

Software tools for Complex Networks

Analysis

Fabrice Huet, University of Nice Sophia-
Antipolis

SCALE Team

MOTIVATION

Why do we need tools ?

•  Visualization
•  Properties extraction
•  Complex queries

Source : nature.com

Source : Boldi et al.

Graphs are everywhere

•  RDF

•  SPARQL

•  Basically a sub-graph matching

SELECT ?s WHERE {
 ?s writtenBy ?a.
 ?a hasName “Sophie”.
 ?s publishedIn “Journal”.
 }

(“test1”, writtenBy, “Sophie”)
(“test1”, publishedIn, “Journal”)
(“test2”, publishedIn, “Journal)

Why are graphs different ?

•  Graphs can be large
-  Facebook : 720M users, 69B friends in 2011
-  Twitter : 537M accounts, 23.95B links in 2012

•  Low memory cost per vertex
-  1 ID, 1 pointer/edge

•  Low computation per vertex
•  Graphs are not memory friendly
-  Random jumps to memory

•  They are not hardware friendly!

Lots of frameworks

•  Really lots of them
-  Matlab, NetworkX, GraphChi, Hadoop, Twister,

Piccolo, Maiter, Pregel, Giraph, Hama, GraphLab,
Pegasus, Snap, Neo4J, Gephi, Tulip, any DBMS,…

•  Why so many ?
-  Not one size fits all
-  Different computational models
-  Different architecture

Possible taxonomy

•  Generic vs Specialized
-  Hadoop vs GraphChi (or Giraph, GraphX…)

•  Shared vs Distributed Memory
-  GraphChi vs Pregel

•  Synchronous vs Asynchronous
-  Giraph vs Maiter

•  Single vs Multi threaded
-  NetworkX vs GraphiChi

NETWORKX

8

Overview

•  A Python package for complex network analysis
•  Simple API
•  Very flexible
-  Can attach any data to vertices and edges
-  Supports visualization

•  Graphs generators
•  http://networkx.github.io/

Dependencies

•  Supports Python 2.7 (preferred) or 3.0
•  If drawing support required
-  Numpy (http://www.numpy.org/)
-  Mathplotlib (http://matplotlib.org/)
-  Graphivz (http://graphviz.org/)

Examples

•  Creating an empty graph

•  Adding nodes

•  Adding edges

>>> import networkx as nx
>>> G=nx.Graph()

>>> G.add_node(1)
>>> G.add_nodes_from([2,3])

>>> G.add_edge(2,3)
>>> G.add_edges_from([(1,2),(1,3)])

Examples (2)

•  Graph generators

•  Stochastic graph generators

•  Reading from files

>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)

>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1)
>>> ba=nx.barabasi_albert_graph(100,5)
>>> red=nx.random_lobster(100,0.9,0.9)

>>> mygraph=nx.read_gml("path.to.file")

Examples (3)

•  Graph analysis

•  Graph drawing

>>> nx.connected_components(G)

>>> nx.degree(G)

>>> pr=nx.pagerank(G,alpha=0.9)

>>> import matplotlib.pyplot as plt
>>> nx.draw(G)
>>> plt.show()

NetworkX - Conclusion

•  Easy to use
-  Very good for prototyping/testing

•  Centralized
-  Limited scalability

•  Efficiency
-  Memory overhead

GRAPHCHI

15

Overview

•  Single machine
-  Distributed systems are complicated!

•  Disk-based system
-  Memory is cheap but limited

•  Supports both static and dynamic graph
•  Kyrola, Aapo and Blelloch, Guy and Guestrin, Carlos,

GraphChi: Large-scale Graph Computation on Just a
PC, Proceedings of OSDI’12

Computational Model

•  Vertex centric
-  Vertices and Edges have associated values
-  Update a vertex values using edges values

•  Typical update
-  Read values from edges
-  Compute new value
-  Update edges

•  Asynchronous model
-  Always get the most recent value for edges
-  Schedule multiple updates

Storing graphs on disk

•  Compressed Sparse Row (CSR)
-  Equivalent to adjacency sets
-  Store out-edges of vertex consecutively on Disk
-  Maintain index to adjacency sets for each vertex

•  Very efficient for out-edges, not so for in-edges
-  Use Compressed Sparse Column (CSC)

•  Changing edges values
-  On modification of out-edge : write to CSC
-  On reading of in-edge : read from CSR
-  Random read or random write L

Parallel Sliding Windows

•  Minimize non sequential disk access
•  3 stages algorithm
•  Storing graph on disk
-  Vertices V are split into P disjoints intervals
-  Store all edges that have destination in an interval in

a Shard
-  Edges are stored by source order

From Kyrola and al.

