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Outline

1. Influence maximization problem (Kempe, Kleinberg and
Tardos in 2003)

2. How the problem changes for a user in an online social
network

3. Simulation results on Twitter's complete graph (2012)
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Influence propagation

Recruited node

Influenced node
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Influence propagation
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Influence maximization

Recruit a set A of K nodes to maximize the expected number of
influenced nodes (o(A)=E[|p(A)|])

@

Recruited node

Influenced node
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Kempe et al 2003

1. Decreasing cascade model:

d p,(u,S) = prob. that u can influence v, given that nodes in S
have already tried to influence v
a p(u,S)zp(uT)if SCT
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Kempe et al 2003

2. Linear Threshold Model

d Node v has a threshold 6, sampled from a uniform random
variable in [0,1] and link (i,j) has a weight b,
J Node v is influenced if Z b,, 1(i is influenced) > 6,

e
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Kempe et al 2003

2. General Threshold Model

d Node v has a threshold 6, sampled from a uniform random
variable in [0,1]

O Node v has a monotone activation function f,:2V->[0,1] and
is influenced at t if f (S) > 6,, where S is the set of
influenced nodes at t
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Kempe et al 2003

Their results:

|.  Decreasing cascade model & General threshold

model are equivalent
d For each {p,(u,S)}, it is possible to find {f (S)} such that the
probability distribution of @(A) is the same
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Kempe et al 2003

Their results:

|.  Decreasing cascade model & General threshold

model are equivalent
d For each {p,(u,S)}, it is possible to find {f (S)} such that the
probability distribution of @(A) is the same

Il. The greedy algorithm achieves a (1-1/e)

approximation ratio

 This follows from a general result proven by Nemhauser,
Wolsey, Fisher in '78 for non-negative, monotone,
submodular functions
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Monotonicity of o(A)

Q o(A)<o(A,) if A CA,

@) @)
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Submodularity of o(A)

0 o(AU{v}) - 0(A,) 2 oAUV -0(Ay) if A CA,

@) @)
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The greedy algorithm

1: start with A={}

2:fori=1toK

3: let v, be the node maximizing the marginal gain
o(A U {v}) - o(A)

4: set A=A U {v}

Question: how to calculate o(A U {v}) - o(A)?
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2. How the problem changes in OSN

v follows u’s tweet
v is a follower of u
u is a following of v

‘ Tweeting node

‘ Retweeting node
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2. How the problem changes in OSN

v follows u’s tweet
v is a follower of u
u is a following of v

‘ Tweeting node

‘ Retweeting node

Assumption: a user can only influence people through
Twitter itself
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2. How the problem changes in OSN

v follows u’s tweet
v is a follower of u
u is a following of v

’
Y
7’

The user can only select its followings (up to K=2000)...
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2. How the problem changes in OSN

v follows u’s tweet
v is a follower of u
u is a following of v

The user can only select its followings (up to K=2000)...
And hope that they follow back
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Our problem

Let the reciprocation probability r, be known

How should the user select the set of followings A in
order to maximize o(A)=E[|¢p(A)|]? (all the choices at t=0)
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Map the new problem to the old one
(o
I
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Map the new problem to the old one

p
U, >

P

3 PO

pr

Select K followings equivalent to Recruit K nodes in V'’
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Map the new problem to the old one

p
U, >

P

3 PO

pr

Select K followers equivalent to Recruit K nodes in V'’

Greedy algorithm has the same approximation ratio
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A 2" twist: dynamic policies

J Following users is not expensive
1 Idea: replace non-reciprocating users
J How to operate:

 follow one user

« if the user does not reciprocate by T
o unfollow it and follow someone else

It is now possible to follow over time more than K
users, but only K at a given time instant
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An ideal policy

 Imagine to know who is going to reciprocate by T

Owne’

Y
L J u

 The greedy algorithm with such knowledge would

achieve an (1-1/e) approximation ratio
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A practical greedy policy

1: start with A={}, D={} i=0
2: whilei <K
3: let v, be the node in V-D maximizing the marginal
gain o(A U {v}) - o(A), given that it reciprocates
follow v,
If v, reciprocates by T:
A:=A U {v}, i=i+1
else:
D:=D U {v;}
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A practical greedy policy

1: start with A={}, D={} i=0
2: whilei <K
3: let v, be the node in V-D maximizing the marginal
gain o(A U {v}) - o(A), given that it reciprocates
follow v,
If v, reciprocates by T:
A:=A U {v}, i=i+1
else:
D:=D U {v;}
practical greedy = ideal greedy
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#Readers vs #Retwitters (3rd twist)

Retweeting
(and reading) node

Reading (non-
retweeting) node

What if we consider as performance metric #readers?
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Map the new problem to the old one

w(u",)=1 w(u";)=1

Select K nodes to maximize E[Z w(u;) 1(u; is active)]
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An ideal policy

J Is E[Z w(u)) 1(u, is active)] submodular?

- Yes it is (need to go carefully through the steps of
Kempe et al)

 then greedy is a (1-1/e) approximation
algorithm
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Wrap up

J The point of view of a user in an OSN
Introduces new twists, but does not change

fundamentally the problem
- In particular the greedy algorithm guarantees a
(1-1/e) approximation ratio
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Wrap up

J The point of view of a user in an OSN
Introduces new twists, but does not change

fundamentally the problem
- In particular the greedy algorithm guarantees a
(1-1/e) approximation ratio

J Limits:
- need to know the whole topology, p,(u,S), r,

- How to calculate the marginal gain? Montecarlo
simulations...
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Outline

1. Influence maximization problem (Kempe, Kleinberg
and Tardos in 2003)

2. How the problem changes for a user in an online
social network

3. Simulation results on Twitter’'s complete graph (2012)
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Know your enemy

J Crawl of the whole Twitter in June 2012
J 500 million of nodes

J 23 billion of arcs

1 417GB as an edgelist
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Montecarlo simulations

1 Naive implementation
- O(NKS) simulations,

« where S is #simulations to achieve the
required confidence

- =100GB to store the graph in RAM
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Trade RAM for Storage

W, W W

& >@4’ \‘é @
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* Influenced node of a cascade = reachable
nodes in the pruned graph

* NeedtostoreS*p*417GB

*  RAM still a problem for p=1%
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Useful preprocessing

@ @ @ U, Uy, Ug

\é X l
@ Calculation of the

Strongly Connected @ Uy, Us
@ Components

Pruned graph SCCs’ graph

» Reachabillity can also be calculated on the
SCCs’ graph

* For larger p we save memory, storage and
computation
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How many samples?

J We tried to estimate it analytically
- Random configuration model
- Subcritical branching process for small p
- All-or-nothing supercritical branching process
for large p

J S<100 for all the values of p
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Different algorithms

1. Greedy
- Know topology, probabilities

2. Highest degree

- Know nodes’ degrees

3. Random

- Know nodes’ ids
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The effect of reciprocity
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#Readers vs #Retwitters
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Take Home Lesson

 For sparse graphs, highest degree (1-hop
ahead) works as well as greedy

J For dense graphs, any strategy, even
random, works as well as greedy

- Only in the middle, greedy can outperform

highest degree...
* Remarks in Habiba and Berger-Wolf, 2011

J ... but we do not observe it
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Thank youl!

Questions?




