Performance Evaluation

Second Part Lecture 2

Giovanni Neglia INRIA – EPI Maestro 16 January 2012

On approximation quality p=10⁻⁴, I(0)=N/10, 10 runs

On approximation quality p=10⁻⁴, I(0)=N/10, 10 runs

Model vs Simulations

Why the difference?

N should be large (the larger the better)
p should be small

•
$$p^{(N)}=p_0/N^2$$

□ For N=10⁴ p=10⁻⁴ is not small enough!

What if we do the correct scaling?

On approximation quality $p=10^4/N^2$, I(0)=N/10, 10 runs

Model vs Simulations

iterations

Lesson

You need to check (usually by simulation) in which parameter region the fluid model is a good approximation.

SIS model

SIS model

Study of the SIS model

- $\Box d\mu_2(t)/dt = p_0 \mu_2(t)(1-\mu_2(t)) r_0 \mu_2(t)$
- □ If $p_0 > r_0 \mu_2(\infty) = 1 r_0 / p_0$
- $\square \operatorname{Prob}(X_1^{(N)}(k)=1) \approx \mu_2(k\epsilon(N))$
 - $\operatorname{Prob}(X_1^{(N)}(\infty)=1) \approx \mu_2(\infty) = 1-r_0/p_0$
- What is the steady state distribution of the MC?
 - (0,0,0,...0) is the unique absorbing state and it is reachable from any other state
 - Who is lying here?

Back to the Convergence Result

 \Box Define <u>**M**</u>^(N)(t) with t real, such that

- $\underline{\mathbf{M}}^{(N)}(k\epsilon(N))=\mathbf{M}^{(N)}(k)$ for k integer
- $\underline{\mathbf{M}}^{(N)}(t)$ is affine on $[k\epsilon(N),(k+1)\epsilon(N)]$
- Consider the Differential Equation
 - $-d\mu(t)/dt=f(\mu)$, with $\mu(0)=m_0$

Theorem

– For all T>O, if $\mathbf{M}^{(N)}(0) \rightarrow \mathbf{m}_0$ in probability (/mean square) as $N \rightarrow \infty$, then $\sup_{0 \le t \le T} ||\underline{\mathbf{M}}^{(N)}(t) - \mu(t)|| \rightarrow 0$ in probability (/ mean square)

Some examples

Nothing to do with $t=\infty$?

- Theorem 3: The limits when N diverges of the stationary distributions of M^(N) are included in the Birkhoff center of the ODE
 - Birkhoff center: the closure of all the recurrent points of the ODE (independently from the initial conditions)
 - What is the Birkhoff center of di(t)/dt=p₀ i(t)(1-i(t)) - r₀ i(t)?

Nothing to do with $t=\infty$?

- Theorem 3: The limits when N diverges of the stationary distributions of M^(N) are included in the Birkhoff center of the ODE
- Corollary: If the ODE has a unique stationary point m*, the sequence of stationary distributions M^(N) converges to m*

Outline

Limit of Markovian models

Mean Field (or Fluid) models

- exact results
- Extensions
 - Epidemics on graphs
 - Reference: ch. 9 of Barrat, Barthélemy, Vespignani "Dynamical Processes on Complex Networks", Cambridge press
- Applications to networks

SI on a graph

Susceptible Infected

At each time slot, each link outgoing from an infected node spreads the disease with probability p_a

Can we apply Mean Field theory?

- Formally not, because in a graph the different nodes are not equivalent...
- ...but we are stubborn

- Consider all the nodes equivalent
- e.g. assume that at each slot the graph changes, while keeping the average degree <d>
 - Starting from an empty network we add a link with probability <d>/(N-1)

- Consider all the nodes equivalent
- e.g. assume that at each slot the graph changes, while keeping the average degree <d>
 - Starting from an empty network we add a link with probability <d>/(N-1)

If I(k)=I, the prob. that a given susceptible node is infected is q_I=1-(1-<d>/(N-1) p_g)^I
 and (I(k+1)-I(k)|I(k)=I) =_d Bin(N-I, q_I)

- □ If I(k)=I, the prob. that a given susceptible node is infected is q_I=1-(1-<d>/(N-1) p_g)^I
- □ and $(I(k+1)-I(k)|I(k)=I) =_d Bin(N-I, q_I)$
 - Equivalent to first SI model where $p=\langle d \rangle/(N-1) p_q$
 - We know that we need $p^{(N)}=p_0/N^2$
- □ $i^{(N)}(k) \approx \mu_2 (k\epsilon(N))=1/((1/i_0-1) \exp(-k p_0/N)+1)=$
 - = $1/((1/i_0-1) \exp(-k < d > p_g)+1)$
 - The percentage of infected nodes becomes significant after the outbreak time 1/(<d>p_q)

How good is the approximation practically?

• It depends on the graph!

