Winter School on Complex Networks 2014
Navigation in Small Worlds & diameter of large graphs

1 Computation of Diameter of Large Graphs

The goal of this exercise is to evaluate the performance of some heuristics for computing the diameter
of large graphs.
First, implement the following algorithms.

e Write a function that computes the diameter of a graph using the networkz function diameter().
e Write a function that computes the diameter of a graph using the networkxz function shortest path_ length().

e Write a function using the multi-sweep algorithm to compute lower bounds on the diameter. The
function bfs_edges() may be useful. Recall that the method consists in the following:

Input: A graph G = (V, E) and an integer sweep
Output: A lower bound LB on the diameter of G
1. Let u € V be an arbitrary (or well chosen) node of V' and let LB = 0;
2. For ¢ =1 to sweep do:

— Find v € V s.t. distance(u,v) = max,ey distance(u, w) by doing a BFS starting from w;
— Let LB = distance(u,v) and u < v.

3. Return LB.

For the algorithms described above, compare the time of computation and the quality of the obtained
solutions. In particular, evaluate the quality of the solution provided by the heuristic depending on the
number of sweeps you perform.

To compare the algorithms, you can generate graphs from various graph classes using the networkz
functions (e.g., balanced_ tree(), minimum_ spanning tree(), erdos_renyi graph(), barabasi_ albert graph(),
connected_watts_strogatz_graph(), dense_ gnm_random__ graph(), etc.)

(Try at least for some trees and some Barabasi-Albert graphs, with sizes of different order of magni-
tude).

Conclusion?

2 Greedy routing in small worlds

The goal of this exercise is to study the behavior of a greedy routing algorithm in an augmented grid
(D, P) (i.e., a grid D where some arcs have been added using some probability distribution P), depending
on the probability distribution P.

First, let D = (V, E) be a n x m-grid (you can use the function grid_2d_graph()). Note that the
nodes are represented by a pair of integers that correspond to their coordinates (for instance, for any
0<i<n—1and0<j<m—1, the node (i,7) is adjacent to the nodes (¢ — 1,7), (i + 1,7), (¢,5 — 1)
and (4,7 + 1)).

Write the function distance that takes two nodes of D and returns their distance.

Augmented graph.

Let P = (Py)uecy be a family of probability distributions. That is, for any two nodes u and v, P,(v)
denotes the probability that we add a link (u,v) in D.

Create the graph Dg,q(k) obtained in the following way: start from D, and for any u € V, choose
(independently) k nodes v € V following the probability distribution P,, and add a link between u and
each of the chosen k nodes.

We will consider the following kind of probability distributions:



e For any u € V, Unif,(v) = —— for all node in V \ {u}. That is, we choose the new link
uniformly.

e Let a € {0,1,2,3}. For any u € V, P%*(v) = for all node in V' \ {u}, where 1/H =
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Greedy Routing.

Recall that the greedy routing in an augmented graph consists, when we are at some node s, in going to
the neighbor v of s that is closer to the destination (where the distance is taken in the non augmented
graph).

Write a function that takes an augmented grid and two nodes s and d as inputs and returns a neighbor
v of s such that distance(v,d) is minimum (where distance is computed in the initial grid).

Write a function that, given an augmented grid, a source node s and a destination d, computes the
length of a path that the greedy routing uses to go from s to d.

In function of the probability distribution used to augment the grid, compare the performance of the
greedy routing with

e the length of a shortest path from s to d

e log|V|, where |V] is the size of the grid (here, it might be difficult to make the algorithms running
on very large graphs)

Conclusion?



