
Ubinet, Distributed Optimization and Games 2015-2016 February 7, 2016

Lecture 7
Lecturer: Giovanni Neglia Scribe: Jimmy Auk, Hakob Melkonyan

NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

In the previous lesson we have studied VCG mechanism for auctions to ensure a truth-telling mech-
anism. This time, the emphasis will be on the GSP mechanism used by Google Inc. and game design
principles.

1 GSP auction mechanism

Google Inc. has adopted the GSP (Generalized Second Price Auction) mechanism for getting bids for
its ad places. Compared to VCG (Vickrey-Clarke-Groves) auction, in GSP every bidder is paying the
amount equal to the next lower bid from its own bid. Note that this is the natural way to generalize to
the second-price one-item auction. But one may ask the following question: “Why use GSP instead of
VCG?” As we are going to see through the following simple example, GSP may offer the possibility for
the auctioneer to earn more money than VCG.

Let us suppose that there are 3 items to be sold to 3 bidders, and each item has its click rate r1, r2,
r3 respectively. We also denote each player’s values as v1, v2, v3 respectively.

With the click rates and values shown in the diagram above, if player 1 is honest and bids the actual
price that he/she values the item, then will get position 1 and his/her pay-off will be: 10(7-6)=10. But
if instead he/she bids 5, then will get position 2 and the pay-off will be 4(7-1)=24. This simple example
shows that in GSP truth-telling may not be the best strategy for individual players.

In terms of Game Theory, there is a Nash-Equilibrium (NE) if none of the bidders has any incentive
to change his/her strategy. In the example above there are 2 NEs as follows: when p1 bids 5, p2 bids 3,
p3 bids 2, and when p1 bids 3, p2 bids 5, p3 bids 1. In order to make sure that a given set of bids is NE,
we need to check for each player, if changing his/her bid will make any increase in his/her pay-off. If
there is no increase in pay-off for a given player, then we can say that the given bid is the Best-Response

7-1

strategy to other bidders’ strategies for that particular player. It is possible to prove that there always
exist a socially optimal NE, in the sense that it maximizes total advertisers’ evaluation.

Now, let’s compare the total revenue for the auctioneer in each case of NE. For the first NE values
described above, the total revenue will be 48, while for the second NE it will be 34. This example shows
that the revenue equivalence principle does not hold for auctions with multiple goods. Moreover, if we
calculate the seller revenue under VCG, that would be 44. We find then with GSP the seller revenue
can be both higher or smaller than under VCG. The reasons behind Google’s choice for GSP remains
unclear.

In addition, there are several general issues like the real value of the click, which remains uncertain
and changes dynamically; high bids by low-quality advertisers; and complex queries for which no direct
bid has been specified. To cope with those issues, there are several techniques to estimate the real value
of the click and to extrapolate bids from bids for simpler queries, but those remain to a large extent
under secret from public.

Before terminating this part on auctions, we want to introduce two definitions.
The science that studies how to design a game in order to modify the users’ payoffs so that the

final output of the game is a desired one is called Mechanism Design or also reverse game theory. In
Mechanism Design economic incentives are usually introduced to the purpose to modify the intrinsic
(and usually unknown) player’s utility function. If the incentives are such that truth-telling becomes a
dominant strategy, then the designed mechanism is called incentive compatible.

2 Revisiting the Network Utility Maximization problem

In the Network Utility Maximization problem, we have seen that the decomposition approach leads to a
socially optimal allocation when users are price takers (i.e. when they ignore how prices are calculated)
and then they solve the following optimization problem:

max
wr

Ur(
wr

λr
)− wr

But once the price anticipators appear in the game, the social optimality is in general lost, because
they solve the following problem instead:

max
wr

Ur(
wr

λr(wr)
)− wr

A way to this issue once and for all is to design a corresponding VCG payment mechanism. The
basic idea is that each user r is asked for his/her utility function. A priori he/she may lie and declare a
utility function Ûr different from his/her real one. The SYSTEM problem is then solved considering the
functions Ûr for each r ∈ R, but each user, say it r, is required a payment corresponding to the social
loss for all the other players due to the presence of r. Let US(B) be the social utility calculated over a
given set B of declared utility functions. User r will be charged:

Paymentr = US(Ûv, v ∈ R− {r})− (US(Ûv, v ∈ R)− Ûr)

Here, the first term of the right side is what the others would get without player r, and the second
term is what altogether get except what r gets. It is possible to prove that this scheme is incentive
compatible, i.e. r will tell the truth instead of lying by providing Ûr = Ur .

But in order to implement this VCG-approachwe have the following issues on our way:

1) How to transmit user’s utility function.
2) Network needs to solve |R|+ 1 optimization problems.
3) We don’t know how to do it in a distributed fashion.

