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Why do we need tools ?

• Visualization 
• Properties extraction
• Complex queries 

Source : nature.com

Source : Boldi et al.



Graphs are everywhere

• RDF

• SPARQL 

• Basically a sub-graph matching

SELECT ?s WHERE {
?s  writtenBy ?a.
?a  hasName “Sophie”.
?s  publishedIn “Journal”.

}

(“test1”, writtenBy, “Sophie”)
(“test1”, publishedIn, “Journal”)
(“test2”, publishedIn, “Journal)



Why are graphs different ?

• Graphs can be large
- Facebook : 720M users, 69B friends in 2011
- Twitter : 537M accounts, 23.95B links in 2012

• Low memory cost per vertex
- 1 ID, 1 pointer/edge

• Low computation per vertex
• Graphs are not memory friendly

- Random jumps to memory
• They are not hardware friendly!



Lots of frameworks

• Really lots of them 
- Matlab, NetworkX, GraphChi, Hadoop, Twister, 

Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab, 
Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,…

• Why so many ?
- Not one size fits all
- Different computational models 
- Different architecture



Possible taxonomy

• Generic vs Specialized
- Hadoop vs GraphChi (or Giraph, GraphX…)

• Shared vs Distributed Memory
- GraphChi vs Pregel

• Synchronous vs Asynchronous
- Giraph vs Maiter

• Single vs Multi threaded 
- NetworkX vs GraphiChi



NETWORKX
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Overview

• A Python package for complex network analysis
• Simple API
• Very flexible 

- Can attach any data to vertices and edges
- Supports visualization 

• Graphs generators
• http://networkx.github.io/



Dependencies 

• Supports Python 2.7 (preferred) or 3.0 
• If drawing support required

- Numpy (http://www.numpy.org/)
- Mathplotlib (http://matplotlib.org/)
- Graphivz (http://graphviz.org/)



Examples

• Creating an empty graph

• Adding nodes

• Adding edges 

>>> import networkx as nx
>>> G=nx.Graph() 

>>> G.add_node(1)
>>> G.add_nodes_from([2,3]) 

>>> G.add_edge(2,3)
>>> G.add_edges_from([(1,2),(1,3)])



Examples (2)

• Graph generators

• Stochastic graph generators

• Reading from files

>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)

>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1) 
>>> ba=nx.barabasi_albert_graph(100,5) 
>>> red=nx.random_lobster(100,0.9,0.9)

>>> mygraph=nx.read_gml("path.to.file")



Examples (3)

• Graph analysis

• Graph drawing 

>>> nx.connected_components(G)

>>> nx.degree(G)

>>> pr=nx.pagerank(G,alpha=0.9)

>>> import matplotlib.pyplot as plt
>>> nx.draw(G)
>>> plt.show()



NetworkX - Conclusion

• Easy to use
- Very good for prototyping/testing

• Centralized
- Limited scalability 

• Efficiency
- Memory overhead



GRAPHCHI
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Overview

• Single machine
- Distributed systems are complicated!

• Disk-based system 
- Memory is cheap but limited

• Supports both static and dynamic graph
• Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos, 

GraphChi: Large-scale Graph Computation on Just a 
PC, Proceedings of OSDI’12



Computational Model

• Vertex centric 
- Vertices and Edges have associated values
- Update a vertex values using edges values

• Typical update
- Read values from edges
- Compute new value
- Update edges

• Asynchronous model
- Always get the most recent value for edges
- Schedule multiple updates



Storing graphs on disk

• Compressed Sparse Row (CSR)
- Equivalent to adjacency sets
- Store out-edges of vertex consecutively on Disk
- Maintain index to adjacency sets for each vertex

• Very efficient for out-edges, not so for in-edges
- Use Compressed Sparse Column (CSC)

• Changing edges values
- On modification of out-edge : write to CSC
- On reading of in-edge : read from CSR
- Random read or random write L



Parallel Sliding Windows

• Minimize non sequential disk access
• 3 stages algorithm
• Storing graph on disk

- Vertices V are split into P disjoints intervals
- Store all edges that have destination in an interval in 

a Shard
- Edges are stored by source order

From Kyrola and al.



