State A represents the destination node 
receiving (a copy of) the message. 

Epidemic routing 


