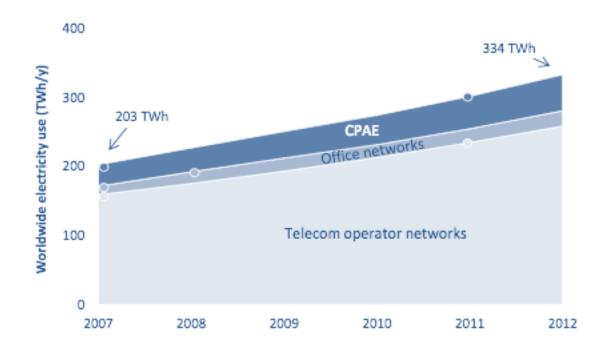
ENERGY EFFICIENT SOFTWARE DEFINED NETWORKS

Nicolas HUIN

COATI and SigNet, I3S/Inria

Supervisors: Frédéric Giroire & Dino Lopez

28th September 2017

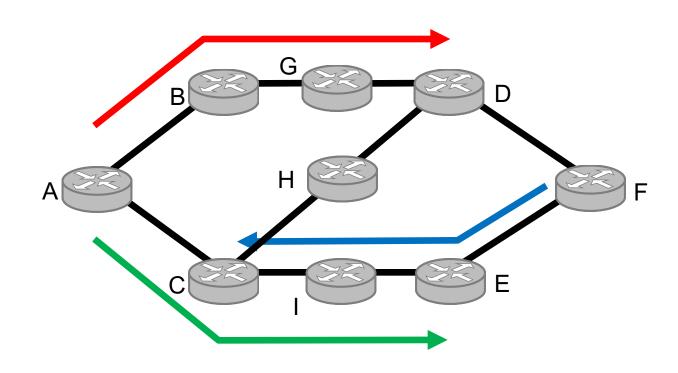


Energy consumption of Networks

- In 2012, communication networks consumed 330 TWh (4,6%)
- 10% yearly growth (worldwide: 3%)

[Van Heddeghem et al., '14]

Reducing Network's Power Consumption

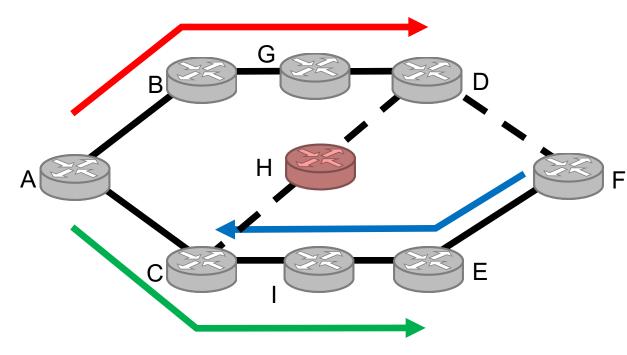

- Device's power consumption is not proportional to its load
 - Improving devices' power proportionality [Nicollini et al, 12]
- Power off base station in mobile networks [Zhou et al, 09]
- Consolidation of Virtual Machines [Lin et al, 11]
- Energy Aware Routing (EAR)
 - Minimizing the number of active network devices:
 - ➤ Our approach

Path between:

A et D

F et C

A et E

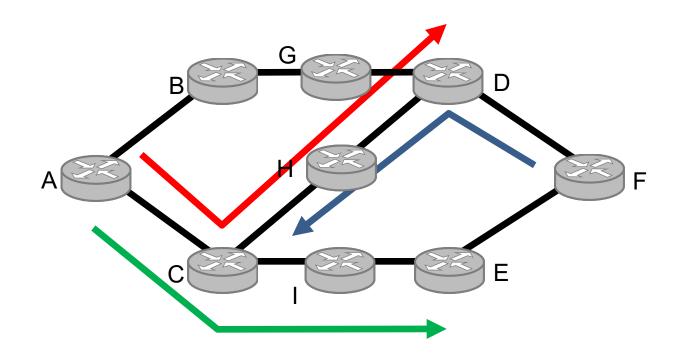


Path between:

A et D

F et C

A et E

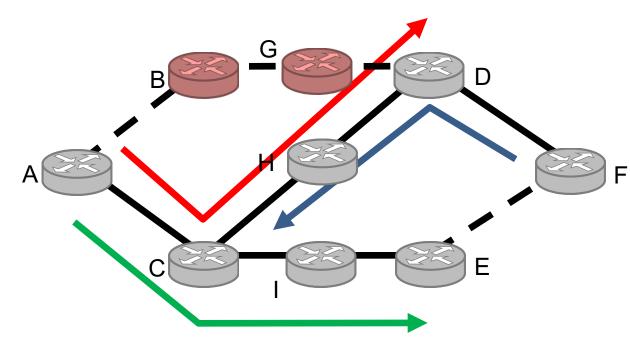

Shortest path routing

Path between:

A et D

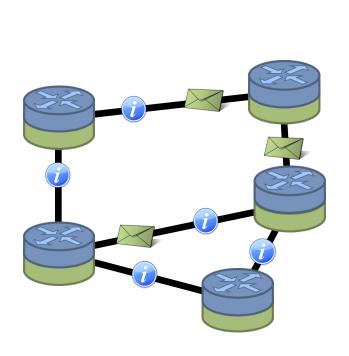
F et C

A et E

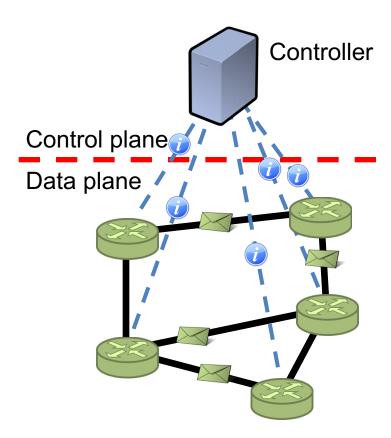


Path between:

A et D


F et C

A et E


Energy Aware Routing

Legacy vs. Software Defined Networks (SDN)

Legacy network

- Distributed control
- Manual configuration

SDN network

- Centralized control
- Policies deployed by the controller

Network Function Virtualization (NFV)

Legacy networks implements *network functions* using expensive specific hardware called **middleboxes**.

➤ Limit adaptability to traffic (even with SDN)

The NFV initiative allows function to be run on general hardware using **Virtual Machines** (VMs).

Enables greater flexibility (good for energy)

Goal of this thesis

Leveraging SDN and NFV for the deployment of Energy Aware Routing

Consider the new **constraints** of these paradigms

Tools

- Linear Programming
- Column Generation
- Greedy Heuristics
- SDN testbed (with SigNet team)

During my thesis

SDN

- Forwarding table constraints
 - The Compression Problem (Chapter 3)
 - EAR with Compression (Chapter 4)
 - MINNIE (Chapter 5)
- Hybrid SDN networks: SENAtoR (Chapter 6)

ILP Testbed

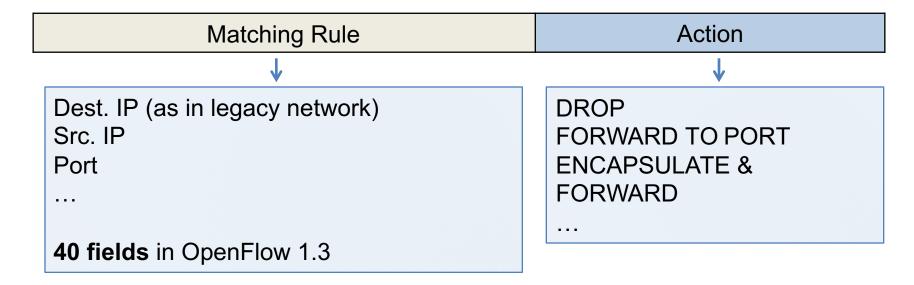
Greedy

NFV

- Service Function Chaining
 - Provisioning (Chapter 7)
 - Energy efficiency (Chapter 8)