Parallel Sliding Windows (2)

•  Loading subgraph of vertices in interval p
-  Load Shard(p) in memory

●  Get in-edges immediately

-  Out-edges are stored in the P-1 other shards
●  But ordered by sources, so easy to find

•  Loading subgraph p+1
-  Slide a window over all shards

•  Each interval requires P sequential reads

Parallel updates

•  Once interval loaded, update in parallel
•  Data races
-  Only a problem if considering edge with both

endpoints in interval
-  Enforce sequential update

•  Write back result to disk
-  Current shard totally rewritten
-  Sliding window of other shards rewritten

Example

Example

Performance

•  Mac Mini 2.5GHz, 8GB and 256GB SSD
•  Shard creation

Performance (2)

GOOGLE PREGEL

Overview

•  Directed graphs
•  Distributed Framework Based on the Bulk Synchronous

Parallel model
•  Vertex Centric computation model
•  Private framework with C++ API
•  Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,

James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
data (SIGMOD '10)

Model of Computation (1)

•  BSP : model for parallel programming
-  Takes into account communication/synchronization
-  Series of super-steps (iterations)

●  Performs local computations
●  Communicate with others
●  Barrier

From : http://www.multicorebsp.com/

Model of Computation (2)

•  Vertex Centric
-  Each vertex execute a function in parallel

•  Can read messages sent at previous super-step
•  Can send messages to be read at next super-step
-  Not necessarily following edges

•  Can modify state of outgoing edges
•  Run until all vertices agree to stop and no message in

transit

From Malewicz and al.

Maximum Value Example

From Malewicz and al.

Implementation and Execution (1)

•  User provides a graph, some input (vertex and edges
values) and a program

•  The program is executed on all nodes of a cluster
-  One node become the master, other are workers

•  The graph is divided into partitions by the master
-  Vertex Id used to compute partition index (e.g.

hash(Id) mod N)
•  Partitions are assigned to workers
•  User input file is partitioned (no fancy hash) and sent to

workers
-  If some input is not for the worker, it will pass it along

Implementation and Execution (2)

•  The master request worker to perform superstep
-  At the end, each worker reports the number of active

vertices for next superstep
•  Aggregators can be used at end of super-step to reduce

communications
-  Perform reduction on values before sending

•  If no more active vertices, Master can halt computation
•  What about failures ?
-  Easy to checkpoint workers at end of superstep
-  If failure, rollback to previous checkpoint
-  If master fails… too bad L

PageRank in Pregel

From Malewicz and al.

Performance

From Malewicz and al.

Performance

From Malewicz and al.

MAPREDUCE

Map Reduce operations

•  Input data are (key, value) pairs
•  2 operations available : map and reduce
•  Map

•  Takes a (key, value) and generates other (key, value)

•  Reduce
•  Takes a key and all associated values
•  Generates (key, value) pairs

•  A map-reduce algorithm requires a mapper and a reducer
•  Re-popularized by Google

-  MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat, OSDI’04

Map Reduce example

•  Compute the average grade of students
•  For each course, the professor provides us with a text file
•  Text file format : lines of “student grade”

•  Algorithm (non map-reduce)
•  For each student, collect all grades and perform the

average
•  Algorithm (map-reduce)

•  Mapper
•  Assume the input file is parsed as (student, grade) pairs
•  So … do nothing!

