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General information 
❒ Website 

•  www-sop.inria.fr/members/Giovanni.Neglia/
complexnetworks16/ 

❒ Organization of the school 
❒ Spirit 
❒  Presence 
❒ Exam 
❒  For any question: giovanni.neglia@inria.fr 
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Network Science 

 
1. Common properties to many existing 

networks 
•  Social nets, transportation nets, electrical power grids, 

Internet AS net, P2P nets, gene regulatory net, 
•  These are the "complex networks" that exhibit "non-

trivial topological features—features that do not occur 
in simple networks such as lattices or random graphs but 
often occur in real graphs"  [confusing wikipedia’s 
definition] 

2. Important dynamic processes on these 
networks show the same properties 
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Contagion 

w/o file 

w/ file 

P2P overlay link 
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Take Home Lesson 

If we understand how topological properties 
influence contagion 
•  We can speed-up or slow-down contagion 
•  We can use these lessons to engineer new protocols (overlay 

topologies, replication mechanisms,…) 



Outline 

❒  Properties of Complex Networks          
(high-level view) 
•  Small diameter 
•  High Clustering 
•  Hubs and heavy tails  

❒  Physical causes 
❒ What is Network Science? 

•  Is it really a new science? Different from 
graph theory? 

 



Milgram’s experiment (1967) 
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6 degrees of separation 

2003 

Six degrees of separation is the 
idea that everyone is on average 
approximately six steps away, by 

way of introduction, from any 
other person in the world, so that 
a chain of "a friend of a friend" 

statements can be made, on 
average, to connect any two people 

in six steps or fewer. 



Small Diameter, more formally 

❒ A linear network has diameter N-1 and 
average distance Θ(N)
•  How to calculate it? 

❒ A square grid has diameter and average 
distance Θ(sqrt(N)) 

❒ Small Diameter: diameter O((log(N))a), a>0 
❒  Lessons from model: a few long distance 

random connections are enough 



Erdös-Rényi graph 

❒ A ER graph G(N,q) is a stochastic process 
❍ N nodes and edges are selected with prob. q 

❒  Purpose: abstract from the details of a 
given graph and reach conclusions depending 
on its average features    



Erdös-Rényi graph 

❒ A ER graph G(N,q) is a stochastic process 
❍ N nodes and edges are selected with prob. q 
❍ Degree distribution: P(d)=Cd

N-1 qd(1-q)N-1-d  
•  Average degree: <d>=q (N-1) 
•  For N->∞ and Nq constant: P(d)=e-<d><d>d/d! 

-   <d2>=<d>(1+<d>) 
❍ Average distance: <l>≈logN/log<d> 

•  Small diameter   



Clustering 

❒  "The friends of my friends are my friends" 
❒  Local clustering coefficient of node i 

❍  (# of closed triplets with i at the center) / (# of triplets 
with node i at the center) = (links among i’s neighbors of 
node i)/(potential links among i’s neighbors) 

 
❒ Global clustering coefficient 

❍  (total # of closed triplets)/(total # of triplets) 
•  # of closed triplets = 3 # of triangles 

❍  Or 1/N Σi Ci 

Ci=2/(4*3/2)=1/3 



Clustering 

❒  In ER 
❍ C ≈ q ≈ <d>/N 



Clustering 

❒  In real networks 

Ci=2/(4*3) 

Other'Real'Networks'Examples'

Good matching for avg distance,  
Bad matching for clustering coefficient 
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How to model real networks? 
“Geometric” Graphs have a high clustering coefficient 

but also a high diameter 
Random Graphs have a low diameter 

but a low clustering coefficient 
--> Combine both to model real networks: the Watts and Strogatz 

model 

Random Graph (k=4) 
Short path length  

L=logkN 
Almost no clustering 

C=k/n 

Regular Graph (k=4) 
Long paths  

L = n/(2k)  
Highly clustered  

C=3/4 

Regular ring lattice  
R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74, No. 1, 

January 2002 
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Watts and Strogatz model 
Random rewiring of regular graph 

With probability p rewire each 
link in a regular graph to a 
randomly selected node 

Resulting graph has properties 
both of regular and random 
graphs 

--> High clustering and short 
path length 

 

R. Albert and A.-L. Barabasi: Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74, No. 1, 
January 2002 
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Small World 

❒  to denote 
1.  Small diameter 
2.  Small diameter + high clustering 
3.  Small diameter + navigability 

❒  Cause 
•  Nodes are embedded in some multidimensional 

space (e.g. geography, jobs, hobbies) 
•  There are some random far-away links 



Intermezzo: navigation 

❒  In Small world nets there 
are short paths O((log(N))a) 

❒ But can we find them? 
❍ Milgram’s experiment 

suggests nodes can find them 
using only local information 

❍ Standard routing algorithms 
require O(N) information! 