Column Generation

P2P

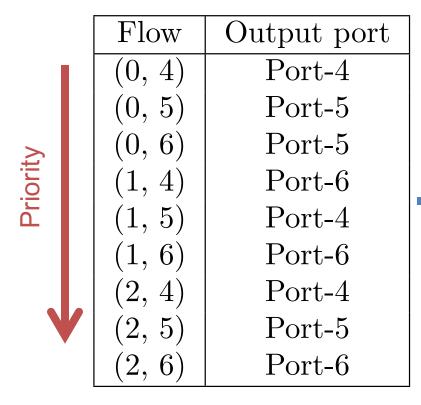

- Structured overlay for live video streaming
 - Homogeneous (Appendix 1)
 - Heterogeneous (Appendix 2)

SOFTWARE DEFINED NETWORKS

Energy Aware Routing with Compression

« The first day there was OpenFlow »

The OpenFlow API was developed at Stanford [McKeown et al., 2008]

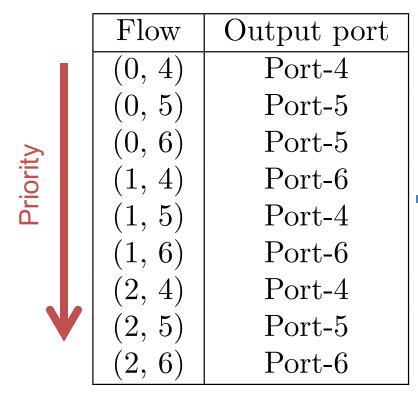

OpenFlow provides **per flow** routing (more complex) Rules stored in **TCAM**, power hungry and with **limited size** (1 to 3k rules)

> Constraints on the number of forwarding rules

Related Work

- Reduce OpenFlow rule size [Banerjee et al., 14], [Kannan et al, 13]
 - ➤ Not standard
- Eviction of rules
 - > Frequent contact with the controller
- Spread the rules on the network (« One Big Switch » abstraction)
 [Nguyen et al., '15]
 - ➤ Not practical for forwarding rules
- Our contribution: Aggregation rules

The Compression Problem



Flow	Output port
(1, 5)	Port-4
(2, 6)	Port-6
(1,*)	Port-6
(*,4)	Port-4
(*,*)	Port-5

Reduce the size of forwarding table using wildcard and default rules while maintaining the same routing

(NP-Hard) [Giroire et al., '15]

The Compression Problem

Flow	Output port
(1, 5)	Port-4
(2, 6)	Port-6
(1, *)	Port-6
(*, 4)	Port-4
(*,*)	Port-5

Be careful about the order of the rules (1, *) then (*, 4) != (*, 4) then (1, *)

Energy Aware Routing with Compression Problem (EARC)

Goal

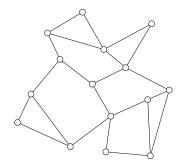
Minimize the total energy consumption of the network

Input

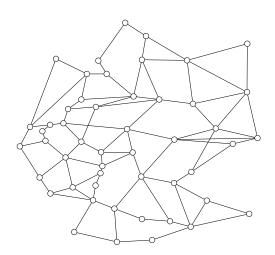
- Network G=(V, A)
- Set of requests D, between s_i and t_i and bandwidth d_i
- Link capacities C_{uv}
- Forwarding table capacities C_u

Output

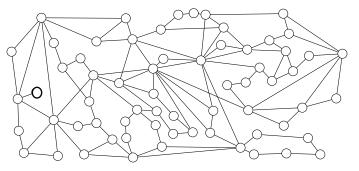
- Path for every request
- Respect node and link capacities

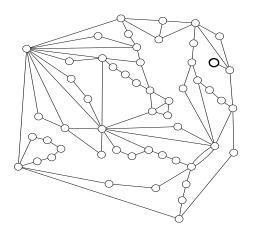

Contributions

Havet, **H**, Moulierac, Phan *AlgoTel'16*

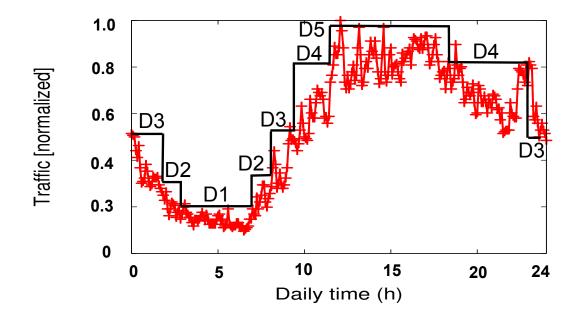

- ILP formulations
 - default rule only
 - default rule and wildcard rules
- Heuristic
 - Energy saving module
 - Shutdown links
 - Routing module
 - Find a weighted shortest path according to table and link usage
 - Compression module
 - Reduce table at max capacity using wildcard rules (multiple solutions)

SNDlib topologies

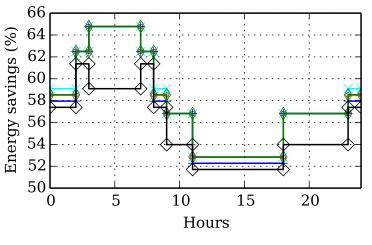

http://sndlib.zib.de

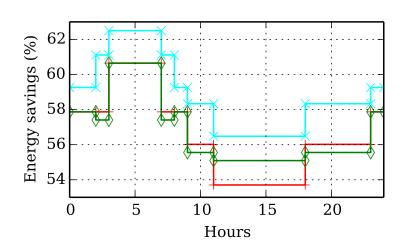

atlanta (15 nodes, 22 links)

germany50 (50 nodes, 44 links)



ta2 (65 nodes, 81 links)


zib54 (54 nodes, 108 links)

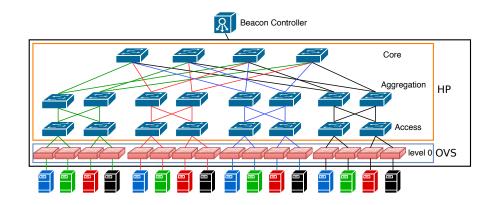

Traffic estimation

- ISP traffic follows predictable patterns
- Small granularity of period creates instability
- Only a few configurations are sufficient [Araujo et al., 2016]

Energy savings during the day

germany50 (50 nodes, 44 links)

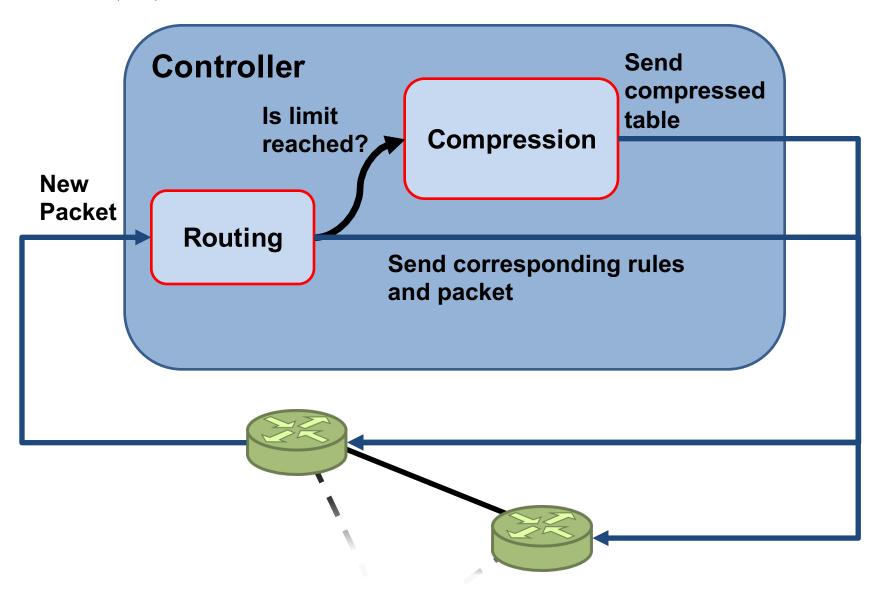
ta2 (65 nodes, 81 links)


- Not always possible to route w/o aggregation rules
- Aggregation rules enable energy savings close to classical EAR

SDN IN PRACTICE

MINNIE

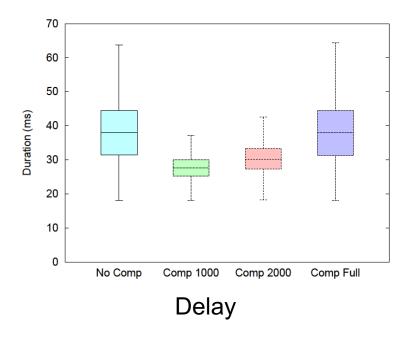
MINNIE: Compressing in data centers



Rifai, H, Caillouet, Giroire, Moulierac, Lopez, Urvoy-Keller GLOBECOM '15, AlgoTel '16, Computer Network