•  Reducer
•  Perform the average of all values for a given key

Map Reduce example

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , 20)
(Brian, 10)
(Paul, 15)
(Bob , 15)
(Brian, 20)
(Paul, 10)
(Bob , 10)
(Brian, 15)
(Paul, 20)

(Bob , [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob , 15)
(Brian 15)
(Paul, 15)

Map
Reduce

Course 1

Course 2

Course 3

Map Reduce example… too easy ☺

• Ok, this was easy because
•  We didn’t care about technical details like reading

inputs
•  All keys are “equals”, no weighted average

• Now can we do something more complicated ?
• Let’s computed a weighted average

•  Course 1 has weight 5
•  Course 2 has weight 2
•  Course 3 has weight 3

• What is the problem now ?

Map Reduce example

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , 20)
(Brian, 10)
(Paul, 15)
(Bob , 15)
(Brian, 20)
(Paul, 10)
(Bob , 10)
(Brian, 15)
(Paul, 20)

(Bob , [20, 15, 10])
(Brian, [10, 15, 20])
(Paul, [15, 20, 10])

(Bob , 15)
(Brian 15)
(Paul, 15)

Map
Reduce

Course 1

Course 2

Course 3

Should be able to discriminate
between values

Map Reduce example - advanced

•  How discriminate between values for a given key
•  We can’t … unless the values look different

•  New reducer
•  Input : (Name, [course1_Grade1, course2_Grade2,

course3_Grade3])
•  Strip values from course indication and perform weighted

average
•  So, we need to change the input of the reducer which comes

from… the mapper
•  New mapper

•  Input : (Name, Grade)
•  Output : (Name, courseName_Grade)
•  The mapper needs to be aware of the input file

Map Reduce example - 2

Bob 20
Brian 10
Paul 15

Bob 15
Brian 20
Paul 10

Bob 10
Brian 15
Paul 20

(Bob , C1_20)
(Brian, C1_10)
(Paul, C1_15)
(Bob , C2_15)
(Brian, C2_20)
(Paul, C2_10)
(Bob , C3_10)
(Brian, C3_15)
(Paul, C3_20)

(Bob , [C1_20, C2_15, C3_10])
(Brian, [C1_10, C2_15, C3_20])
(Paul, [C1_15, C2_20, C3_10])

(Bob , 16)
(Brian, 14)
(Paul, 14.5)

Map
Reduce

Course 1

Course 2

Course 3

What is Hadoop ?

•  A set of software developed by Apache for distributed
computing

•  Many different projects
•  MapReduce
•  HDFS : Hadoop Distributed File System
•  Hbase : Distributed Database
•  ….

•  Written in Java
-  Bindings for your favorite languages available

•  Can be deployed on any cluster easily

Hadoop Job

•  An Hadoop job is composed of a map operation and
(possibly) a reduce operation

•  Map and reduce operations are implemented in a
Mapper subclass and a Reducer subclass

•  Hadoop will start many instances of Mapper and
Reducer
•  Decided at runtime but can be specified

•  Each instance will work on a subset of the keys called a
Splits

Hadoop workflow
Source : Hadoop the definitive guide

Graphs and MapReduce

•  How to write a graph algorithm in MapReduce?
•  Graph representation ?

-  Use adjacency matrix

•  Line based representation
-  V1 : 0, 0, 1
-  V2 : 1, 0, 1
-  V3 : 1, 1, 0

•  Size |V|2 with tons of 0 …

47

V1 V2 V3

V1 0 0 1
V2 1 0 1
V3 1 1 0

Sparse matrix representation

•  Only encode useful values, i.e. non 0
-  V1 : (V3 ,1)
-  V2 : (V1,1), (V3 ,1)
-  V3 : (V1,1), (V2,1)

•  And if equal weights
-  V1 : V3
-  V2 : V1, V3
-  V3 : V1,V2

Single Source Shortest Path

•  Find the shortest path from one source node S to others
•  Assume edges have weight 1
•  General idea is BFS
-  Distance(S) = 0
-  For all nodes N reachable from S

●  Distance(N) = 1
-  For all nodes N reachable from other set of nodes M

●  Distance(N) = 1+ min(Distance(M))

-  And start next iteration

MapReduce SSSP

•  Data
-  Key : node N
-  Value : (d, adjacency list of N)

●  d distance from S so far

•  Map :
-  ∀m ∈ adjacency list: emit (m, d + 1)

•  Reduce :
-  Keep minimum distance for each node

•  This basically advances the frontier by one hop
-  Need more iterations

MapReduce SSSP (2)

•  How to maintain graph structure between iterations
-  Output adjacency list in mapper
-  Have special treatment in reducer

•  Termination ?
-  Eventually J
-  Stops when no new distance is found… (any idea

how?)