❍ The answer will arrive in a 
later module 



Hubs 

❒  80/20 rule 
❍  few nodes with degree much higher than the 

average 
❍  a lot of nodes with degree smaller than the 

average 
❍  (imagine Bill Clinton enters this room, how 

representative is the avg income)  
❒ ER with N=1000, <d>=5, P(d)≈e-<d><d>d/d! 

❍ #nodes with d=10: N*P(10)≈18  
❍ #nodes with d=20: N*P(20)≈2.6 10-4  

d 

P(d) 



Hubs 

ER 
Power law 

PDF 

CCDF Power law: 
P(d) ~ d-α



Power law degree distributions 

5: DataLink Layer 

coauthorship 



… and more 

5: DataLink Layer 

Income 

Meme on Twitter 
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FIG. 1: The severities (number of deaths) for 13,274 fatal
terrorist attacks worldwide from 1968–2008 [27]. The data are
plotted as a complementary cumulative distribution function
Pr(X ≥ x). The solid black line shows the power-law behavior
of the distribution, with scaling exponent α̂ = 2.4 ± 0.2 for
x ≥ 10 [9].

and severity of events within individual conflicts, such
as those in Colombia and Iraq, exhibit power-law statis-
tics [6, 18, 19], and that observable changes in the power
law’s exponent over time are indicative of real and im-
portant shifts in the underlying dynamics of the social
and political generative processes.

At present, these ubiquitous power-law statistics lack
a clear and well-supported explanation: what mecha-
nisms, political or otherwise, give rise to these law-like
behaviors? A scientific answer to this question may ulti-
mately shed light, in a manner complementary to tradi-
tional studies, on the use of such tactics in violent con-
flicts [23, 29], the internal dynamics of terrorist organi-
zations [7, 11], and trends in global terrorism [14, 38].
It may also shed light on the connection between sever-
ity and other modalities [8], e.g., location and timing,
suggest novel intervention strategies or policy recommen-
dations for counter-terrorism [12], and shed light on the
connection between terrorism and other kinds of violent
conflicts, such as civil and international wars [33, 37].

To date, two explanations have been proposed for the
origin of the observed power law in the frequency of
severe terrorist attacks.1 One, proposed by Clauset,

1 We note that a wide variety of mechanisms can produce power-
law distributions. Most of these processes, however, are not well-
suited for explaining the severity of terrorist attacks (see Clauset,
Young, and Gleditsch [10] for some discussion). As such, we focus
our attention on the two mechanisms that have been proposed,
both of which have some empirical support.

Young, and Gleditsch [10] relies on an exponential sam-
pling mechanism in which states and terrorists compete
to decide which planned events become real. In this
model, terrorists invest time planning events and the po-
tential severity of these increases roughly exponentially
with the total planning time. Through counter-terrorism
actions by states, along with other natural attrition fac-
tors, these potential events are then strongly sampled,
with the probability that a potential event becomes real
decreasing roughly exponentially with the size of the
event. That is, large events are exponentially less likely
to become real than smaller events. The competition of
these two exponentials produces a power-law distribu-
tion in the severity of events, with the scaling exponent
α depending only on the two exponential rates.
The second mechanism, proposed by Johnson et al. [18,

19], is a self-organized critical model [3] of the internal dy-
namics of a modern terrorist organization. In this model,
a terrorist organization is composed of cells that merge
and fall apart according to simple probabilistic rules (see
below). The long-term dynamics of this aggregation-
disintegration process produces a dynamic equilibrium or
steady-state that is characterized by a power-law distri-
bution in the sizes of cells, and, by assumption, a power-
law distribution in the severity of events. In this model
the scaling exponent in the steady-state can be calcu-
lated exactly, and is found to be α = 5/2. This value is
in good agreement with the best current empirical esti-
mate of α̂ = 2.4± 0.2 [9] for terrorist attacks worldwide
from 1968 to 2008.