- Collaboration with the SigNet team
- HP SDN capable switch
- Impact of compression on packet's delay and losses

MINNIE

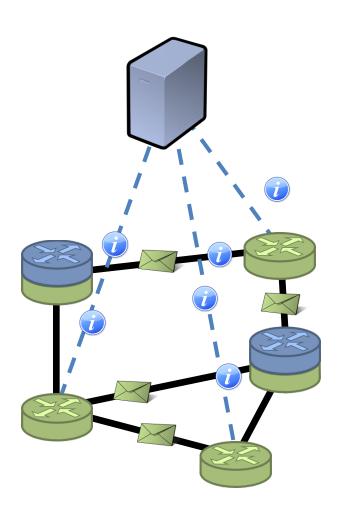


Results: Ratio, losses & # compressions

	Compression				
	None	at 500	at 1000	at 2000	when full
Average compression ratio	-	83.21%	82.19%	81.55%	81.44%
Packet losses (%)	6.25 x 10 ⁻⁶	0.003	5.65 x 10 ⁻⁴	2.83 x 10 ⁻⁵	3.7 x 10 ⁻⁴
# compressions	-	16 594	95	28	20

- Average compression ratio >80% (at least 77%)
- Compression has no significant impact on losses
 - Except when the threshold is too low

Results: Delay



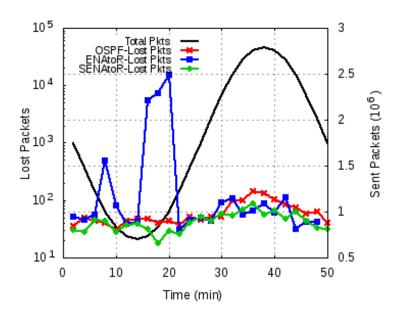
- Compression adds no delay (if we forget the « 500 » threshold)
 - > Delayed compression
- Compression reduces the first packet delay
 - > Avoid installing rule if corresponding wildcard rule exists

SDN IN PRACTICE

EAR in hybrid networks

SDN & Legacy Interaction

- All solutions and framework consider full SDN networks
- Progressive migration from legacy to SDN
- Cohabitation of SDN & legacy devices and protocols (e.g., OSPF)


For Energy Aware Routing: SDN devices shutdown
➤ failure for legacy

Contributions

H, Rifai, Giroire, Lopez, Urvoy-Keller, Moulierac GLOBECOM '17

- Bring Energy Aware Routing closer to reality
- Smooth ENergy Aware Routing (SENAtoR)
 - Smooth link extinction
 - Backup tunnels for link shutdown
 - Traffic spike mitigation (link failure or flash crowd)
 - Heuristic for EAR with SDN and backup tunnel placement

Results: Packet losses

- Same order of packet losses than legacy network
- Smooth extinction helps to mitigate packet losses

NETWORK FUNCTION VIRTUALIZATION

« À à à la queleuleu » J

NFV & Energy Efficiency

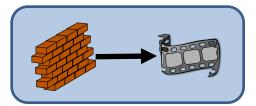
Network functions implemented on specific hardware (middlebox)

Hard to move and, thus, adapt to traffic

With **virtualization**, functions can be executed on Virtual Machines (VM)

Enables greater flexibility (good for energy)

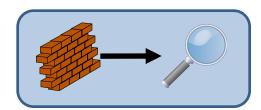
Scenario	Router	Network Function
Baseline	Legacy	Middlebox
Hardware	SDN	Middlebox
NFV	SDN	NFV


Service Function Chains (SFC)

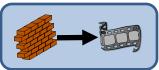
Service Chain: **ordered** chain of network functions to apply to flows on the network

Video optimization

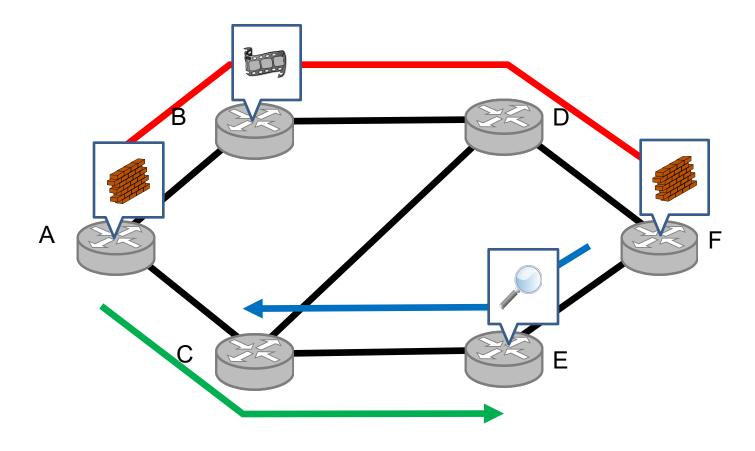
SFC A



Deep packet inspection


Firewall

SFC B


Example of Service Function Chains

A to E F to C

Energy Efficient SFC Placement

Goal

Minimize the total energy consumption of the network

Input

- Network G=(V, A)
- Set of requests D
 - between s_i and t_i, bandwidth d_i and chain c_i = (f₀, f₁, ..., f_k)
- Link capacities C_{uv}
- Node capacities C_u (e.g., number of available CPU cores, memory)

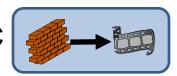
Output

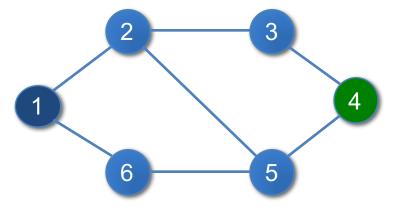
Path and function placement for every request Respect node and link capacities

Related Work

- SFC Placement
 - Heuristics with no performance guarantee
 - Partial and exact mathematical formulations
 - Solve placement and routing independently. [Martini et al., 2015]
 [Riggio et al., 2015]
 - Small network or small number of requests. [Gupta et al., 2015]
 [Savi et al, 2015]
- Energy & Virtualization
 - Some works on NFV, not on SFC

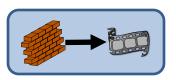
Contributions

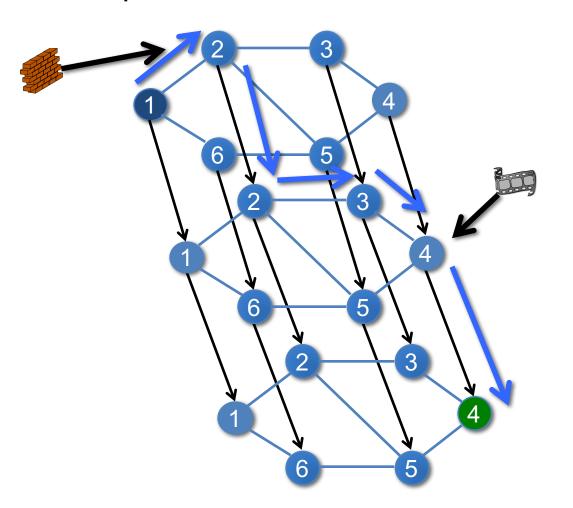

H, Jaumard, Giroire *ICC 2017*H, Tomassilli, Giroire ,Jaumard *INOC 2017*


- Minimize:
 - Bandwidth and study impact of number of NFV nodes (near optimal)
 - Energy consumption of links and nodes
- Find solutions for all-to-all traffic (10k requests) on networks up to 50 nodes.
 - Layered graph
 - Column generation model
 - Improving integrality gap with cuts
- Function replicas limit
- GreenChains: ILP-Based heuristics

Layered Graph

Propose an alternate way to find **Service Path** (path & placement of function)


Request between 1 and 4 for SFC



Layered Graph

Request between 1 and 4 for service

- # layers = # functions + 1
- Link between layers gives the placement
- Link inside layers gives the routing
- Path from first to last layer