Parallel Sliding Windows (2)

• Loading subgraph of vertices in interval p
- Load Shard(p) in memory

● Get in-edges immediately
- Out-edges are stored in the P-1 other shards

● But ordered by sources, so easy to find
• Loading subgraph p+1

- Slide a window over all shards
• Each interval requires P sequential reads 



Parallel updates

• Once interval loaded, update in parallel
• Data races

- Only a problem if considering edge with both 
endpoints in interval

- Enforce sequential update
• Write back result to disk

- Current shard totally rewritten
- Sliding window of other shards rewritten



Example



Example



Performance

• Mac Mini 2.5GHz, 8GB and 256GB SSD
• Shard creation 



Performance (2)



GOOGLE PREGEL



Overview

• Directed graphs 
• Distributed Framework Based on the Bulk Synchronous 

Parallel model
• Vertex Centric computation model 
• Private framework with C++ API
• Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, 

James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. 2010. Pregel: a system for large-scale 
graph processing. In Proceedings of the 2010 ACM 
SIGMOD International Conference on Management of 
data (SIGMOD '10)



Model of Computation (1)

• BSP : model for parallel programming
- Takes into account communication/synchronization
- Series of super-steps (iterations)

● Performs local computations
● Communicate with others
● Barrier 

From : http://www.multicorebsp.com/



Model of Computation (2)

• Vertex Centric 
- Each vertex execute a function in parallel

• Can read messages sent at previous super-step
• Can send messages to be read at next super-step

- Not necessarily following edges
• Can modify state of outgoing edges 
• Run until all vertices agree to stop and no message in 

transit

From Malewicz and al.



Maximum Value Example

From Malewicz and al.



Implementation and Execution (1) 

• User provides a graph, some input (vertex and edges 
values) and a program

• The program is executed on all nodes of a cluster
- One node become the master, other are workers

• The graph is divided into partitions by the master
- Vertex Id used to compute partition index (e.g. 

hash(Id) mod N)
• Partitions are assigned to workers
• User input file is partitioned (no fancy hash) and sent to 

workers
- If some input is not for the worker, it will pass it along



Implementation and Execution (2) 

• The master request worker to perform superstep
- At the end, each worker reports the number of active 

vertices for next superstep
• Aggregators can be used at end of super-step to reduce 

communications
- Perform reduction on values before sending

• If no more active vertices, Master can halt computation
• What about failures ?

- Easy to checkpoint workers at end of superstep 
- If failure, rollback to previous checkpoint 
- If master fails… too bad L



PageRank in Pregel

From Malewicz and al.



Performance

From Malewicz and al.



Performance

From Malewicz and al.



MAPREDUCE



Map Reduce operations

• Input data are (key, value) pairs
• 2 operations available : map and reduce
• Map 

• Takes a (key, value) and generates other (key, value) 
• Reduce 

• Takes a key and all associated values
• Generates (key, value) pairs

• A map-reduce algorithm requires a mapper and a reducer
• Re-popularized by Google

- MapReduce: Simplified Data Processing on Large Clusters 
Jeffrey Dean and Sanjay Ghemawat, OSDI’04



Map Reduce example

• Compute the average grade of students 
• For each course, the professor provides us with a text file
• Text file format : lines of  “student  grade”

• Algorithm (non map-reduce)
• For each student, collect all grades and perform the 

average
• Algorithm (map-reduce)

• Mapper 
• Assume the input file is parsed as (student, grade) pairs
• So … do nothing!

• Reducer 
• Perform the average of all values for a given key   



Map Reduce example

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , 20)
(Brian, 10)
(Paul, 15)
(Bob , 15)
(Brian, 20)
(Paul, 10)
(Bob , 10)
(Brian, 15)
(Paul, 20)

(Bob , [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob , 15)
(Brian 15)
(Paul, 15)

Map
Reduce

Course 1

Course 2

Course 3



Map Reduce example… too easy J

•Ok, this was easy because
• We didn’t care about technical details like reading 

inputs
• All keys are “equals”, no weighted average

•Now can we do something more complicated ?
•Let’s computed a weighted average

• Course 1 has weight 5
• Course 2 has weight 2
• Course 3 has weight 3

•What is the problem now ?



Map Reduce example 

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , 20)
(Brian, 10)
(Paul, 15)
(Bob , 15)
(Brian, 20)
(Paul, 10)
(Bob , 10)
(Brian, 15)
(Paul, 20)

(Bob , [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob , 15)
(Brian 15)
(Paul, 15)

Map
Reduce

Course 1

Course 2

Course 3

Should be able to discriminate 
between values



Map Reduce example - advanced

• How discriminate between values for a given key
• We can’t … unless the values look different

• New reducer
• Input : (Name, [course1_Grade1, course2_Grade2, 

course3_Grade3]) 
• Strip values from course indication and perform weighted 

average
• So, we need to change the input of the reducer which comes 

from… the mapper
• New mapper

• Input : (Name, Grade)
• Output : (Name, courseName_Grade)
• The mapper needs to be aware of the input file



