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1 Introduction

In the previous lesson, we looked into the example of an electrical network and showed that a simple
local policy for an agent, in our case an electron, can lead to the optimization of a large distributed
problem which is the minimization of energy loss in the network. In this lesson, we consider ourselves
with a road traffic model to demonstrate that choosing local policies is not trivial and how potential
wrong choices can lead to poor system behaviour. Moreover we solve the more general problem which
arises from our road network and present how local policies in such cases should be correctly chosen.

2 Problem Definition

Let us look into the following road-traffic model.

From now on we can consider our problem as a routing problem. We have a set of directed links E rep-
resenting the connections between the nodes and a set of source-destination pairs S where pair (A,B)
represents the agents wanting to travel from node A to node B.
For each s ∈ S we define R(s) to be the set of routes connecting the source-destination pair and f(s)
to be the amount of traffic on s. Moreover, we denote by R the set of all the routes. Since for a given
s traffic from a source to a destination can be split into multiple routes, we define xr to be the amount
of traffic of s going through route r. Finally, we define yl to be the amount of traffic on link l over all
routes, i.e. yl =

∑
r|l∈r xr.

On each link l ∈ E there exists a delay which is a function of the traffic on that link, yl, and is denoted
Dl(yl). The delay function is assumed to be convex, increasing and its first derivative to exist.

Thus the problem consists of minimizing the overall delay experienced by the agents.
To express the constraints of our optimization problem the following two matrices. (Attention, this
problem is not linear). Let A be the link-route incidence matrix where Alr = 1 if link l belongs to route
r and Alr = 0 otherwise. Secondly, let H be the source-destination route incidence matrix where Hsr =
1 if route r connects s and Hsr = 0 otherwise. Note that the summation of each column of H is equal
to 1, that means each route connects exactly one pair.
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The optimization problem can be modelled as follows:

minimize
x,y

∑
l∈E

ylDl(yl)

subject to yl =
∑
r|l∈r

xr, ∀l ∈ E

fs =
∑

r|s(r)=s

xr, ∀s ∈ S

xr ≥ 0, ∀r ∈ R

(1)

,where s(r) returns the source-destination pair that the route r connects.

3 A first approach to the solution

In order to minimize the total delay experienced by all drivers, we need to find the local policies that
will be followed. In the previous lesson we observed how a simple local policy can lead to the optimal
solution. In this section we illustrate, with a simple example, how a local policy which may seem logical
and trivial may lead to a “bad” solution.

In our example, we have a flow of 1 car per time unit between city A to city B and they can choose from
two available routes. The upper route has a constant delay function of Dupper = 1 and the lower has a
linear delay function which is equal to the percentage of drivers that take that route, Dlower = y.

The most natural approach would be for each driver to choose the route that has the lowest delay
and in that way we expect all the drivers to face equal delay.
More formally, in the general case, we expect that ∀r1, r2 such that s(r1) = s(r2), xr1 > 0 and xr2 > 0
the delay will be

∑
l∈r1 D(yl) =

∑
l∈r2 D(yl).

Getting back to the example, the overall delay experienced by drivers will be:

(1− α)×Dupper(1− α) + α×Dlower(α) = (1− α)× 1 + α× α, (2)

where α is the percentage of drivers that choose the lower route.
According to the aforementioned approach all drivers should choose the lower route as Dlower would be
lower than Dupper. In this way α will be 1 and the total delay will be 1. But is this the optimal solution?
Minimizing the equation (2) results to α∗ = 1

2 and an overall experienced delay of 3
4 = 0, 75.

4 Solving Problem (1) by the Lagrange multipliers method

We can observe that the objective function of our optimization problem (1) is convex. Indeed:

f(x) = ylD(yl)⇒ f ′(x) = ylD
′(yl) +D(yl)⇒ f ′′(x) = ylD

′′(yl) +D′(yl) +D′(yl) (3)
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D′′(yl) and D′(yl) are greater or equal to zero, for the hypotesis that D(yl) is convex. So every terms
in f ′′(x) is non negative and thus the objective function is convex.
Another observation that we make is that each constraint is linear and that they define a set which is
compact. Indeed, each variable xr is bounded:

0 ≤ xr ≤ max
s∈S

fs ∀r ∈ R (4)

so the set set defined is closed and bounded.

Considering the previous observations we can apply the lagrange multipliers method to apply theorem
(1) from the lesson 2. We define two set of multipliers:

1. one for each source-destination pair, λs, ∀s ∈ S and

2. one for each link, µl, ∀l ∈ E.

We can claim that z∗ =
(
x∗

y∗

)
is a global minimum for this optimization problem if and only if there exist

λ∗s, ∀s ∈ S and µ∗l , ∀l ∈ E such that:

1. x∗ and y∗ are feasible,

2. ∇xL(z∗,λ∗,µ∗)T (z− z∗) ≥ 0, ∀z ∈ {
(
x
y

)
, x ≥ 0}.

The Lagrangian function results:

L(z, λ, µ) =
∑
l∈E

ylD(yl) +
∑
s∈S

λs

fs − ∑
r:s(r)=s

xr

+
∑
l∈E

µl

(∑
r:l∈r

xr − yl

)
(5)

When we differentiate it, we obtain:

∂L

∂yl
= D(yl) + ylD

′(yl)− µl
∂L

∂xr
= −λs(r) +

∑
l∈r

µl (6)

At the optimum, we have (explanation missing):

λ∗s(r)

{
=
∑

l∈r µ
∗
l if xr > 0,

≤
∑

l∈r µ
∗
l if xr = 0,

(7)

and the quantity µl results:
µ∗l = D(yl) + ylD

′(yl). (8)

We can interpret the result for the multiplier µl like the cost that the drivers traversing link l must pay.
That cost is composed of the delay (i.e. D(yl)) and the additional term ylD

′(yl). (the interpretation
of the additional term is missing). Furthermore, we can see λs(r) the minimal cost available to source-
destination pair s(r).

With the previous observation, if we add tolls on the link, the drivers are encouraged to have a
more desirable behaviour. Indeed we keep the example in the previous section and we add the toll
ylD

′(yl) at the cost of each link. Each user experiences then two new costs for traveling the two paths.
Cupper = 1 + yupperD

′(yupper) = 1 and Clower = ylower + ylowerD
′(yl) = 2ylower. Now the drivers choose

the link where the total cost, delay plus toll, is minimum and the final solution is that half of the drivers
choose the lower link and the others choose the upper link, that is the optimal solution for Problem (1).
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