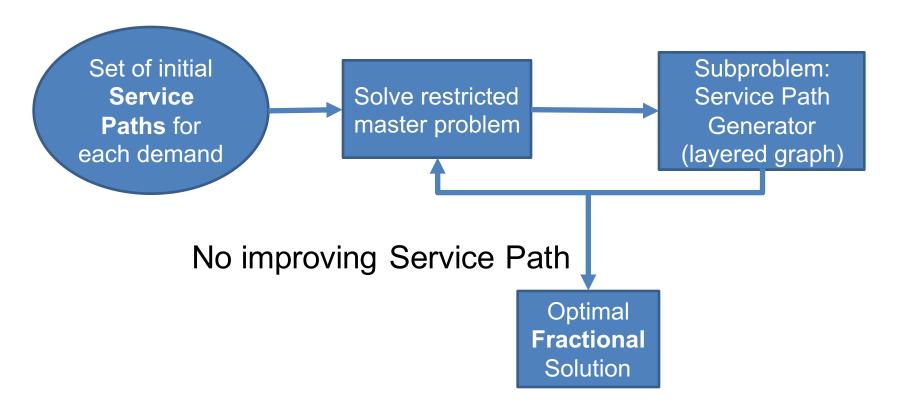
$$\min \underbrace{\sum_{(u,v)\in A} P_{uv}^{\text{IDLE}}(x_{uv})}_{\text{link switch on energy}} + \underbrace{\sum_{(u,v)\in A} \sum_{p\in P_{sd}^c} \delta_{uv}^p \left(\sum_{d=(u_s,u_d,c)\in D} \frac{D_{sd}^c}{C_\ell^{\text{LINK}}} P_{uv}^{\text{max}}\right) \left(y_d^p\right)}_{\text{node resource energy}} + \underbrace{\sum_{u\in V} P_u(K_u)}_{\text{node resource energy}}$$
One path per demand:
$$\sum \left(y_d^p\right) = 1 \qquad (u_s,u_d) \in \mathcal{SD}, c \in C_{sd}$$

$$\sum_{d=(u_s,u_d,c)\in D} \sum_{p\in P_{sd}^c} D_{sd}^c \, \delta_{uv}^p \underbrace{y_d^p} \leq \underbrace{x_{uv}} C_{uv}^{\text{LINK}} \qquad (u,v)\in A$$

Node capacity:

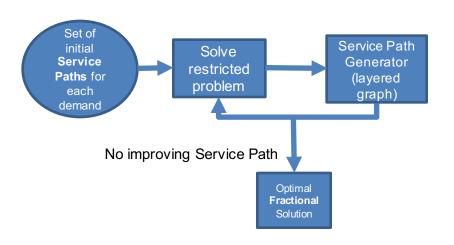
Link capacity:

$$\sum_{d \in D} \sum_{p \in P^c} D_{sd}^c \left(\sum_{i=1}^{n_c} \Delta_{f_i} a_{uf_i}^p \right) y_d^p \leq \left(K_u \right) \leq C_u^{\text{NODE}} \qquad u \in V$$


Variables for

- Link State: ON or OFF
- Number of Active Cores per Node
- Service Path potential route for a request (path & placement)

Column generation on the Service Path variables


Generation of Service Path variables

Column generation works on Linear Program

Generation of Service Path variables

Column generation works on Linear Program

- 1. Transform LP to ILP
- 2. Solve ILP

LP optimal value gives **lower bound Integrality gap** (ratio LP-ILP) gives quality of ILP solution

Improving the gap: CG-cuts

$$\sum_{d=(u_s,u_d,c)\in D} \sum_{p\in P_{sd}^c} D_{sd}^c \, \delta_{uv}^p \, y_d^p \leq \underbrace{x_{uv}}_{C_{uv}^{\text{LINK}}} C_{uv}^{\text{LINK}}$$
 Creates big gap

All to all traffic implies:

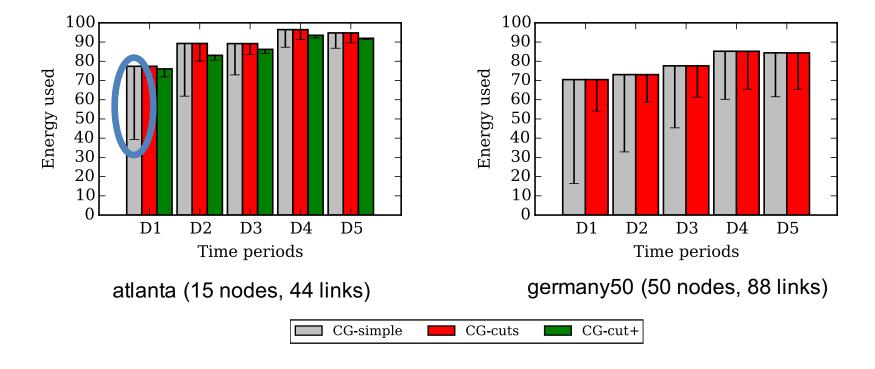
> At least one link active per node

$$\sum_{v \in N^+(u)} x_{uv} \ge 1 \qquad u \in V$$

Both arcs share the same state so minimum network is a tree

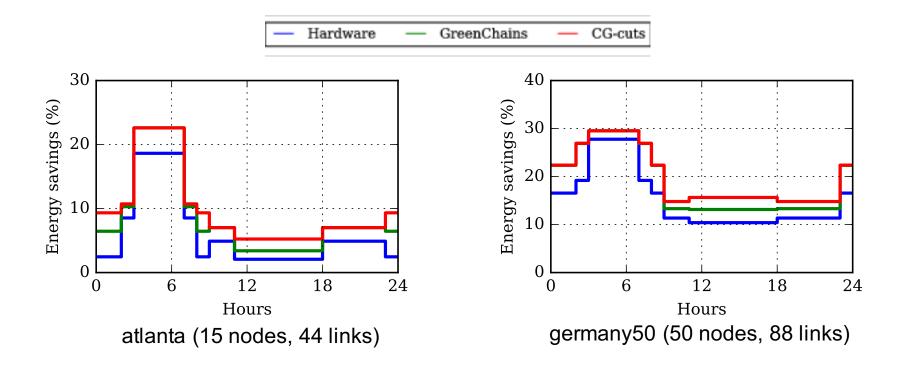
$$\sum_{(u,v)\in A} x_{uv} \ge n - 1$$

Improving the gap: CG-cut+


$$\sum_{d=(u_s,u_d,c)\in D} \sum_{p\in P_{sd}^c} D_{sd}^c \, \delta_{uv}^p \, y_d^p \leq \underbrace{x_{uv}}_{C_{uv}^{\text{LINK}}}$$
 Creates big gap

For each demand, the sum of its paths is equal

$$\sum_{p \in P_{sd}^c} y_d^p = 1 \implies \sum_{p \in P_{sd}^c} \gamma_{uv}^p y_d^p \le 1$$
 Path p uses link (u, v)


$$x_{uv} \ge \sum_{p \in P_{ud}^c} \gamma_{uv}^p y_d^p \qquad \forall (u, v) \in A, d \in D$$

Results: Integrality gap

- Both sets of cuts improve the integrality gap
- CG-cuts+ improve solution but not scalable

Results: Energy savings

- Hardware (SDN+ middlebox) only provides 18 to 51% energy savings
- NFV (SDN+NFV) provides an extra 4 to 12%

In this thesis

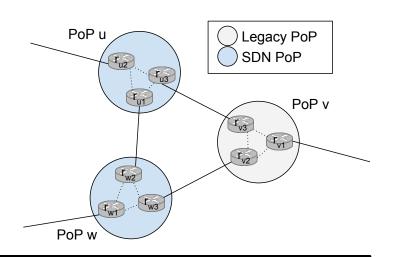
- SDN
 - EARC
 - Compression provides close savings to classic EAR
 - MINNIE: no noticeable impact on performance
 - Hybrid networks
 - SENAtoR: Backup tunnels + Smooth extinction of links
 - EAR with no losses
- NFV & SFC
 - First scalable mathematical formulation
 - NFV helps to reduce energy consumption

Perspectives

- QoS/QoE, resiliency/reliability
 - currently working on SFC w/ protection
- Multiple controllers (placement, activation)
- SFC extensions
 - Partial order
 - Affinity

