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Course organization

3 Part 2.A

O Fluid models to overcome the limitations of
Markov Processes analysis

O A specific networking problem
- Epidemic Routing in Delay Tolerant Networks

7 Part 2.B
O Introduction fo game theory



Material

7 Slides

7 References part A
O Mean Field

* Mean Field Methods for Computer and Communication
Systems: A Tutorial, Jean-Yves Le Boudec

* A class of mean field interaction models for computer and
communication systems, Benaim, Le Boudec, Journal
Performance Evaluation, Vol. 65 Issue 11-12, Nov., 2008

O A survey with pointers to continuous time Markov
processes and links to stochastic approximation and
propagation of chaos

* Ch. 2 of Nicolas Gast's PhD thesis "Optimization and
Control of Large Systems, Fighting the Curse of
Dimensionality”



Material

7 Slides

7 References part A

O Dynamical Processes on Complex Networks, Barrat,
Barthélemy, Vespignani, Cambridge Press
* Random graphs models, ch.3
* Methodological approaches, ch. 4
- Epidemiological models, ch. 9



Material

7 References part A
O Routing in DTNs

- Markovian models

— Message Delay in Mobile Ad Hoc Networks, R. Groenevelt,
G. Koole, and P. Nain, Performance, Juan-les-Pins, October
2005

— Impact of Mobility on the Performance of Relaying in Ad
Hoc Networks, A. Al-Hanbali, A.A. Kherani, R. Groenevelt,
P. Nain, and E. Altman, IEEE Infocom 2006, Barcelona,
April 2006

 Fluid models

— Performance Modeling of Epidemic Routing, X. Zhang, G.
Neglia, J. Kurose, D. Towsley, Elsevier Computer Networks,
Volume 51, Issue 10, July 2007, Pages 2867-2891



Material

7 References part B

O Game Theory and Strategy, Straffin,
Mathematical Association,

 Two-person zero-sum games
— Matrix games

» Pure strategy equilibria (dominance and saddle
points), ch 2

» Mixed strategy equilibria, ch 3
— Game trees, ch 7
— About utility, ch 9



Material

7 References part B

O Game Theory and Strategy, Straffin,
Mathematical Association,

» Two-person non-zero-sum games
— Nash equilibria. ..

» ...And its limits (equivalence,
interchangeability, Prisoner’s dilemma), ch. 11

and 12
— Strategic games, ch. 14
— Evolutionary games, ch. 15



Evaluation

7 80% final exam
7 20% assighments (every two weeks)



Contacts

m
7 INRIA, Lagrange building, last floor, L108

7 For slides, assignements, etc.
O www-sop.inria.fr/members/Giovanni.Neglia/perf11/
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Outline

3 Limit of Markovian models
7 Mean Field (or Fluid) models
exact results
extensions
applications



A motivating example:
epidemics

Susceptible

@,
‘ Infected
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A motivating example:
epidemics

At each slot there is a probability p Q Susceptible

that two given nodes meet.
Assume meetings to be independent. ‘ Infected



How do you model i1?

7 A Markov Chain

O System state at time k is a vector specifying if
every node is infected (1) or not (0)
- e.g.(1,0,1,0,0), size: 2°

® @
@

O Probability transitions among states
* e.g. Prob((1,0,1,0,0)->(1,1,1,0,0))=?



Transition probabilities
Prob((1,0,1,0,0)->(1,1,1,0,0))=?

o
o0 b

@

At slot k, when there are I(=I(k)) infected nodes,
the prob. that node 2 gets infected is: q;=1-(1-p)*



Transition probabilities
Prob((1,0,1,0,0)->(1,1,1,0,0))=?

o
o0 b

@

Prob((1,0,1,0,0)->(1,1,1,0,0))=q.(1-g,)?
Where g;=1-(1-p)*



What to study and how

3 P the transition matrix (2Nx2N)

J Transient analysis
o m(k+1)=mt(k)P,
O m(k+1)=mr(0)Pk+1,
7 Stationary distribution (equilibrium)
O m=mtP
O If the Markov chain is irreducible and aperiodic

O Computational cost:
- O((2N)3) if we solve the system

O(K M) where M is the number of non-null entries in P
if we adopt the iterative procedure (K is the number

of iterations), in our case M=0O((2N)?)



Can we simplify the problem?

7 all the nodes in the same state (infected or
susceptibles) are equivalent

7 If we are interested only in the number of
nodes in a given status, we can have a more
succinct model

O state of the system at slot k: I(k)

o it is still a MC

O Prob(I(k+1)=I+n | I(k)=-I) = C"\ 1 q;" (1-g)N "t
. (T(k+1)-I(k) |I(k)=I) ~ Bin(N-I g;)
+ qr=1-(1-p)*



Any interest
for Computer Networks?

