Distributed Optimization and Games

Introduction to Game Theory

Giovanni Neglia INRIA – EPI Maestro 27 January 2016

Two-person Zero-sum Games

One of the first games studied
 most well understood type of game

- Players interest are strictly opposed
 - what one player gains the other loses
 - o game matrix has single entry (gain to player 1)
- □ A "strong" solution concept

Dominance

Strategy S (weakly) dominates a strategy T if every possible outcome when S is chosen is at least as good as corresponding outcome in T, and one is strictly better

 S strictly dominates T if every possible outcome when S is chosen is strictly better than corresponding outcome in T

Dominance Principle

rational players never choose dominated strategies

Higher Order Dominance Principle

○ iteratively remove dominated strategies

Higher order dominance may be enough

Rose's S strategy dominated By H

GT prescribes: Rose H - Colin H

... but not in general

Analyzing the Reduced Game: Movement Diagram

Students' game

Games without pure strategy NE

□ An example?

	R	Ρ	S
R	0	-1	1
Р	1	0	-1
S	-1	1	0

Games without pure strategy NE

□ An example? An even simpler one

Some practice: find all the pure strategy NE

_	A	В	С	D
A	3	2	4	2
В	2	1	3	0
С	2	2	2	2

	A	В	С
A	-2	0	4
В	2	1	3
С	3	-1	-2

	A	В	С
A	4	З	8
В	9	5	1
С	2	7	6

Games with no pure strategy NE

What should players do?

o resort to randomness to select strategies

Games with no pure strategy NE

...but we can find mixed strategies equilibria

□ Same idea of equilibrium

each player plays a mixed strategy (*equalizing* strategy), that equalizes the opponent payoffs
 how to calculate it?

□ Same idea of equilibrium

 each player plays a mixed strategy, that equalizes the opponent payoffs

o how to calculate it?

Same idea of equilibrium

 each player plays a mixed strategy, that equalizes the opponent payoffs

o how to calculate it?

Colin considers *Rose's game*

□ Same idea of equilibrium

 each player plays a mixed strategy, that equalizes the opponent payoffs

o how to calculate it?

Rose playing (1/5,4/5) Colin playing (3/5,2/5) is an equilibrium

Rose gains 13/5 Colin gains 8/5

Good news: Nash's theorem [1950]

- Every two-person games has at least one equilibrium either in pure strategies or in mixed strategies
 - Proved using fixed point theorem
 - generalized to N person game
- This equilibrium concept called Nash equilibrium in his honor
 - A vector of strategies (a profile) is a Nash Equilibrium (NE) if no player can unilaterally change its strategy and increase its payoff

A useful property

- Given a finite game, a profile is a mixed NE of the game if and only if for every player i, every pure strategy used by i with non-null probability is a best response to other players mixed strategies in the profile
 - see Osborne and Rubinstein, A course in game theory, Lemma 33.2

Game of Chicken

Game of Chicken (aka. Hawk-Dove Game)

driver who swerves looses

Driver 2

		swerve	stay
iver	swerve	0,0	-1, 5
Ŋ	stay	5,-1	<u>-1</u> 0, -10

Drivers want to do opposite of one another

Two equilibria: not equivalent not interchangeable! • playing an equilibrium strategy does not lead to equilibrium

- Def: outcome o* is Pareto Optimal if no other outcome would give to all the players a payoff not smaller and a payoff higher to at least one of them
- Conflict between group rationality (Pareto principle) and individual rationality (dominance principle)

Students' game = Prisoner's Dilemma

One of the most studied and used games proposed in 1950

Two suspects arrested for joint crime
 each suspect when interrogated separately, has option to confess

Distributed Optimization and Games

Auctions

Giovanni Neglia INRIA – EPI Maestro 20 January 2016

Our starting problem

We want to give an object to the person who values it the most, i.e.

maximize
$$\sum_{i=1}^{N} x_i v_i$$

subject to
$$\sum_{i=1}^{N} x_i = 1$$

over $x_i \in \{0,1\}$

 \Box Difficulty: we do not know values v_i ...