PostDoc in Concordia, Montreal, Canada with Brigitte Jaumard

Thank you for your attention


Result: Ratio, losses & # compressions

	Compression						
	None	at 500	at 1000	at 2000	when full		
Average compression ratio	-	83.21%	82.19%	81.55%	81.44%		
Packet losses (%)	6.25 x 10 ⁻⁶	0.003	5.65 x 10 ⁻⁴	2.83 x 10 ⁻⁵	3.7 x 10 ⁻⁴		
# compressions	-	16 594	95	28	20		

- Average compression ratio >80% (at least 76%)
- Compression has no significant impact on losses
 - Except when the threshold is too low

Hybrid Energy Aware Routing (hEAR)

- Network G=(V, A)
- Set of requests D, between s_i and t_i with bandwidth d_i
- Link capacities
- Forwarding table capacities
- SDN budget
- OSPF next hops
- Set of backup tunnels

Satisfy all requests (find a path) and minimize energy consumption while respecting link capacities using backup tunnels and *k* SDN nodes

$$\min \underbrace{\sum_{\substack{(u,v) \in A}} P_{uv}^{\text{IDLE}} x_{uv} + \sum_{\substack{(u,v) \in A}} \sum_{p \in P_{sd}^c} \delta_{uv}^p \left(\sum_{\substack{d = (u_s, u_d, c) \in D}} \frac{D_{sd}^c}{C_\ell^{\text{LINK}}} P_{uv}^{\text{max}} \right) y_d^p + \sum_{\substack{u \in V}} P_u K_u \\ \text{link switch} \\ \text{on energy} \end{aligned}}_{\text{link bandwidth energy}}$$

One path per demand:

$$\sum_{p \in P_{sd}^c} y_d^p = 1 \qquad (u_s, u_d) \in \mathcal{SD}, c \in C_{sd}$$

Link capacity:

$$\sum_{d=(u_s,u_d,c)\in D} \sum_{p\in P_{sd}^c} D_{sd}^c \, \delta_{uv}^p \, y_d^p \le x_{uv} \, C_{uv}^{\text{LINK}} \tag{$u,v\} \in A}$$

Node capacity:

$$\sum_{d \in D} \sum_{p \in P_{sd}^c} D_{sd}^c \left(\sum_{i=1}^{n_c} \Delta_{f_i} a_{uf_i}^p \right) y_d^p \le K_u \le C_u^{\text{NODE}} \qquad u \in V$$

Variables for

- Link State: ON or OFF
- Number of Active Cores per Node
- Service Path: potential route for a request (path & placement)

$$\min \underbrace{\sum_{(u,v)\in A} P_{uv}^{\text{IDLE}} x_{uv}}_{\text{link switch on energy}} + \underbrace{\sum_{(u,v)\in A} \sum_{p\in P_{sd}^c} \delta_{uv}^p \left(\sum_{d=(u_s,u_d,c)\in D} \frac{D_{sd}^c}{C_\ell^{\text{LINK}}} P_{uv}^{\text{max}}\right) y_d^p + \sum_{u\in V} P_u(K_u)}_{\text{node resource energy}}$$

One path per demand:

$$\sum_{p \in P_{sd}^c} y_d^p = 1 \qquad (u_s, u_d) \in \mathcal{SD}, c \in C_{sd}$$

Link capacity:

$$\sum_{d=(u_s,u_d,c)\in D} \sum_{p\in P_{sd}^c} D_{sd}^c \,\delta_{uv}^p \,y_d^p \le x_{uv} \,C_{uv}^{\text{LINK}} \qquad (u,v)\in A$$

Node capacity:

$$\sum_{d \in D} \sum_{p \in P_{sd}^c} D_{sd}^c \left(\sum_{i=1}^{n_c} \Delta_{f_i} a_{uf_i}^p \right) y_d^p \leq \left(\mathbf{K}_u \right) \leq C_u^{\text{NODE}} \qquad u \in V$$

Variables for

- Link State: ON or OFF
- Number of Active Cores per Node
- Service Path: potential route for a request (path & placement)

$$\min \underbrace{\sum_{(u,v)\in A} P_{uv}^{\text{IDLE}} x_{uv}}_{\text{link switch on energy}} + \underbrace{\sum_{(u,v)\in A} \sum_{p\in P_{sd}^c} \delta_{uv}^p \left(\sum_{d=(u_s,u_d,c)\in D} \frac{D_{sd}^c}{C_\ell^{\text{LINK}}} P_{uv}^{\text{max}}\right) y_d^p + \sum_{u\in V} P_u(K_u)}_{\text{node resource energy}}$$

One path per demand:

$$\sum_{p \in P_{sd}^c} y_d^p = 1 \qquad (u_s, u_d) \in \mathcal{SD}, c \in C_{sd}$$

Link capacity:

$$\sum_{d=(u_s,u_d,c)\in D} \sum_{p\in P_{sd}^c} D_{sd}^c \, \delta_{uv}^p \, y_d^p \le x_{uv} \, C_{uv}^{\text{LINK}} \qquad (u,v)\in A$$

Node capacity:

$$\sum_{d \in D} \sum_{p \in P_{sd}^c} D_{sd}^c \left(\sum_{i=1}^{n_c} \Delta_{f_i} a_{uf_i}^p \right) y_d^p \leq \left(\mathbf{K}_u \right) \leq C_u^{\text{NODE}} \qquad u \in V$$

Variables for

- Link State: ON or OFF
- Number of Active Cores per Node
- Service Path: potential route for a request (path & placement)

$$\min \sum_{\substack{(u,v) \in A}} P_{uv}^{\text{IDLE}} x_{uv} + \sum_{\substack{(u,v) \in A}} \sum_{p \in P_{sd}^c} \delta_{uv}^p \left(\sum_{d=(u_s,u_d,c) \in D} \frac{D_{sd}^c}{C_{t}^{\text{LINK}}} P_{uv}^{\text{max}} \right) y_d^p + \sum_{u \in V} P_u \, \mathbf{K}_u$$

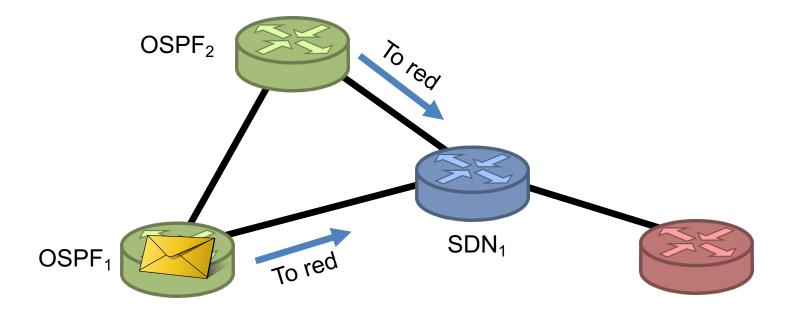
$$\lim_{\text{link switch on energy}} \text{ link bandwidth energy}$$

$$\text{Node capacity:} \qquad \sum_{d=(u_s,u_d,c) \in D} \sum_{p \in P_{sd}^c} D_{sd}^c \, \delta_{uv}^p y_d^p \leq x_{uv} \, C_{uv}^{\text{LINK}}$$

$$(u,v) \in A$$

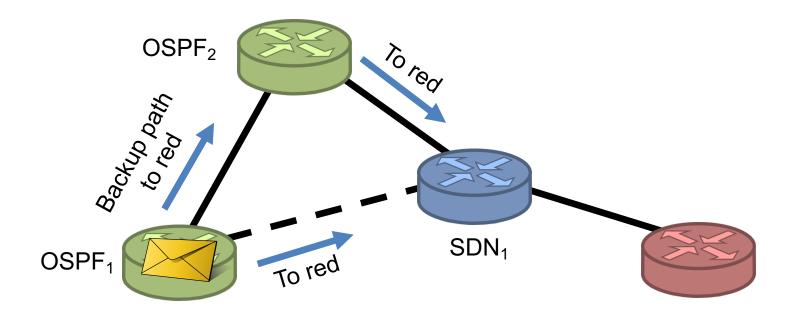
$$\text{Node capacity:} \qquad \sum_{d \in D} \sum_{p \in P_{sd}^c} D_{sd}^c \left(\sum_{i=1}^{n_c} \Delta_{f_i} a_{uf_i}^p \right) y_d^p \leq \mathbf{K}_u \leq C_u^{\text{NODE}}$$

$$u \in V$$


Variables for

- Link State: ON or OFF
- Number of Active Cores per Node
- (Service Path) potential route for a request (path & placement)