7 Flooding
O Epidemic Routing in Delay Tolerant Networks



Delay Tolerant Networks

(a.k.a. Intermittently Connected Networks)

vz

mobile wireless networks
no path at a given time instant between two nodes
because of power contraint, fast mobility dynamics

maintain capacity, when number of nodes (N) diverges
Fixed wireless networks: C = O(sqrt(1/N))  [Gupta99]
Mobile wireless networks: C = ©(1), [Grossglauser01]

a really challenging network scenario
No traditional protocol works




Some examples

= Network for disaster relief team
= Military battle-field network

. Inter-planetary backbone



Epidemic Routing




Epidemic Routing




Any interest
for Computer Networks?

7 Flooding
O Epidemic Routing in Delay Tolerant Networks
3 Chunk distribution in a P2P streaming
system (push algorithms)

A copy of the chunk is

‘ pushed to a randomly
selected neighbour



Some numerical examples
p=10-4, N=10, I(0)=N/10, 10 runs
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Some numerical examples
p=10-4, N=100, I(0)=N/10, 10 runs

%infected nodes (I(k)/N)
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Some numerical examples
p=10-4, N=10000, I(0)=N/10, 10 runs
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The system is
almost deterministic!
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Summary

7 For a large system of interacting equivalent
objects, the Markov model can be
untractable...

7 but a deterministic description of the
system seems feasible in terms of the
empirical measure (% of objects in each
status)

- intuition: kind of law of large numbers

I Mean field models describe the

deterministic limit of Markov models when
the number of objects diverges



Outline

m

m
exact results
extensions
applications
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Necessary hypothesis:
Objects’ Equivalence

3 t(k+1)=mt(k)P
J A state 0 =(vy.v,,..V), V; € V(| V=V, finite)
E.g. in our example ~{0,1}
7 P is invariant under any label permutation o:
P, o =Prob((vy,v,,..v)->(uy uy,...uy )=
Prob((Vy(ny V()Y Up(ayUg(zy--Yog))



Some notation and definitions

3 X, NY(Kk): state of node n at slot k

3 M MN(Kk): occupancy measure of state v at
slot k

M M (k)=%, 1(X N (k)=v)/N

ST model: M,™ (k)=IM) (k)/N=iMN)(k),

M, N(K)=SM (k)/N=sM(K)=1-iN(K)
3 MMN(Kk)=(M,MN(k),M,MN(k),...M, N(Kk))

. SI model: (1-iN) (k),i™N) (k))

3 fMN(mM)=E[MMN(k+1)-MM(K) | MN(k)=m]

Drift or intensity, it is the mean field



Other hypotheses

7 Intensity vanishes at a rate ¢(N)
— Limy,.. fN(m)/e(N)=f(m)

7 Second moment of number of object
transitions per slot is bounded

— #transitions<WN(k),
E[WN(k)2|MN)(k)=m]<cN2g(N)?
A3 Drift is a smooth function of m and 1/N

— fMN)(m)/e(N) has continuous derivatives in
m and in 1/N



Convergence Result

3 Define MN)(1) with T real, such that
« MMk e(N))=MMN)(K) for k integer
« MMN)(1) is affine on [k e(N),(k+1)e(N)]
7 Consider the Differential Equation
— du(t)/dt=f(u), with p(0)=m,
3 Theorem
— For all T>0, if MN)(0) — m,, in probability
(/mean square) as N — o, then
SUPgper| IMMN(H)-p(t)[| —0 in probability (/
mean square)



Convergence
of random variables

7 The sequence of random variables XN)
converges to X in probability if
— for all 80 Limy,__Prob(|X™ - X|>8)=0
7 The sequence of random variables XN
converges to X in mean square if
— Limg_ E[IX™N - X]2]=0
7 Convergence in mean square implies
convergence in probability



Application to the SI model

7 Assumptions’ check

v Nodes are equivalent

- Intensity vanishes at a rate ¢(N)
fMN(m)=E[MM(k+1)-MMN(K) | MN)(K)=m]
M, MN(K)=IMN(k)/N=iN(k),M,N(k)=1-M,N(K)
(TN(k+1)-IMN(K) [IMN(K)=I) ~ Bin(N-I ;) =>
E[IM(k+1)-TN(K) |TN(K)=I] = q; (N-T)
E[iN(k+1)-iM(K)[iN(K)=i] = (1-i) q;
= (1-i)(1-(1-p)'N) -> (1-i) when N diverges!