7-2

Because of the difficulty to design incentive compatible mechanims, researchers have also taken a
different approach, trying to quantify the performance loss due to the presence of rational selfish users.
For a given system designed, as soon as rational selfish users can decide among multiple actions, a game
arise. In general there will be multiple NEs with different corresponding social utilities. How do the
social utility at one of this NE compare with the optimal value (e.g. achievable through centralized
optimization)? There will be some Loss of Efficiency (LoE) which we can quantify as follows:

LoE at a NE =

∑
r
Ur(x

∗
r)∑

r
Ur(xNE

r)
> 1

where x∗ is the social optimal allocation and xNE is the allocation at the NE. The LoE for the NE
with the lowest efficiency value is called the Price of Anarchy (PoA) of the games, and sometimes it
may be calculated even without being able to calculate all the other NEs. There is also another quantity
called Price of Stability, which is the LoE for the NE with the highest total outcome.

PoA = max
over all NEs

∑
r
Ur(x

∗
r)∑

r
Ur(sNE

r)
> 1

PoS = min
over all NEs

∑
r
Ur(x

∗
r)∑

r
Ur(sNE

r)
> 1

Example 1. Calculating Loss Of Efficiency (LOE)
Given

Optimal utility U∗S = 1
NE1such that U1

S = 0.99
NE2such that U2

S = 0.5
we can calculate

PoA = 1
0.5 = 2

PoS = 1
0.99 = 1.01

For the network utility maximization problem, it is easy to proe that for a network with 1 single
shared link : PoA = 4

3 . It is also possible to prove that for general networks : PoA 6 4
√

2− 0.5

3 Engineering Systems with the Game Theory

Game Theory is of “descriptive” nature and is not intended for solving distributed problems but it still
may be applied in some cases to design systems of agents to accomplish a common task. We can think
that this approach is close to Mechanism Design, but in mechanism design users have their private utility
function and we introduce incentives to align it with our purpose. Here, instead, we consider a situation
where we can design from scratch the whole system, players’ utilities included.

While this approach is working and giving satisfactory results, one may ask the following question:
”Why Game Theory should be used to engineer systems while there are other general approaches?”
There are 3 main answers to this question:

1) It is intrinsically distributed.
2) There are lot of results in Game Theory about Partial Information (PI), i.e. about players not

knowing the other players’ utilities or even their own.
3) In Game Theory there’s a lot about learning, i.e. about how to reach a given NE.

7-3

3.1 How to design a Game

The process of designing a game is basically designing the payoff matrix, so we may end-up with one or
more NE.

Let’s consider such a game where two drones should make a decision to attack robots. If there are 2
robots attacking drones, and one of them is closer to the first drone and the other one is closer to the
second drone, then each drone would prefer to attack a robot together, because if they will not cooperate
they will have a bad outcome. It’s not so important if they both go first left or right, but make the
same decision together. This problem is well known as ”Battle of sexes”, where a couple needs to decide
where to go on the weekend (for example either to movie or to opera), and each of them prefer to go
anywhere together rather than alone.

So we design a game by “placing” NEs and decide how we want them to converge to the preferred
NE, e.g. by asynchronous best response dynamics. There are following possibilities:

- Loops may happen in the payoff matrix preventing the asynchronous best response dynamics to
converge to any NE.

- It may converge to NE slowly.
- It may only converge to a pure strategy NE.
- It may require too much information.

3.2 Potential games

Let us adopt the following notation:

N − the number of players in the game
Ai − set of actions of player i (a finite set here)

ai − action of player i
a− vector of the actions, that we can also denote as (ai, a−i) to highlight player i’s action
The game has a potential function ϕ if

∃ϕ : A1 ×A2 × ... ∗AN → R

that has the following property:

Ui(a
′
i, a−i)− Ui(a

′′
i , a−i) = ϕ(a′i, a−i)− ϕ(a′′−i, a−i) ∀a−i,∀i

In such games, that are called Potential games (because of the potential function), the asynchronous
best response dynamic (BRD) always converges to a NE. If fact, imagine the player i first selects its
BR, then Ui will increase and also ϕ will increase. Similarly, if player j selects then his/her BR, then
Uj will increasing, and with it Ui may increase or decrease, but ϕ will increase again. Because the set
of possible outcomes is finite, ϕ has at least a local maximum and after a finite number of iterations,
the BRD will reach a local maximum. From now on, no BR will cause a change in the actions because
ϕ cannot grow anymore. The dynamics has then reached a NE.

The example of designing a routing game as a potential game is missing.

7-4

References

[1] Srinivas Shakkottai and R. Srikant, ”Network Optimization and Control.” 2008.

[2] Jason R. Marden and Jeff S. Shamma, ”Game Theory and Distributed Control.” 2012.

[3] David Easley and Jon Kleinberg, ”Networks, Crowds, and Markets: Reasoning about a Highly
Connected World.” 2010.

7-5

