PhD course on Network Science

Module 2:
Albert-Barabasi’s model
For power law networks




Power Law

7 Where does it come from?
O Albert-Barabasi's growth model
O Highly Optimized Model

O And other models

See Michael Mitzenmacher, A Brief History of
Generative Models for Power Law and Lognormal
Distributions



Albert-Barabasi's model

7 Two elements
O Growth

my initial nodes, every time unit we add a new node
with m links to existing nodes

O Preferential attachment

The new node links to a node with degree k; with
probability

k.
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Albert-Barabasi's model

7 Node i arrives at time 1, its degree keeps
Increasing

3 With a continuum approximation:
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I Then degree distribution at time t is:
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Albert-Barabasi's model

3 At time t there are my+t nodes, if we
consider that the t nodes are added
uniformly at random in [0,1], then

I—X

P(t, > x) =
t+m,

P(k.(t) < k) = — (1-’"1//5)
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Albert-Barabasi's model

7 The PDF is
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Albert-Barabasi's model

AIf k) xa+k, Pk)ock™, y=3+=
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7 Other variants:
o With fitness 1i(k) = — 2%

Ej=1,N77jkj

O With rewiring (a prob. p to rewire an existing
connection)

O Uniform attaching with "aging": A vertex is
deactivated with a prob. proportional to (k.+a)



PhD course on Network Science

Module 3:
Navigation




Navigation

7 In Small world nets there
are short paths O((log(N))?)

7 But can we find them?

O Milgram's experiment
suggests nodes can find them
using only local information

O Standard routing algorithms
require O(N) information
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Kleinberg's result
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7 Model: Each node has

O Short-range connections

O 1 long-range connection, up to distance r with
probability prop. to r

O For a=0 it is similar fo Watts-Strogatz model:
there are short-paths




Kleinberg's result
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7 If a=2 the greedy algorithm (forward the
packet to the neighbor with position

closest to the destination) achieves avg
path length O((log(N))?)




Kleinberg's result
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3 If o<>2 no local information

algorithm can take advantage

of small world properties
O avg path length Q(NB/?)

where B=(2-a)/3 for O0<=ax<=2,

B=(x-2)/(xx-1), for a>2
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Kleinberg's result
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7 Conclusions

O The larger o the less distant long-range
contacts move the message, but the more
nodes can take advantage of their "geographic
structure”

O =2 achieved the best trade-off




Configuration model

3 A family of random graphs with given
degree distribution



Configuration model

3 A family of random graphs with given
degree distribution

o Uniform random matching of stubs
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Configuration model

3 A family of random graphs with given
degree distribution

o Uniform random matching of stubs



Back to Navigation:
Random Walks

7 What can we do in networks without a
geographical structure?

O Random walks




Back to Navigation:
Random Walks

7 How much time is needed in order to reach
a given hode?



Random Walks:
stationary distribution
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7 avg time to come back to node i starting
fromnodei: 1 2Mm

TT. k.
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3 Avg time to reach node |
O intuitively =O(M/k;)




Another justification

7 Random walk as random edge sampling

O Prob. to pick an edge (and a direction) leading
to a node of degree kis p,

<k>
O Prob. to arrive to a given node of degree k:
Kok
pN<k> 2M

O Avg. time to arrive to this node 2M/k

7 ...equivalent to a RW where at each step
we sample a configuration model



Distributed navigation
(speed up random walks)

3 Every node knows its neighbors

{a,b,c,d}




Distributed navigation
(speed up random walks)

3 Every node knows its neighbors

3 If a random walk looking for j arrives in a
the message is directly forwarded to j

{a,b,c,d}




Distributed navigation

reasoning 1
7 We discover i when we sample one of the
links of /’s neighbors . .
3 Avg # of these links: kz((k 1)L )= l(< >—1)
<k> <k>

2
7 Prob. to arrive at one of them: % [<k">_,
M\ <k>



Distributed navigation
reasoning 2

73 Prob that a node of degree k is neighbor
of node /j given that RW arrives to this

node from a node different from i/
1_( k )k_lzki(k—l)

1
2M 2M

3 Prob that the next edge brings to a node
that is neighbor of node i:

Eki(k_l) kp, _ k. <k2>_1
2M <k> 2M\ <k>

k



Distributed navigation

7 Avg. Hop# 2,2/[ B k2<>k_>< k>
O Regular graph with degree d: d(zdj\f D
O ER with <k>: kl.(<2kAi -1
O Pareto distribution | P(k) = Zﬁ) :
_2M  (a=2)(a-1) If a->2...

k x —(a-2)a-1)



Distributed navigation

3 Application example:

O File search in unstructured P2P networks
through RWs



