
Combinatorial optimisation for
telecommunications

Lecture notes

MASCOTTE CNRS-INRIA-UNSA

January 23, 2012

2

Contents

I Prerequisite knowledge 7

1 Basic concepts 9
1.1 Graphs . 9
1.2 Digraphs . 10
1.3 Walks, paths, cycles . 11
1.4 Connectivity and trees . 13
1.5 Strong connectivity and handle decomposition 14
1.6 Eulerian graphs . 15
1.7 Exercises . 16

2 Searches in graphs and digraphs 21
2.1 Searches and connectivity in graphs . 21

2.1.1 Distance in graphs . 23
2.2 Searches and strong connectivity in directed graphs 24

2.2.1 Computing strongly connected components in one search 25
2.3 Bipartite graphs . 28
2.4 Exercises . 30

3 Complexity of algorithms 31
3.1 Computational complexity . 31
3.2 Polynomial reductions . 33
3.3 N P -complete problems . 34

3.3.1 The class N P C . 34
3.3.2 Boolean formulae and satisfiability 35
3.3.3 Some N P -completeness proofs . 37

3.4 N P -hard problems . 39
3.5 Approximation algorithms . 40
3.6 Exercises . 41

4 Algorithms in edge-weighted graphs 45
4.1 Computing shortest paths . 45

4.1.1 Dijkstra’s Algorithm . 46
4.1.2 Bellmann-Ford Algorithm . 48

3

4 CONTENTS

4.2 Minimum-weight spanning tree . 49
4.2.1 Jarnı́k-Prim Algorithm . 49
4.2.2 Boruvka-Kruskal Algorithm . 50
4.2.3 Application to the Travelling Salesman Problem 51

4.3 Algorithms in edge-weighted digraphs . 52
4.4 Exercices . 52

5 Connectivity 57
5.1 Introduction . 57
5.2 2-edge-connected graphs . 58
5.3 2-connected graphs . 59
5.4 Contraction and k-connected graphs . 60
5.5 Connectivity in digraphs . 62
5.6 Menger’s Theorem . 63
5.7 Exercises . 68

6 Matching in Graphs 75
6.1 Matching in bipartite graphs . 76
6.2 Matching and vertex cover . 78
6.3 Maximum-weight matching . 81
6.4 Matching in general graphs . 82
6.5 Path-cover of digraphs . 83
6.6 Exercises . 84

II Lecture Notes (1st Term) 89

7 Flow Problems 91
7.1 Introduction and definitions . 91
7.2 Reducing to an elementary network . 92
7.3 Cut and upper bound on the maximum flow value 94
7.4 Auxiliary Network and “push” Algorithm . 95
7.5 Ford-Fulkerson algorithm . 98
7.6 Pushing along shortest paths . 101
7.7 Algorithm using a scale factor . 103
7.8 Flows in undirected graphs . 104
7.9 Applications of flows . 106

7.9.1 Connectivity in graphs . 106
7.9.2 Maximum matching in bipartite graphs 106
7.9.3 Maximum-gain closure . 107

7.10 Exercices . 109

CONTENTS 5

8 Graph colouring 113
8.1 Vertex colouring . 113

8.1.1 Lower bounds for χ(G) . 114
8.2 Chromatic number and maximum degree . 115
8.3 Colouring planar graphs . 119
8.4 Edge-colouring . 121
8.5 Exercises . 124

9 Linear programming 129
9.1 Introduction . 129
9.2 The Simplex Method . 131

9.2.1 A first example . 131
9.2.2 The dictionaries . 134
9.2.3 Finding an initial solution . 135

9.3 Duality of linear programming . 138
9.3.1 Motivations: providing upper bounds on the optimal value 138
9.3.2 Dual problem . 140
9.3.3 Duality Theorem . 141
9.3.4 Relation between primal and dual . 142
9.3.5 Interpretation of dual variables . 145

9.4 Exercices . 146
9.4.1 General modelling . 146
9.4.2 Simplex . 148
9.4.3 Duality . 150
9.4.4 Modelling Combinatorial Problems 153
9.4.5 Modelling Flow Networks and Shortest Paths. 155