Column generation on the Service Path variables


Use the tunnel if the road is closed

Use backup tunnels provided by legacy routers to redirect traffic [citation needed]

Use the tunnel if the road is closed

Use backup tunnels provided by legacy routers to redirect traffic [citation needed]

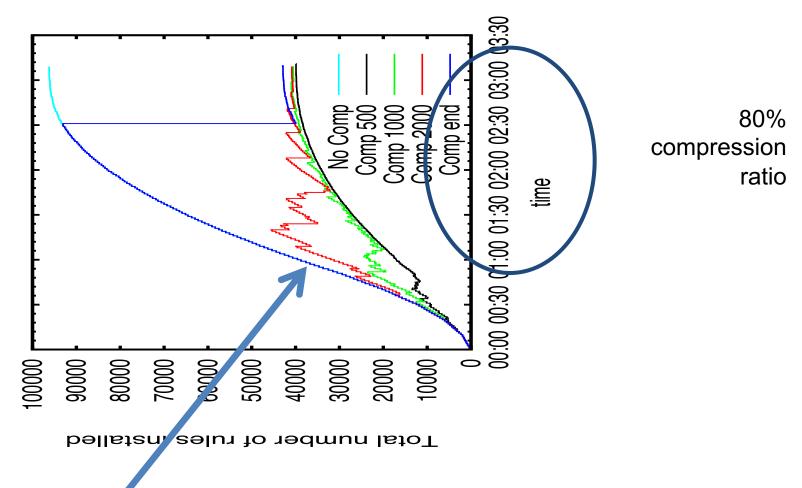
Stop saying hello to you

- OSPF uses HELLO packets, at regular intervals, to notify neighbors of their existence
 - > 3 missing HELLO leads to a failure detection.
 - > All data packets thus can be lost during this interval
- Before shutdown, an SDN switch stops sending HELLO packets but still listens for data packets
 - ➤ No packets are lost

Contributions

 Study the number of servers that can be deployed with limited number of rules

 Simulations on various data center topologies (fat tree, VL2, DCell, BCube)

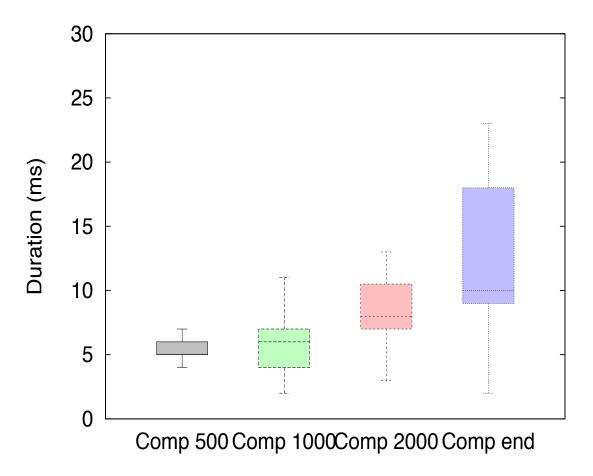

Experiments on a HP SDN-capable switch (65536 software rules, 3500 hardware rules)

Simulation: MINNIE & 1000 servers topologies

					#	flow	Rule w	v/ comp #	Average	Compu	tation time
Topology	servers #	switches #	links#	Avg ports #	per s	witch			Comp.	in ave	rage (ms)
					Max	Average	Max	Average	Ratio	Paths	Comp.
				Grou	ip 1						
k = 4 Fat-Tree (64)	1024	20	1056	54.4	454 244	216268	999	446	~ 99.60	0.17	13
k = 8 Fat-Tree (8)	1024	80	1280	19.2	649 044	61030	999	323	~ 99.61	0.21	7
k = 16 Fat-Tree (1)	1024	320	3072	16	630 998	15897	999	303	~ 98.42	0.30	5
VL2(16, 16, 14)	896	88	384	16	261 266	42906	1000	673	~ 97.90	0.15	4
VL2(8, 8, 64)	1024	28	612	~ 41.1	423752	161499	1000	799	~ 99.45	0.19	11
VL2(16, 16, 16)	1024	88	1152	~ 17.5	276575	56040	1000	648	~ 98.39	0.18	4
	Group 2										
DCell(32, 1)	1056	33	1584	~ 2.91	63 787	4893	1000	113	~ 97.23	0.09	2
DCell(5, 2)	930	186	1860	~ 3.33	11995	5716	994	642	~ 87.84	0.19	2
BCube(32, 1)	1024	64	2048	~ 3.77	37 738	3734	999	329	~ 86.04	0.19	2
BCube(10, 2)	1000	300	3000	~ 4.62	10683	4153	998	653	~ 80.85	0.25	2
BCube(6, 3)	1296	864	5184	4.8	7852	5184	991	831	~ 83.18	0.49	4

- Around 1 million flows on each topologies
- With only 1000 rules
- Compression ratio between 80 and 99%

Experiment: Number of rules over time


Compression event

Experiment: Delay

Delay:

- increases over time without compression
- stays constant when compressing at 1000
- goes haywire when compression at 500

Experiment: Compression Duration

Compression + table modification

Energy model

$$\min \underbrace{\sum_{(u,v) \in A} P_{uv}^{\text{IDLE}} x_{uv}}_{\text{link switch on energy}} + \underbrace{\sum_{(u,v) \in A} \sum_{p \in P_{sd}^c} \delta_{uv}^p \left(\sum_{d=(u_s,u_d,c) \in D} \frac{D_{sd}^c}{C_\ell^{\text{LINK}}} \mathbf{P}_{uv}^{\text{MAX}} y_d^p\right)}_{\text{link bandwidth energy}}$$

$$+ \underbrace{\sum_{u \in V} \mathbf{P}_u \, \mathbf{K}_u}_{\text{node resource energy}}$$

- Hybrid model for links
- Node consumption linear w.r.t. the number of cores

Experiment: Packet losses

	Compression threshold					
	None 500 1000 2000 When fu					
# of compressions	0	16594	95	28	20	
% packet loss	6.25×10^{-6}	0.003	5.65×10^{-4}	2.83×10^{-5}	3.7×10^{-4}	

No significant packet losses except for 500

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

- 1. For each source (resp. destination), get the most occuring ports
 - ⇒ Gives the default port of the source
- 2. Get the most occuring port in the most occuring ports
 - ⇒ Gives the default port
- 3. Add the default rules and wildcard rules with lowest priority
- 4. Add the original rules that don't match any aggregation rules

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

Flow	Output port				_	
(0, 4)	Port-4			4	5	6
(0, 5)	Port-5					
(0, 6)	Port-5		0	4	5	5
(1, 4)	Port-6	\rightarrow				
(1, 5)	Port-4		1	6	4	6
(1, 6)	Port-6		'	O		
(2, 4)	Port-4					
(2, 5)	Port-5		2	4	5	6
(2, 6)	Port-6					

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

 Get the most occuring port for each source

	4	5	6
0	4	5	5
1	6	4	6
2	4	5	6

$$P_0 = \{5\}$$

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

 Get the most occuring port for each source

	4	5	6
0	4	5	5
1	6	4	6
2	4	5	6

$$P_0 = \{5\}$$

$$P_1 = \{6\}$$

$$P_2 = \{4, 5, 6\}$$

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

 Get the most occuring port in the set of most occuring ports (default rule)

	4	5	6
0	4	5	5
1	6	4	6
2	4	5	6

$$D = \{5\}$$

$$P_0 = \{5\}$$

$$P_1 = \{6\}$$

$$P_2 = \{4, 5, 6\}$$

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

Build the table

$$D = \{5\}$$

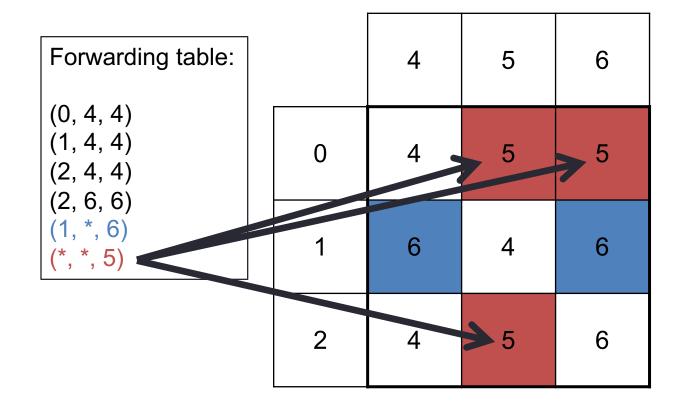
> Add with lowest priority (*, *, 5)

$$P_0 = \{5\}$$

No rule (overlap with default)

$$P_1 = \{6\}$$
 > Add (1, *, 6)

