Distributed Optimization and Games

Auctions

Giovanni Neglia INRIA – EPI Maestro 31 January 2018

Our starting problem

- We want to give an object to the person who values it the most, i.e. $\begin{array}{l} \maximize \quad \sum_{i=1}^{N} x_i v_i \\ \text{subject to} \quad \sum_{i=1}^{N} x_i = 1 \\ \text{over} \quad x_i \in \{0,1\} \end{array}$
- \square Difficulty: we do not know values $v_i \dots$
- and we cannot ask to people (they would lie)
- Solution: auctions, but we need to introduce money

Types of auctions

1st price & descending bids (Dutch auctions)
 2nd price & ascending bids (English auctions)

Google

Google	digital photo camera	Q Giovanni Neglia 0 + Shar
Search	About 426,000,000 results (0.25 seconds)	
Web Images Maps Videos News Shopping More	Digital Photography Review www.dpreview.com/ Digital Photography Review: All the latest digital camera reviews and digital imaging news. Lively discussion forums. Vast samples galleries and the largest Reviews - Side-by-side camera comparison - Nikon D4 - D1 / D800 - Cameras Digital cameras: compare digital camera reviews - CNET Re reviews.cnet.com/digital-cameras/ Digital camera reviews and ratings, video reviews, user opinions, most popular digital Get photo-artistry & on-the-fly flexibility with the Samsung NX100. Makes	Ads (i) Appareil Photo Numérique www.pixmania.com/Photo Spécialiste des Appareils Photo. Meilleurs prix & livraison express. 255 people +1'd or follow Pixmania Digital Photo Cameras prixmoinscher.com/Digital+Photo+Cameras Grand choix de Digital Photo Cameras à des prix à couper le souffle !
Valbonne Change location	 Best 5 digital cameras - 100 - \$200 Digital cameras Digital camera - Than 12X Digital camera - Wikipedia, the free encyclopedia an wikipedia ora/wiki/Digital camera 	caméras OEM CMOS USB2.0 www.framos-imaging.com résolutions VGA à 10Mp, SDK mini caméras carte, trigger, LED
Show search tools	Jump to <u>Displaying photos</u> : Many digital cameras include a video output port. Usually sVideo, it sends a standard-definition video signal to a television, <u>Amazon.com</u> : <u>Digital Cameras: Camera & Photo: Point & Sho</u> www.amazon.com/ <u>Digital-Cameras-Photo/b2ie=LITE8</u>	Digital photo cameras www.shopzilla.fr/ +1 Très grande sélection de digital photo cameras à petits prix

How it works

- Companies bid for keywords
- On the basis of the bids Google puts their link on a given position (first ads get more clicks)
- Companies are charged a given cost for each click (the cost depends on all the bids)
- Why Google adopted this solution:
 - \odot It has no idea about the value of a click...
 - It lets the companies reveal it

Some numbers

≈ 90% of Google revenues from ads
2014 out of 66 billions\$
2016 out of 89 billions\$ abc.xyz/investor/
Costs
"calligraphy pens" \$1.70
"Loan consolidation" \$50
"mesothelioma" \$50 per click

Click fraud problem

Outline

Preliminaries

 Auctions
 Matching markets

 Possible approaches to ads pricing
 Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Game Theoretic Model

- □ N players (the bidders)
- □ Strategies/actions: b_i is player i's bid
- □ For player i the good has value v_i
- p_i is player i's payment if he gets the good
- Utility:
 - $\bigcirc v_i \text{-} p_i$ if player i gets the good
 - \bigcirc 0 otherwise
- Assumption here: values v_i are independent and private
 - i.e. very particular goods for which there is not a reference price

Game Theoretic Model

N players (the bidders)

□ Strategies: b_i is player i's bid

Utility:

- \circ v_i-b_i if player i gets the good
- O otherwise

Difficulties:

- Utilities of other players are unknown!
- Better to model the strategy space as continuous (differently from the games we looked at)

- Player with the highest bid gets the good and pays a price equal to the 2nd highest bid
- There is a dominant strategies
 - I.e. a strategy that is more convenient independently from what the other players do
 - \odot **Be truthful**, i.e. bid how much you evaluate the good ($b_i = v_i$)
 - Social optimality: the bidder who value the good the most gets it!