Seriously ?

•  MapReduce + Graphs is easy

•  But everyone is MapReducing the world!
-  Because they are forced to
-  And because of Hadoop

•  Hadoop gives
-  A scalable infrastructure (computation and storage)
-  Fault tolerance

•  So let’s use Hadoop as an underlying infrastructure

Giraph

•  Built on top of Hadoop
•  Vertex centric and BSP model J
-  Giraph jobs run as MapReduce

Source : https://m.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-
trillion-edges/10151617006153920/

GRAPHX

Separate Systems to Support Each View

Table View Graph View

Dependency Graph

6. Before

8. After

7. After

Table

Result

Row

Row

Row

Row

Solution: The GraphX Unified
Approach

Enabling users to easily and efficiently
express the entire graph analytics pipeline

New API
Blurs the distinction between

Tables and Graphs

New System
Combines Data-Parallel
Graph-Parallel Systems

GraphX: Graph Processing in a Distributed Dataflow Framework, OSDI 2014

Abstractions

•  Graphs are represented by 2 collections
-  Vertex collection (IDs, Properties)
-  Edges collection (sIDs, dIDs, Properties)

•  Most graphs operations can be expressed as analyzing
or joining collections
-  Join stage (build a triple view)
-  Group-by-stage (reduce-like)
-  Map operations

class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)],
 edges: Table[(Id, Id, E)])

 // Table Views -----------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table [((Id, V), (Id, V), E)]
 // Transformations ------------------------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,

 pE: Edge[V,E] => Boolean): Graph[V,E]
 def mapV(m: (Id, V) => T): Graph[T,E]
 def mapE(m: Edge[V,E] => T): Graph[V,T]
 // Joins --
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
 // Computation ----------------------------------
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]

}

Graph Operators

58

Triplets Join Vertices and Edges

•  The triplets operator joins vertices and edges:

The mrTriplets operator sums adjacent triplets.
SELECT t.dstId, reduceUDF(mapUDF(t)) AS sum
FROM triplets AS t GROUPBY t.dstId

TripletsVertices Edges

B

A

C

D

A B

A C

B C

C D

A BA

B A C

B C

C D

F

E

Map Reduce Triplets

•  Map-Reduce for each vertex

D

B

A

C

 mapF()A B

 mapF()A C

A1

A2

 reduceF(,)A1 A2 A

60

Example : oldest follower

Part. 2

Part. 1

Vertex Table
(RDD)

B C

A D

F E

A D

Distributed Graphs as Tables (RDDs)

D

Property Graph

B C

D

E

AA

F

Edge Table
(RDD)

A B

A C

C D

B C

A E

A F

E F

E D

B

C

D

E

A

F

Routing
Table

(RDD)

B

C

D

E

A

F

1	

2	

1	
 2	

1	
 2	

1	

2	

2D Vertex Cut Heuristic

HDFSHDFS

ComputeSpark Preprocess Spark Post.

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab

Raw Wikipedia

< / >< / >< / >
XML

Hyperlinks PageRank Top 20 Pages

342

1492

0 200 400 600 800 1000 1200 1400 1600

GraphLab + Spark
GraphX

Giraph + Spark
Spark

Total Runtime (in Seconds)

605

375

Conclusion

•  So many frameworks to choose from…
•  Criteria
-  What is the size of your graph ?
-  What algorithms do you want to run ?
-  How fast do you want your results ?

•  Distributed frameworks are no silver bullet
-  Steeper learning curve
-  Add new problems (data distribution, faults…)

Resources

•  Slides
-  http://www.slideshare.net/shatteredNirvana/pregel-a-

system-for-largescale-graph-processing
-  http://courses.cs.washington.edu/courses/cse490h/

08au/lectures/algorithms.pdf‎
-  http://www.cs.kent.edu/~jin/Cloud12Spring/

GraphAlgorithms.pptx
-  https://amplab.cs.berkeley.edu/wp-content/uploads/

2014/02/graphx@strata2014_final.pptx