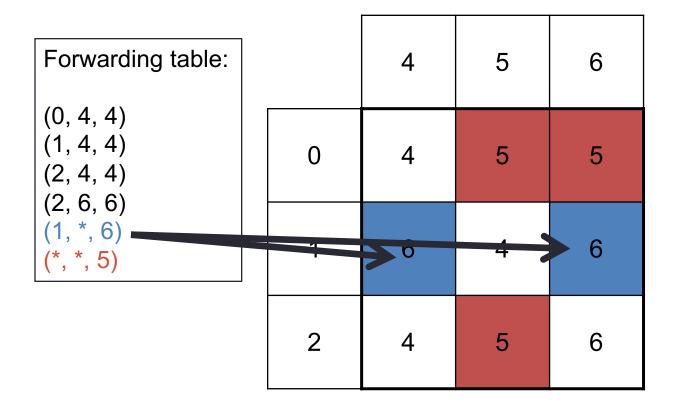
$$P_2 = \{4, 5, 6\}$$


No rule (overlap with default)

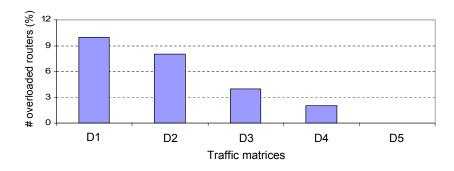
Forwarding table:

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table


Build the table

Compress using source aggregation, destination aggregation or default rule

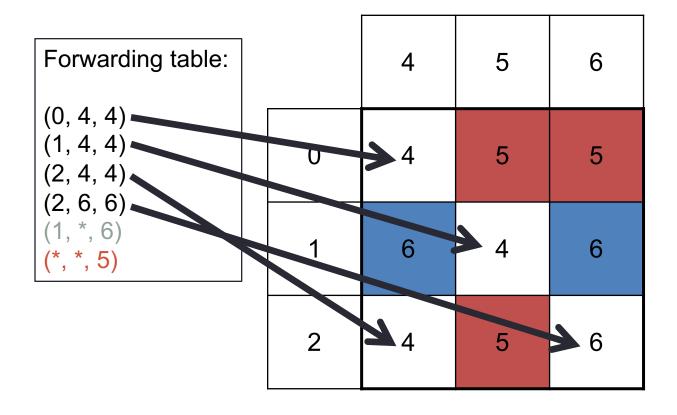

⇒ Take the best table

Build the table

More rules for less energy

- Shutting down links increases shortest paths
 - ➤ Increase in number of required rules

germany50 (50 nodes, 88 links)


ta2 (65 nodes, 81 links)

Direction-Based Algorithm

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

Build the table

Direction-Based Algorithm

Compress using source aggregation, destination aggregation or default rule

⇒ Take the best table

Flow	Output port
(0,4)	Port-4
(1,5)	Port-4
(2,4)	Port-4
(2,6)	Port-6
(1,*)	Port-6
(*,*)	Port-5

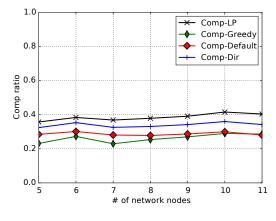
Flow	Output port
(1, 4)	Port-6
(1,5)	Port-4
(0,6)	Port-5
(*,4)	Port-4
(*,5)	Port-5
(*,*)	Port-6

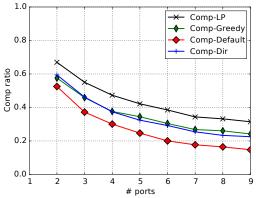
Flow	Output port
(0, 5)	Port-5
(0, 6)	Port-5
(1, 4)	Port-6
(1, 6)	Port-6
(2, 5)	Port-5
(2, 6)	Port-6
(*,*)	Port-4
, ,	

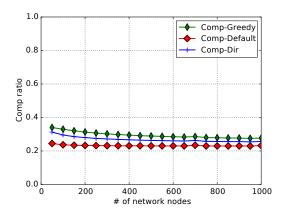
Source

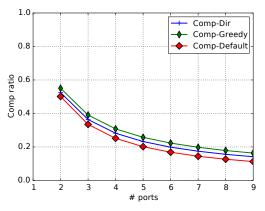
Destination

Default

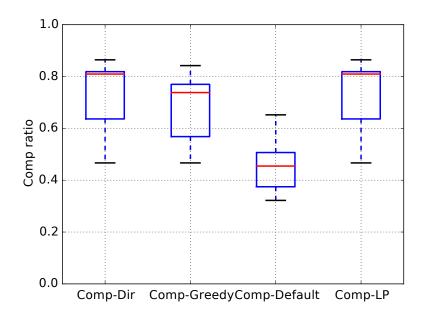

Other solutions

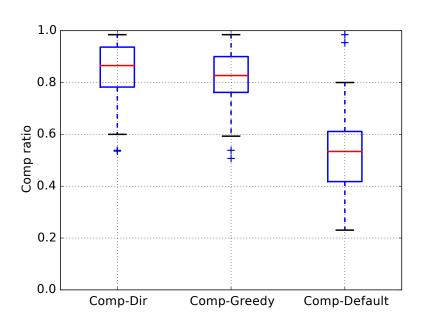

- Integer Linear Programing formulation
 - > Not scalable
- Greedy algorithm
 - > Each time, select the source or destination that can be compressed the best
- Just the default port
 - > The third table of Direction-Based


Data sets


- Random tables
 - Density, number of sources/destinations, number of ports
- Network tables
 - SNDlib instances (atlanta, germany50, zib54, ta2)

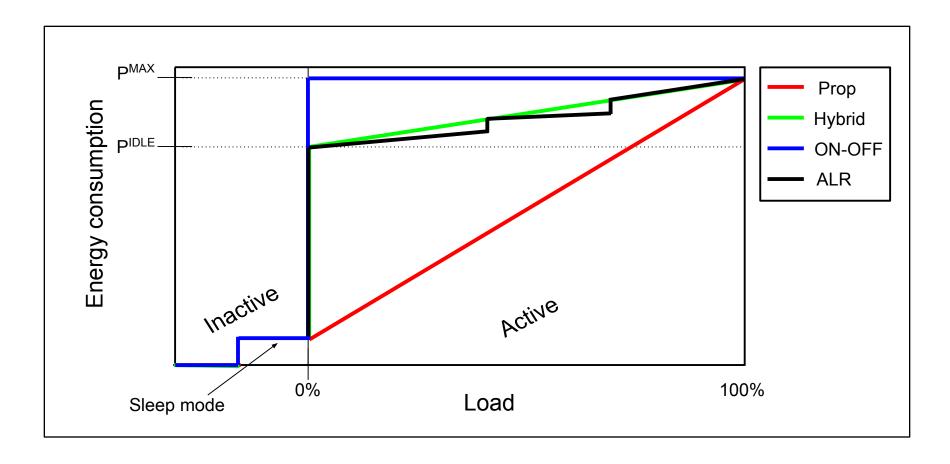
Compression Ratio: Random tables





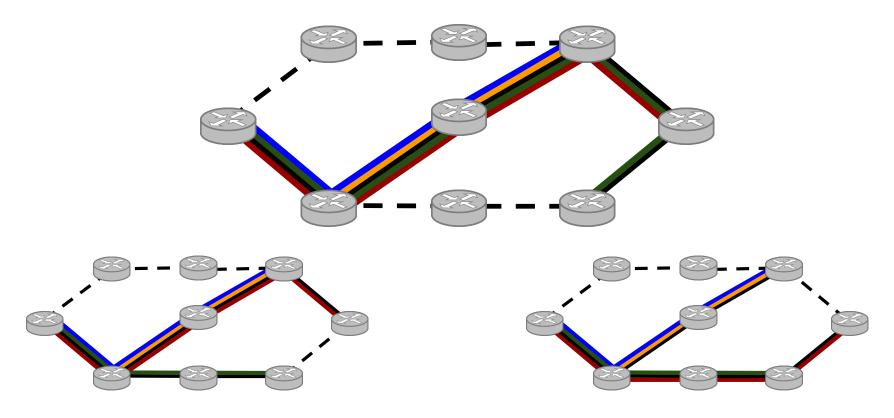
Greedy and Direction-Based have similar results