□ and we cannot ask to people (they would lie)

Solution: auctions, but we need to introduce money

Types of auctions

1st price & descending bids (Dutch auctions)
 2nd price & ascending bids (English auctions)

Coogle	digital photo camera	Q Giovanni Neglia 0 + Sha
Googie	digital prioto camera	Ciotanin togia
Search	About 426,000,000 results (0.25 seconds)	
Web Images Maps Videos News	Digital Photography Review www.dpreview.com/ Digital Photography Review: All the latest digital camera reviews and digital imaging news. Lively discussion forums. Vast samples galleries and the largest Reviews - Side-by-side camera comparison - Nikon D4 - D1 / D800 - Cameras Digital cameras: compare digital camera reviews - CNET Re	Ads (i) <u>Appareil Photo Numérique</u> www.pixmania.com/Photo Spécialiste des Appareils Photo. Meilleurs prix & livraison express. 255 people +1'd or follow Pixmania
Shopping More	Digital cameras . compare digital camera reviews - CNLT reviews. reviews.cnet.com/digital-cameras/ Digital camera reviews and ratings, video reviews, user opinions, most popular digital Get photo-artistry & on-the-fly flexibility with the Samsung NX100. Makes	Digital Photo Cameras prixmoinscher.com/Digital+Photo+Cameras Grand choix de Digital Photo Cameras à des prix à couper le souffle !
Valbonne Change location	Best 5 digital cameras - 100 - \$200 Digital cameras Digital camera - Than 12X Digital camera - Wikipedia, the free encyclopedia	caméras OEM CMOS USB2.0 www.framos-imaging.com résolutions VGA à 10Mp, SDK mini caméras carte, trigger LED
Show search tools	en.wikipedia.org/wiki/Digital_camera Jump to <u>Displaying photos</u> : Many digital cameras include a video output port. Usually sVideo, it sends a standard-definition video signal to a television, <u>Amazon.com: Digital Cameras: Camera & Photo: Point & Sho</u>	Digital photo cameras www.shopzilla.fr/ +1 Très grande sélection de digital photo cameras à petits prix

How it works

- Companies bid for keywords
- On the basis of the bids Google puts their link on a given position (first ads get more clicks)
- Companies are charged a given cost for each click (the cost depends on all the bids)
- Why Google adopted this solution:
 It has no idea about the value of a click...
 It lets the company reveal it

Some numbers (2014)

- □ ≈ 90% of Google revenues (66 billions\$) from ads
 - o investor.google.com/financial/tables.html
- 🗖 Costs
 - "calligraphy pens" \$1.70
 - o "Loan consolidation" \$50
 - o "mesothelioma" \$50 per click
- Click fraud problem

Outline

Preliminaries

- Auctions
- Matching markets
- Possible approaches to ads pricing
- Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

Game Theoretic Model

- □ N players (the bidders)
- □ Strategies/actions: b_i is player i's bid
- For player i the good has value v_i
- p_i is player i's payment if he gets the good
- Utility:
 - \circ v_i-p_i if player i gets the good
 - 0 otherwise
- Assumption here: values v_i are independent and private
 - i.e. very particular goods for which there is not a reference price

Game Theoretic Model

- N players (the bidders)
- □ Strategies: b_i is player i's bid
- **Utility**:
 - \circ v_i-b_i if player i gets the good
 - \circ 0 otherwise
- Difficulties:
 - Utilities of other players are unknown!
 - Better to model the strategy space as continuous (differently from the games we looked at)

- Player with the highest bid gets the good and pays a price equal to the 2nd highest bid
- There is a dominant strategies
 - I.e. a strategy that is more convenient independently from what the other players do
 - Be truthful, i.e. bid how much you evaluate the good (b_i=v_i)
 - Social optimality: the bidder who value the good the most gets it!

$b_i = v_i$ is the highest bid

Bidding more than v_i is not convenient

$b_i = v_i$ is the highest bid

Bidding less than v_i is not convenient (may be unconvenient)

$b_i = v_i$ is not the highest bid

Bidding more than v_i is not convenient (may be unconvenient)

$b_i = v_i$ is not the highest bid

Bidding less than v_i is not convenient

Seller revenue

- N bidders
- Values are independent random values between 0 and 1
- Expected ith largest utility is (N+1-i)/(N+1)
- Expected seller revenue is (N-1)/(N+1)

- Player with the highest bid gets the good and pays a price equal to her/his bid
- Being truthful is not a dominant strategy anymore!
 - Consider for example if I knew other players' utilities
- □ How to study it?

Assumption: for each player the other values are i.i.d. random variables between 0 and 1

o to overcome the fact that utilities are unknown

- Player i's strategy is a function s() mapping value v_i to a bid b_i
 - \circ s() strictly increasing, differentiable function \circ 0≤s(v)≤v → s(0)=0
- We investigate if there is a strategy s() common to all the players that leads to a Nash equilibrium

- Assumption: for each player the other values are i.i.d. random variables between 0 and 1
- Player i's strategy is a function s() mapping value v_i to a bid b_i
- Expected payoff of player i if all the players plays s():