$b_i = v_i$ is the highest bid

Bidding more than v_i is not convenient

$b_i = v_i$ is the highest bid

Bidding less than v_i is not convenient (may be unconvenient)

$b_i = v_i$ is not the highest bid

Bidding more than v_i is not convenient (may be unconvenient)

$b_i = v_i$ is not the highest bid

Bidding less than v_i is not convenient

Seller revenue

N bidders

- Values are independent random values between 0 and 1
- Expected ith largest utility is (N+1-i)/(N+1)
- Expected seller revenue is (N-1)/(N+1)

- Player with the highest bid gets the good and pays a price equal to her/his bid
- Being truthful is not a dominant strategy anymore!
 - Consider for example if I knew other players' utilities
- □ How to study it?

Assumption: for each player the other values are i.i.d. random variables between 0 and 1

• to overcome the fact that utilities are unknown

Player i's strategy is a function s() mapping value v_i to a bid b_i

• s() strictly increasing, differentiable function • $0 \le s(v) \le v \rightarrow s(0)=0$

We investigate if there is a strategy s() common to all the players that leads to a Nash equilibrium

- Assumption: for each player the other values are i.i.d. random variables between 0 and 1
- Player i's strategy is a function s() mapping value v_i to a bid b_i
- Expected payoff of player i if all the players plays s():
 U_i(s(v₁),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))

prob. i wins i's payoff if he/she wins

Expected payoff of player i if all the players play s(): $\bigcirc U_i(s(v_1),...,s(v_i),...,s(v_N)) = v_i^{N-1} (v_i-s(v_i))$ What if i plays a different strategy t()? \odot If all players playing s() is a NE, then : $\bigcirc U_i(s(v_1),...,s(v_i),...,s(v_N)) = v_i^{N-1}(v_i-s(v_i))$ $\geq S^{-1}(t(v_i))^{N-1}(v_i-t(v_i)) = U_i(s(v_1),...t(v_i),...s(v_N))$ Difficult to check for all the possible functions t() different from s() Help from the revelation principle

The Revelation Principle

All the strategies are equivalent to bidder i supplying to s() a different value of v_i

- Expected payoff of player i if all the players plays s():
 - $O U_i(s(v_1),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))$
- What if i plays a different strategy t()?
- By the revelation principle:
 - $\bigcirc U_i(s(v_1),...t(v_i),...s(v_N)) =_{eq} U_i(s(v_1),...s(v),...s(v_N)) = v^{N-1} (v_i-s(v))$
- □ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

 \odot Then all players playing s() is a NE

□ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

• Then all players playing s() is a NE

□ $f(v)=v_i^{N-1}(v_i-s(v_i)) - v^{N-1}(v_i-s(v))$ is minimized for $v=v_i$

$$\Box f'(v)=0 \text{ for } v=v_i,$$

- i.e. (N-1) $v_i^{N-2}(v_i s(v_i)) v_i^{N-1} s'(v_i) = 0$ for each v_i
- $\circ s'(v_i) = (N-1)(1 s(v_i)/v_i), s(0)=0$
- \odot Solution: $s(v_i)=(N-1)/N v_i$

All players bidding according to s(v) = (N-1)/N v is a NE

Remarks

• They are not truthful

• The more they are, the higher they should bid

- Expected seller revenue
 - $O((N-1)/N) E[v_{max}] = ((N-1)/N) (N/(N+1)) = (N-1)/(N+1)$

○ Identical to 2nd price auction!

• A general revenue equivalence principle

Outline

Preliminaries

• Auctions

Matching markets

Possible approaches to ads pricing

□ Google mechanism

□ References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Matching Markets s_{ij} : value that buyer j gives to good igoods1112b v_{1a}, v_{2a}, v_{3a} 2 v_{1b}, v_{2b}, v_{3b} 3

How to match a set of different goods to a set of buyers with different evaluations

different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

 Given the prices, look for a perfect matching on the preferred seller graph
 There is no such matching for this graph

Which goods buyers like most? Preferred seller graph

But with different prices, there is

Which goods buyers like most? Preferred seller graph

But with different prices, there is
Such prices are market clearing prices

Market Clearing Prices

- They always exist
 - And can be easily calculated if valuations are known
- They are socially optimal in the sense that
 - they achieve the maximum total valuation of any assignment of sellers to buyers
 - Or, equivalently, they maximize the sum of all the payoffs in the network (both sellers and buyers)