Erdös-Rényi graph

A ER graph G(N,q) is a stochastic process

 N nodes and edges are selected with prob. q

 Purpose: abstract from the details of a given graph and being able to reach conclusions depending on its average features

Erdös-Rényi graph

\Box A ER graph G(N,q) is a stochastic process

- N nodes and edges are selected with prob. q
- \bigcirc Degree distribution: P(d)= $C^{d}_{N-1} q^{d}(1-q)^{N-1-d}$
 - For N-> ∞ and Nq constant: P(d)=e^{-(d)}(d)/d!
 - <d²>=<d>(1+<d>)
 - Average degree: <d>=q (N-1)
- O Average distance: <l>≈logN/log<d>
 - Small world

Remark: in the calculations above we had a different sample of an ER graph at each slot, in what follows we consider a single sample

ER <d>=20, p_g =0.1, 10 runs

 $i^{(N)}(k) \approx 1/((1/i_0-1) \exp(-k < d > p_q)+1)$

ER <d>=20, 10 runs

Lesson 1

System dynamics is more deterministic the larger the network is

- Why?

For given <d>, the MF solution shows the same relative error

Changing the degree ER N=1000, $\langle d \rangle p_g = 0.1$, 10 runs

Lesson 2

The more the graph is connected, the better the MF approximation Why?

A different graph Ring(N,k)

Ring vs ER, N=2000, <k>=10

The smaller the clustering coefficient, the better the MF approximation Why?

Outline

- Limit of Markovian models
 Mean Field (or Fluid) models
 - exact results
 - extensions
 - Applications
 - Bianchi's model
 - Epidemic routing

Decoupling assumption in Bianchi's model

- Assuming that retransmission processes at different nodes are independent
 - Not true: if node i has a large backoff window, it is likely that also other nodes have large backoff windows
- We will provide hints about why it is possible to derive a Mean Field model...
- then the decoupling assumption is guaranteed asymptotically

References

- Benaïm, Le Boudec, "A Class of Mean Field Interaction Models for Computer and Communication Systems", LCA-Report-2008-010
- Sharma, Ganesh, Key, "Performance Analysis of Contention Based Medium Access Control Protocols", IEEE Trans. Info. Theory, 2009
- Bordenave, McDonarl, Proutière, "Performance of random medium access control, an asymptotic approach", Proc. ACM Sigmetrics 2008, 1-12, 2008

Bianchi's model

□ N nodes,

- K possible stages for each node, in stage i (i=1,...V) the node transmit with probability q^(N); (e.g. q^(N); =1/W^(N);)
- If a node in stage i experiences a collision, it moves to stage i+1
- If a node transmits successfully, it moves to stage 0

Mean Field model

- We need to scale the transmission probability: q^(N); =q;/N
- $\Box f^{(N)}(m) = E[M^{(N)}(k+1) M^{(N)}(k) | M^{(N)}(k) = m]$
- $\Box f_1^{(N)}(m) = E[M_1^{(N)}(k+1) M_1^{(N)}(k) | M_1^{(N)}(k) = m]$
- $\square P_{idle} = \prod_{i=1,...,V} (1 q_i^{(N)})^{m_i^{(N)}}$
- The number of nodes in stage 1
 - increases by one if there is one successful transmission by a node in stage i<>1
 - Decreases if a node in stage 1 experiences a collision

Mean field model

- $\square P_{idle} = \prod_{i=1,\dots,V} (1 q_i^{(N)})^{m_i^N} \rightarrow exp(-\Sigma_i q_i^{m_i^N})$
 - Define $\tau(m) = \Sigma_i q_i m_i$
- The number of nodes in stage 1
 - increases by one if there is one successful transmission by a node in stage i<>1
 - with prob. $\Sigma_{i>1} m_i N q_i^{(N)} P_{idle} / (1-q_i^{(N)})$
 - Decreases if a node in stage 1 experiences a collision
 - with prob. $m_1 N q_1^{(N)} (1-P_{idle}/(1-q_1^{(N)}))$

 $\Box f_1^{(N)}(m) = E[M_1^{(N)}(k+1) - M_1^{(N)}(k)]M_1^{(N)}(k) = m] =$

- = $\Sigma_{i>1} m_i q_i^{(N)} P_{idle} / (1 q_i^{(N)})$
- $m_1 q_1^{(N)} (1 P_{idle} / (1 q_1^{(N)}))$

Mean field model

$$\square P_{idle} = \prod_{i=1,...V} (1 - q_i^{(N)})^{m_i^{N}} \rightarrow exp(-\Sigma_i q_i^{(N)} m_i^{N})$$

• Define
$$\tau(\mathbf{m}) = \Sigma_i q_i m_i$$

 $\Box f_{1}^{(N)}(m) = \sum_{i>1} m_{i}q_{i}^{(N)}P_{idle}/(1-q_{i}^{(N)})$

$$- m_1 q_1^{(N)} (1 - P_{idle} / (1 - q_1^{(N)}))$$

- $\Box f_{1}^{(N)}(\mathbf{m}) \sim 1/N \left(\Sigma_{i>1} m_{i} q_{i} e^{-\tau(\mathbf{m})} m_{1} q_{1} (1 e^{-\tau(\mathbf{m})}) \right)$
- □ $f_1^{(N)}(\mathbf{m})$ vanishes and $\epsilon(N)=1/N$, continuously differentiable in \mathbf{m} and in 1/N
- This holds also for the other components
- Number of transitions bounded
- => We can apply the Theorem