10 Polynomiality of Linear Programming 159
10.1 Ellipsoid Method . 160

10.1.1 Optimization versus faisibility . 160
10.1.2 The method . 160
10.1.3 Complexity of the ellipsoid method 163

10.2 Interior Points method . 164
10.3 Exercises . 165

11 Fractional Relaxation 169
11.1 Total Unimodularity . 172

11.1.1 Matchings and vertex covers in bipartite graphs 173
11.1.2 Flows via linear programming . 174
11.1.3 Covering a strong digraph with directed cycles 175

11.2 Deterministic rounding . 178
11.2.1 Minimum cut . 178
11.2.2 Vertex cover: 2-approximation and kernel. 179

6 CONTENTS

11.3 Randomized rounding . 181
11.3.1 Maximum satisfiability . 181
11.3.2 Multiway cut . 184

11.4 Graph colouring . 187
11.5 Exercises . 189

12 Lagrangian Relaxation 193
12.1 Constrained Shortest Paths. 194
12.2 The Lagrangian Relaxation Technique . 196

12.2.1 Lagrangian dual . 196
12.2.2 Bounds and optimality certificates . 197
12.2.3 Linear Programming . 198
12.2.4 Solving the Lagrangian dual . 200

12.3 Applications . 201

13 Primal-Dual Algorithms 205
13.1 The Principle of Primal-Dual Algorithms in Few Words 205
13.2 Primal-Dual Algorithm for Vertex Cover . 206
13.3 The Journey of the Hitting Set Problem . 208
13.4 Exercises . 208

III Lecture Notes (2nd term) 211

14 Radio channel assignment and (weighted) colouring 213
14.1 Modelling the channel assignment problem 213
14.2 General results . 215

14.2.1 All equal edge lengths . 215
14.2.2 Lower bound for the span . 215
14.2.3 Sequential assignment methods . 216

14.3 Computing the span . 217
14.3.1 Bipartite graphs and odd cycles . 217
14.3.2 A general exponential algorithm . 217

14.4 Channel assignment in the plane . 219
14.4.1 Disk graphs . 220
14.4.2 Triangular lattice . 221

Part I

Prerequisite knowledge

7

Chapter 1

Basic concepts

All the definitions given in this section are mostly standard and may be found in several books
on graph theory like [1, 2, 3].

1.1 Graphs
A graph G is a pair (V,E) of sets satisfying E ⊂ [V]2, where [V]2 denotes the set of all 2-element
subsets of V . We also assume tacitly that V ∩E = /0. The elements of V are the vertices of the
graph G and the elements of E are its edges. The vertex set of a graph G is referred to as V (G)
and its edge set as E(G). An edge {x,y} is usually written as xy. A vertex v is incident with an
edge e if v ∈ e. The two vertices incident with an edge are its endvertices. An edge is said to
join or link its two endvertices. Note that in our definition of graphs, there is no loops (edges
whose endvertices are equal) nor multiple edges (two edges with the same endvertices).

Sometimes we will need to allow multiple edges. So we need the notion of multigraph
which generalises the one of graph. A multigraph G is a pair (V,E) where V is the vertex
set and E is a collection of elements of [V]2. In a multigraph G, we say that xy is an edge of
multiplicity m if there are m edges with endvertices x and y. We write µ(x,y) for the multiplicity
of xy, and write µ(G) for the maximum of the edges multiplicities in G.

The complement of a graph G = (V,E) is the graph G with vertex set V and edge set [V]2\E.
A graph is empty if it has no edges. A graph is complete of for all pair of distinct vertices u,v,
{u,v} is an edge. The complete graph on n vertices is denoted Kn. Trivially, the complement of
an empty graph is a complete graph.

A subgraph of a graph G is a graph H such that V (H) ⊂ V (G) and E(H) ⊂ E(G). Note
that since H is a graph we have E(H) ⊂ E(G)∩ [V (H)]2. If H contains all the edges of G
between vertices of V (H), that is E(H) = E(G)∩ [V (H)]2, then H is the subgraph induced by
V (H) = S. It is denoted G〈S〉. The notion of submultigraph and induced submultigraph are
defined similarly. If S is a set of vertices, we denote by G− S the (multi)graph induced by
V (G)\S. For simplicity, we write G− v rather than G−{v}. For a collection F of elements of
[V 2], we write G\F = (V (G),E(G)\F) and G∪F = (V (G),E(G)∪F). As above G\{e} and
G∪{e} are abbreviated to G\ e and G∪ e respectively. If H is a subgraph of G, we say that G
is a supergraph of H.