Compression Ratio: Network tables

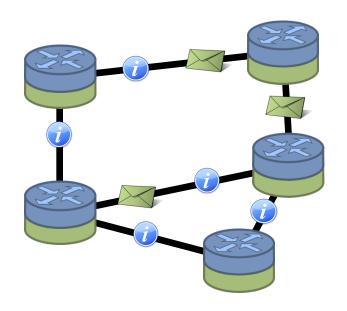


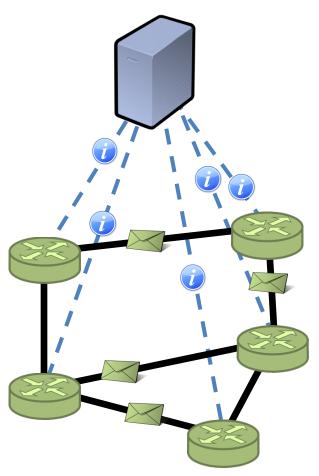
atlanta (15 nodes, 44 links)

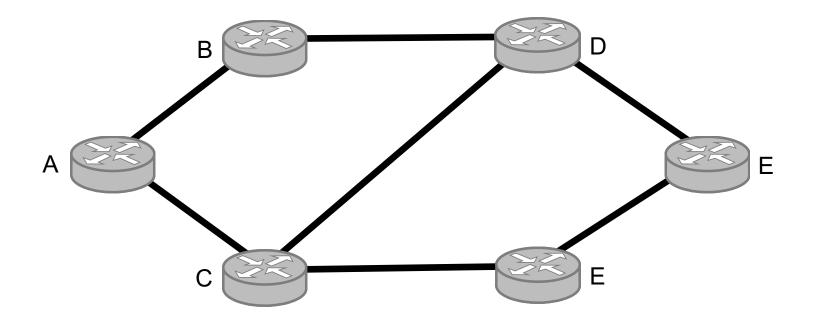
ta2 (81 nodes, 162 links)


Direction-Based behaves better on network tables

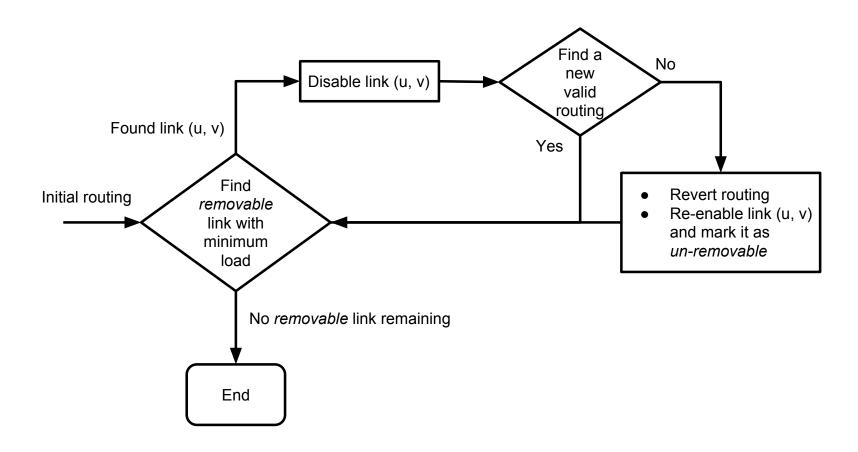
Energy Proportionality


Network devices are not energy proportional [Chabarek et al., 2008]

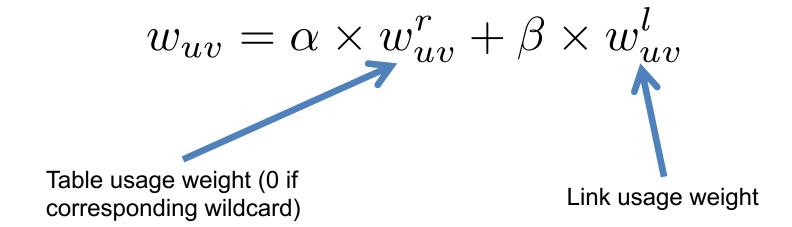

Energy Aware Routing (EAR)


Satisfy the requests on the network with a subset of active devices

Legacy vs. Software Defined Networks (SDN)



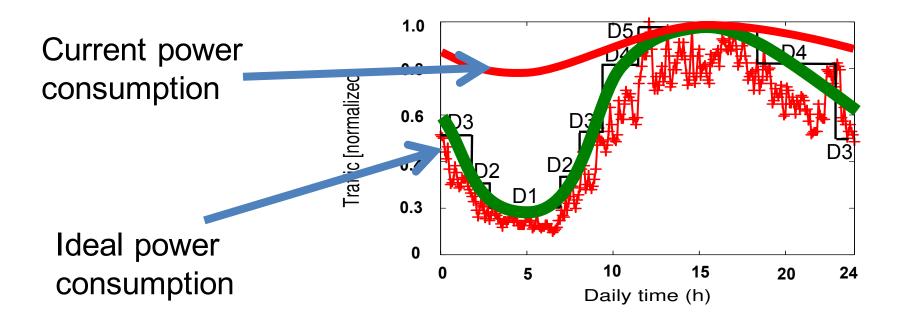
Energy Aware Routing (EAR)


Satisfy the requests on the network with a subset of active devices

Heuristic: Energy saving module

Heuristic: Routing module

Weighted shortest path on residual graph
Assignment of paths according to table and link usage
Compress tables when full



Heuristic: Compression module

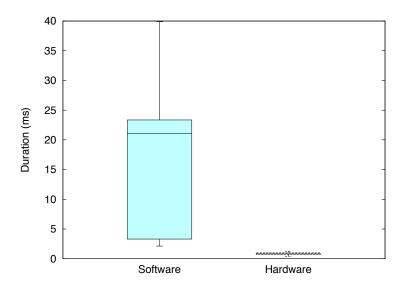
default port only OR wildcard + default

- Propose several solutions to the compression problem
 - ILP formulations
 - 3-approximation algorithm
 - Greedy heuristic
 - Default port

Energy Efficiency of Networks

Power Model Optimization

State of the link

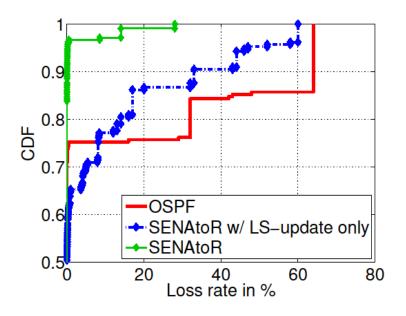

Fraction of bandwidth used

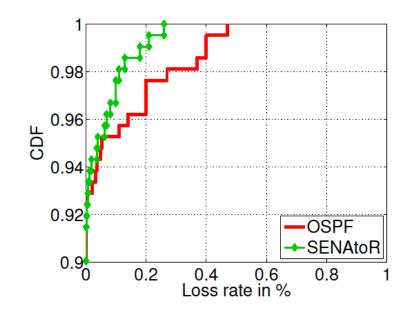
$$\min \sum_{(u,v)\in A} \left(P_{uv}^{\text{IDLE}} x_{uv} + P_{uv}^{\text{LOAD}} \frac{f_{uv}}{C_{uv}} \right)$$

Power used when idle

Additional power

Results: Hardware vs. Software




Performances of software forwarding table are way behind TCAM

Contributions

- Propose several solutions to the compression problem
 - ILP formulations, 3-approximation algorithm, greedy heuristic
- Study EAR with Compression
 - Heuristic with joint routing and compression
 - Compare EARC and classic EAR
- Validate on a HP SDN-capable switch (w/o energy)
 - Study end-to-end delay, packet losses, controller charge
 - Compare hardware and software rules

Results: Spike &failure mitigation