 $O \cup U_i(s(v_1),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))$

prob. i wins

i's payoff if he/she wins

- Expected payoff of player i if all the players play s():
 - $O \cup_{i}(s(v_{1}),...s(v_{i}),...s(v_{N})) = v_{i}^{N-1} (v_{i}-s(v_{i}))$
- What if i plays a different strategy t()?
 If all players playing s() is a NE, then :
 U_i(s(v₁),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))
 - $\geq v_i^{N-1} (v_i t(v_i)) = U_i(s(v_1), ..., t(v_i), ..., s(v_N))$
- Difficult to check for all the possible functions t() different from s()
- Help from the revelation principle

The Revelation Principle

All the strategies are equivalent to bidder i supplying to s() a different value of v_i

- Expected payoff of player i if all the players plays s():
 - $O U_i(s(v_1),...s(v_i),...s(v_N)) = v_i^{N-1} (v_i-s(v_i))$
- What if i plays a different strategy t()?
- By the revelation principle:
 U_i(s(v₁),...t(v_i),...s(v_N)) =_{eq} U_i(s(v₁),...s(v),...s(v_N)) = v^{N-1} (v_i-s(v))
- □ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

 \odot Then all players playing s() is a NE

□ If $v_i^{N-1}(v_i-s(v_i)) \ge v^{N-1}(v_i-s(v))$ for each v (and for each v_i)

• Then all players playing s() is a NE

□ $f(v)=v_i^{N-1}(v_i-s(v_i)) - v^{N-1}(v_i-s(v))$ is minimized for $v=v_i$

○ i.e. (N-1) $v_i^{N-2}(v_i-s(v_i)) + v_i^{N-1}s'(v_i) = 0$ for each v_i

$$S'(v_i) = (N-1)(1 - s(v_i)/v_i), s(0)=0$$

 \bigcirc Solution: $s(v_i)=(N-1)/N v_i$

All players bidding according to s(v) = (N-1)/N v is a NE

Remarks

• They are not truthful

• The more they are, the higher they should bid

Expected seller revenue

- $O((N-1)/N) E[v_{max}] = ((N-1)/N) (N/(N+1)) = (N-1)/(N+1)$
- Identical to 2nd price auction!
- A general revenue equivalence principle

Outline

Preliminaries

- Auctions
- Matching markets
- Possible approaches to ads pricing
- □ Google mechanism

□ References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

How to match a set of different goods to a set of buyers with different evaluations

Which goods buyers like most? Preferred seller graph

 Given the prices, look for a perfect matching on the preferred seller graph
 There is no such matching for this graph

Which goods buyers like most? Preferred seller graph

But with different prices, there is

Which goods buyers like most? Preferred seller graph

But with different prices, there is
Such prices are market clearing prices

Market Clearing Prices

They always exist

- And can be easily calculated if valuations are known
- They are socially optimal in the sense that
 - they achieve the maximum total valuation of any assignment of sellers to buyers
 - Or, equivalently, they maximize the sum of all the payoffs in the network (both sellers and buyers)

Outline

Preliminaries

- Auctions
- Matching markets

Possible approaches to ads pricing

□ Google mechanism

References

 Easley, Kleinberg, "Networks, Crowds and Markets", ch.9,10,15

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

How to rank ads from different companies

Ads pricing as a matching market

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

- Problem: Valuations are not known!
- I... but we could look for something as 2nd price auctions

The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - \bigcirc Example: consider a 2nd price auction with $v_1 > v_2 > ... v_N$
 - With 1 present the others buyers get 0
 - Without 1, 2 would have got the good with a value v_2
 - then the social value loss for the others is v_2

The VCG mechanism

- The correct way to generalize 2nd price auctions to multiple goods
- Vickrey-Clarke-Groves
- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_B^S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer j gets good i, he/she should be charged V_{B-j}^S V_{B-j}^{S-i}

VCG example

r_i: click rate for an ad in position i (assumed to be independent from the ad and known a priori) v_i: value that company i gives to a click

VCG example

VCG example

This is the maximum weight matching
1 gets 30, 2 gets 10 and 3 gets 2

VCG example

If 1 weren't there, 2 and 3 would get 25 instead of 12,

Then 1 should pay 13

VCG example

- If 2 weren't there, 1 and 3 would get 35 instead of 32,
- Then 2 should pay 3

VCG example

- If 3 weren't there, nothing would change for 1 and 2,
- Then 3 should pay 0

The VCG mechanism

- Every buyers should pay a price equal to the social value loss for the others buyers
 - If V_B^S is the maximum total valuation over all the possible perfect matchings of the set of sellers S and the set of buyers B,
 - If buyer j gets good i, he/she should be charged V_{B-j}^S - V_{B-j}^{S-i}
- Under this price mechanism, truth-telling is a dominant strategy