Map Reduce example - 2

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , C1_20)
(Brian, C1_10)
(Paul, C1_15)
(Bob , C2_15)
(Brian, C2_20)
(Paul, C2_10)
(Bob , C3_10)
(Brian, C3_15)
(Paul, C3_20)

(Bob , [C1_20, C2_15, C3_10])
(Brian, [C1_10, C2_15, C3_20])
(Paul, [C1_15, C2_20, C3_10])

(Bob , 16)
(Brian, 14)
(Paul, 14.5)

Map
Reduce

Course 1

Course 2

Course 3



What is Hadoop ?

• A set of software developed by Apache for distributed 
computing

• Many different projects
• MapReduce
• HDFS : Hadoop Distributed File System
• Hbase : Distributed Database
• ….

• Written in Java
- Bindings for your favorite languages available

• Can be deployed on any cluster easily



Hadoop Job

• An Hadoop job is composed of a map operation and 
(possibly) a reduce operation

• Map and reduce operations are implemented in a 
Mapper subclass and a Reducer subclass

• Hadoop will start many instances of Mapper and 
Reducer
• Decided at runtime but can be specified 

• Each instance will work on a subset of the keys called a 
Splits



Hadoop workflow
Source : Hadoop the definitive 
guide



Graphs and MapReduce

• How to write a graph algorithm in MapReduce?
• Graph representation ?

- Use adjacency matrix

• Line based representation 
- V1 : 0, 0, 1
- V2 : 1, 0, 1
- V3 : 1, 1, 0

• Size |V|2 with tons of 0 …

47

V1 V2 V3

V1 0 0 1
V2 1 0 1
V3 1 1 0



Sparse matrix representation

• Only encode useful values, i.e. non 0
- V1 : (V3 ,1)
- V2 : (V1,1), (V3 ,1)
- V3 : (V1,1), (V2,1)

• And if equal weights
- V1 : V3 

- V2 : V1, V3 

- V3 : V1,V2



Single Source Shortest Path 

• Find the shortest path from one source node S to others
• Assume edges have weight 1
• General idea is BFS

- Distance(S) = 0
- For all nodes N reachable from S

● Distance(N) = 1
- For all nodes N reachable from other set of nodes M

● Distance(N) = 1+ min(Distance(M))
- And start next iteration



MapReduce SSSP

• Data
- Key : node N
- Value : (d, adjacency list of N)

● d distance from S so far
• Map :

- "m Î adjacency list: emit (m, d + 1)
• Reduce :

- Keep minimum distance for each node
• This basically advances the frontier by one hop

- Need more iterations



MapReduce SSSP (2)

• How to maintain graph structure between iterations
- Output adjacency list in mapper
- Have special treatment in reducer 

• Termination ?
- Eventually J
- Stops when no new distance is found… (any idea 

how?)



Seriously ?

• MapReduce + Graphs is easy

• But everyone is MapReducing the world!
- Because they are forced to
- And because of Hadoop

• Hadoop gives 
- A scalable infrastructure (computation and storage)
- Fault tolerance

• So let’s use Hadoop as an underlying infrastructure



Giraph

• Built on top of Hadoop
• Vertex centric and BSP model J

- Giraph jobs run as MapReduce

Source : https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-
trillion-edges/10151617006153920/



SPARK AND GRAPHX



Spark 

• Addresses limitations of Hadoop 
- Disk intensive
- No support for iteration (cycles)

• Spark 
- In-Memory computation
- Workflows with cycles
- Still relies on Map-Reduce like operations
- Multi languages support : Scala, Java, Python, R

• https://spark.apache.org/



Resilient Distributed Datasets

• RDDs 
- Array-like data structure
- Mostly in-memory
- Partitioned 
- Fault tolerant 
- Immutable ß very important !

• RDDs are created through transformations
- Of raw data or another RDD
- Example : map, filter, reduceByKey, groupBy…

• RDDs support actions
- Example : collect, count, reduce, save…

• Transformations are lazy 



Example : Word Count

val textFile = sc.textFile(”…") 
val counts = textFile.flatMap(line => line.split(" ")) 

.map(word => (word, 1))

.reduceByKey(_ + _) 
counts.saveAsTextFile(”….")