In this article, we mathematically study the Johnson
et al. model. In particular, we generalize Johnson et al.’s
specific model to a family of such models. We then ana-
lytically solve for their steady-state behavior, and show
that a power-law distribution is a universal feature2 of
this class of models. That is, provided the number N of
radicalized individuals is large N ≫ 1, the appearance of
the power-law distribution and the value of its scaling ex-
ponent α does not depend on certain details of the model
itself. Mathematically speaking: our analysis is exact in
the limit N → ∞. We note that our asymptotic analysis
is done purely for mathematical convenience; the limit
N → ∞ has no social meaning and so long as N is very
large, our results should hold.
The benefits of generalizing the Johnson et al. model

are two fold. First, there is the generalization itself,
which extends the model in a new and important direc-
tion, and demonstrates that the model’s main qualita-
tive result—the power-law distribution in event sizes—is
robust to certain specific modeling assumptions. Sec-

2 Here, universality denotes the robustness of certain qualitative
features of a mathematical model to certain specific modeling
assumptions. This usage is distinct from, and should not be
confused with, the less technical usage of the same term to denote
a natural or social phenomenon that appears to be independent
of certain contingent or contextual details.

Deaths  
in terroristic attacks 



Power Law 

❒ Where does it come from?  
❍ Albert-Barabasi’s growth model 
❍ Highly Optimized Model 
❍ And other models  

•  See Michael Mitzenmacher, A Brief History of 
Generative Models for Power Law and Lognormal 
Distributions 



Albert-Barabasi’s model 

❒ Two elements 
❍ Growth 

•  m0 initial nodes, every time unit we add a new node 
with m links to existing nodes 

❍  Preferential attachment 
•  The new node links to a node with degree ki with 

probability  

❍ It generates power-law 

Π(ki ) =
ki

k jj=1,N∑ The rich becomes richer 



What is Network Science? 

❒ A natural science 
❍ The focus is on existing networks (not graphs in 

general) 
❍ Understand observed phenomena 

❒ An interdisciplinary approach, it draws on 
many different theories and methods  
❍ graph theory from mathematics, statistical 

mechanics from physics, data mining and 
information visualization from computer science, 
inferential modeling from statistics, social 
structure from sociology…



What after? 

We will
❒  study Albert-Barabasi’s model
❒ how complex nets properties affect a 

specific dynamic process (infection)
❒  software tools to study complex networks 

(F. Huet)
❒  learn complex nets properties through 

random walks (K. Avrachenkov)



What after? 

We will
❒  studying mobility through complex nets 

(T. Spyropoulos)
❒ how to navigate in complex nets?
❒ what a specific complex network (Twitter) 

looks like (A. Legout, M. Gabielkov)
❒ how to describe and query the semantic 

web graph (C. Faron Zucker)



Power Law 

❒ Where does it come from?  
❍ Albert-Barabasi’s growth model 
❍ Highly Optimized Model 
❍ And other models  

•  See Michael Mitzenmacher, A Brief History of 
Generative Models for Power Law and Lognormal 
Distributions 



Albert-Barabasi’s model 

❒ Two elements 
❍ Growth 

•  m0 initial nodes, every time unit we add a new node 
with m links to existing nodes 

❍  Preferential attachment 
•  The new node links to a node with degree ki with 

probability  

Π(ki ) =
ki
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Albert-Barabasi’s model 

❒ Node i arrives at time ti, its degree keeps 
increasing 

❒ With a continuum approximation: 

❒ Then degree distribution at time t is: 
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Albert-Barabasi’s model 

❒ At time t there are m0+t nodes, if we 
consider that the t nodes are added 
uniformly at random in [0,t], then 

 

P(ti > x) =
t − x
t +m0

P(ki (t)< k) =
t

t +m0
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Albert-Barabasi’s model 

❒ The PDF is 

❒  For t->∞ 

 

P(ki (t) = k) =
∂P(ki (t) ≤ k)

∂k
=

t
t +m0

1
β
m1/β

k1/β+1

P(ki (t) = k) t→∞
# →##

1
β
m1/β

k1/β+1
∝ k−γ , γ = 3



Albert-Barabasi’s model 

❒  If      ,  

❒ Other variants: 
❍ With fitness 

❍ With rewiring (a prob. p to rewire an existing 
connection) 

❍ Uniform attaching with "aging": A vertex is 
deactivated with a prob. proportional to (ki+a)-1 

Π(ki )∝ a+ ki P(k)∝ k−γ , γ = 3+ a
m
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