Application to the SI model

7 Out of the impasse: introduce a scaling for p
If pMN=p,/N2 a>1 => (1-i)(1-(1-p™)i N)->0
Consider a=2
- (1-)(1-(1-pMI)iN) ~ (1-i) i pg/N (for N large)
e(N)=po/N
Fom)=fo((s.0)= s i = i (1-i)

7 Lesson to keep: often we need to introduce

some parameter scaling



Application to the SI model

7 Assumptions’ check
v Nodes are equivalent

v Intensity vanishes at a rate ¢(N)=p,/N

- Second moment of number of object
transitions per slot is bounded

#transitions< WN(k),
E[WN(k)2| MMN)(k)=m1<cN2g(N)?
WN(k)=#trans. ~ Bin(N-I(k),q;)

E[WN(K)*1=((N-I(k))qr)? + (N-I(k))qz(1-qz)
is in O(N? ¢(N)?)



Application to the SI model

7 Assumptions’ check
v Nodes are equivalent
v Intensity vanishes at a rate ¢(N)=p,/N

v Second moment of number of object
transitions per slot is bounded

v Drift is a smooth function of m and 1/N
f,N(m) =(1-i)(1-(1-pMN)i N}
=(1-1) (1 - (Zpz0..n C'N (po/N2)M))
continuous derivatives ini and in 1/N



Practical use of the
convergence result

3 Theorem
— For all T>0, if MN)(0) — m,, in probability
(/mean square) as N — o, then
SUPg.r.t| IMMN(H)-u(+)[| =0 in probability (/
mean square)
— Where (1) is the solution of

du(t)/dt=f(n), with p(0)=m,

7 MMN(0)=mg, , MO(k)=MM(ke(N))xp(ke(N))



Application to the SI model

3 fo(m)=1,((s,i))=i(1-i)

3 dy, (1)/dt=f, (ua(1))=12(T)(1-p(1)),
with UZ(O):UO'Z
» Solution: py(1)=1/((1/yg ,-1) e '+1)

3 If iN(0)=i, ,
iN(k) 2 p, (ke(N))=1/((1/iy-1) exp(-k po/N)+1)
=1/((1/i,-1) exp(-k N p)+1)



%infected nodes (I(k)/N)

Back to the numerical examples
p=10-4, I(0)=N/10, 10 runs

N=10000

I

x103 iterations x102 iterations iterations



Advantage of Mean Field

3 If iN(0)=i, ,
iN(k) 2 p, (ke(N))=1/((1/i5-1) exp(-k py/N)+1)
=1/((1/i,-1) exp(-k N p)+1)
solved for each N with negligible
computational cost

3 In general: solve numerically the solution of a
system of ordinary differential equations
(size = #of possible status)

simpler than solving the Markov chain



SIS model

K-
0 —O \Q
(—Q Q Susceptible

At each slot there is a probability p

that two given nodes meet, ' Infected
a probability r that a node recover.



SIS model

& o

At each slot there is a probability p
that two given nodes meet,
a probability r that a node recovers.



Let's practise

7 Can we propose a Markov Model for SIS?

No need to calculate the transition
matrix

7 If it is possible, derive a Mean Field model
for SIS

Do we need some scaling?



Study of the SIS model

7 We need pMN=p,/N? and riN=r,/N
7 If we choose e(N)=1/N, we get
di(t)/dt= pg i(t)(1-i(1)) - rq i(t)

pO > r.O po < r'o
di/dr, di/dT,

Epidemic Threshold: py/r,
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Study of the SIS model

3 du,(1)/dt=pg Ha(T)(1-p2(T)) = ro pa(F)
3 Equilibria, du,(t)/dt=0

= Ha(e0)=1-ro/pg or p,(e=)=0



There is more: Independence

7 Theorem 2

— Under the assumptions of Theorem 1,
and that the collection of objects at
time O is exchangeable

(X,N(0).X,N(0),.. X, N(O)),
then for any fixed n and t:
limy,_...Prob(X,N(1)=i, X,N(t)=i,,..X N(t)=i )=
STHG TR WING
7 MF Independence Property, a.k.a.
Decoupling Property, Propagation of Chaos



Remarks

3 (XMN0),X,N(0),..XN(0)) exchangeable
— Means that all the states that have the

same occupancy measure m, have the
same probability

3 limy_,..Prob(X,N(+)=i, X,N(1)=i,,.. X N()=i )=

=Hip (P (). (1)
— Application
Prob(X,N(k)=i, X,N(k)=i,,...X N(k)=i,)»

1y (KN (Ke(N))...1, (Ke(N))



Probabilistic interpretation of

the occupancy measure
(SI model with p=10-4, N=100)
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Prob(nodes 1,17,21 and 44 infected at k=200)=
=Ha(k p N)*=p,(2)*~(1/3)*
What if 1,17,21 and 44 are surely infected at k=0

10 t