Spark Stack 

http://spark.apache.org/



Separate Systems to Support Each View

Table View Graph View

Dependency Graph

6. Before

8. After

7. After

Table

Result

Row

Row

Row

Row



Solution: The GraphX Unified 
Approach

Enabling users to easily and efficiently
express the entire graph analytics pipeline

New API
Blurs the distinction between 

Tables and Graphs

New System
Combines Data-Parallel 
Graph-Parallel Systems

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014



Abstractions

• Graphs are represented by 2 collections
- Vertex RDD (IDs, Properties)
- Edges RDD(sIDs, dIDs, Properties)

• Graphs have multiple propertes
- edges, vertices 

• Most graphs operations can be expressed as analyzing 
or joining collections
- Join stage (build a triple view)
- Group-by-stage (reduce-like)
- Map operations 



Building a Graph
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val vertices :  VertexRDD[String] = ….

val edges : EdgeRDD[Int] = ….

val graph : Graph(vertices, edges) = …

graph.edges.count()



Triplets Join Vertices and Edges

• The triplets view joins vertices and edges:

SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e 

LEFT JOIN vertices AS src, vertices AS dst ON e.srcId = src.Id AND
e.dstId = dst.Id

TripletsVertices Edges

B

A

C

D

A B

A C

B C

C D

A BA

B A C

B C

C D

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014



Triplet view

• Each Triplet contains
- srcId and srcAttr
- dstId and dstAttr
- attr

graph.triplets



Aggregate Messages

• Applies a user defined function to each edge triplet
- The messages 

• Applies a user defined function to aggregate the 
messages at destination vertex

def aggregateMessages[Msg: ClassTag]( 
sendMsg: EdgeContext[VD, ED, Msg] => Unit,
mergeMsg: (Msg, Msg) => Msg, 
tripletFields: TripletFields = TripletFields.All) : VertexRDD[Msg] 

}



Example : get largest incoming edge

• For each vertex compute the largest incoming edge
- Message is edge attribute value
- Merge function is max

graph.aggregateMessages[Int](  
triplet => {     

triplet.sendToDst(triplet.attr)  
},  
(a,b) => Math.max(a,b)

) 



Misc operations

• RDD -> Array
- take(n)

• Compute the degree of each vertex
- graph.inDegrees/outDegrees

• Collect edges for all vertices
- val coll = graph.collectNeighborIds(EdgeDirection.X) 

with X In, Out, Either 
• Get all edges of a given vertice id

- coll.lookup(id)



Part. 2

Part. 1

Vertex Table 
(RDD)

B C

A D

F E

A D

Distributed Graphs as Tables (RDDs)

D

Property Graph

B C

D

E

AA

F

Edge Table 
(RDD)

A B

A C

C D

B C

A E

A F

E F

E D

B

C

D

E

A

F

Routing
Table 

(RDD)

B

C

D

E

A

F

1

2

1 2

1 2

1

2

2D Vertex Cut Heuristic



HDFSHDFS

ComputeSpark Preprocess Spark Post.

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab

Raw Wikipedia 

< / >< / >< / >
XML

Hyperlinks PageRank Top 20 Pages

342

1492

0 200 400 600 800 1000 1200 1400 1600

GraphLab + Spark
GraphX

Giraph + Spark
Spark

Total Runtime (in Seconds)

605

375



Conclusion

• So many frameworks to choose from…
• Criteria 

- What is the size of your graph ?
- What algorithms do you want to run ?
- How fast do you want your results ?

• Distributed frameworks are no silver bullet 
- Steeper learning curve
- Add new problems (data distribution, faults…)



Food for thought 

• Distributed partitioning is a hot topic
- But what is a good partitioner ?

• The network might not be a bottleneck anymore 
- RDMA + Infiniband == profit !
- The end of slow networks: it's time for a redesign, Carsten 

Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and 
Erfan Zamanian, Proc. VLDB Endow. 2016,

• Hardware contention is an issue 
- Performance Impact of Resource Contention in Multicore 

Systems, R. Hood, H. Jin, P. Mehrotra, J. Chang, J. 
Djomehri, S. Gavali, D. Jespersen, K. Taylor, R. Biswas, 
IPDPS 2010



Resources

• Slides
- http://www.slideshare.net/shatteredNirvana/pregel-a-

system-for-largescale-graph-processing
- http://courses.cs.washington.edu/courses/cse490h/08

au/lectures/algorithms.pdf 
- http://www.cs.kent.edu/~jin/Cloud12Spring/GraphAlgo

rithms.pptx
- https://amplab.cs.berkeley.edu/wp-

content/uploads/2014/02/graphx@strata2014_final.pp
tx