9

10 CHAPTER 1. BASIC CONCEPTS

Let G be a multigraph. When two vertices are the endvertices of an edge, they are adjacent
and are neighbours. The set of all neighbours of a vertex v in G is the neighbourhood of G and
is denoted NG(v), or simply N(v). The degree dG(v) = d(v) of a vertex is the number of edges
to which it is incident. If G is a graph, then this is equal to the number of neighbours of v.

Proposition 1.1. Let G = (V,E) be a multigraph. Then

∑
v∈V

d(v) = 2|E|.

Proof. By counting inc the number of edge-vertex incidence in G. On the one hand, every edge
has exactly two endvertices, so inc = 2|E|. On the other hand, every vertex v is an ednvertex of
d(v) edges, so inc = ∑v∈V d(v).

The maximum degree of G is ∆(G) = max{dG(v) | v ∈ V (G)}. The minimum degree of G
is δ(G) = max{dG(v) | v ∈ V (G)}. If the graph G is clearly understood, we often write ∆ and
δ instead of ∆(G) and δ(G). A graph is k-regular if every vertex has degree k. The average
degree of G is Ad(G) = 1

|V (G)|∑v∈V (G) d(v) = 2|E(G)|
|V (G)| . The maximum average degree of G is

Mad(G) = max{Ad(H) | H is a subgraph of G}.
Let G be a graph. A stable set or independent set in G is a set of pairwise non-adjacent

vertices. In other words, a set S is stable if G〈S〉 is empty. The stability number of G, denoted
α(G) is the maximum cardinality of a stable set in G. Conversely, a clique in G is a set of
pairwise adjacent vertices. In other words, a set S is a clique if G〈S〉 is a complete graph. The
clique number of G, denoted ω(G) is the maximum cardinality of a stable set in G.

1.2 Digraphs
A multidigraph D is a pair (V (D),E(D)) of disjoint sets (of vertices and arcs) together with
two maps tail : E(D)→V (D) and head : E(D)→V (D) assigning to every arc e a tail, tail(e),
and a head, head(e). The tail and the head of an arc are its endvertices. An arc with tail u and
head v is denoted by uv and is said to leave u and to enter v; we say that u dominates v and
write u→ v; we also say that u and v are adjacent. Note that a directed multidigraph may have
several arcs with same tail and same head. Such arcs are called multiple arcs. A multidigraph
without multiple arcs is a digraph. It can be seen as a pair (V,E) with a E ⊂V 2. An arc whose
head and tail are equal is a loop. All the digraphs we will consider in this monograph have no
loops.

The multigraph G underlying a multidigraph D is the multigraph obtained from D by re-
placing each arc by an edge. Note that the multigraph underlying a digraph may not be a graph:
there are edges uv of multiplicity 2 whenever uv and vu are arcs of D. Subdigraphs and submul-
tidigraphs are defined similarly to subgraphs and submultigraphs.

Let D be a multidigraph. If uv is an arc, we say that u is an inneighbour of v and that v is an
outneighbour of u. The outneighbourhood of v in D, is the set N+

D (v) = N+(v) of outneighbours
of v in G. Similarly, the inneighbourhood of v in D, is the set N−D (v) = N−(v) of inneighbours
of v in G. The outdegree of a vertex v is the number d+

D (v) = d+(v) of arcs leaving v and the

1.3. WALKS, PATHS, CYCLES 11

indegree of v is the number d−D (v) = d−(v) of arcs entering v. Note that if D is a digraph then
d+(v) = |N+(v)| and d−(v) = |N−(v)|. The degree of a vertex v is d(v) = d−(v)+ d+(v). It
corresponds to the degree of the vertex in the underlying multigraph.

Proposition 1.2. Let D = (V,E) be a digraph. Then

∑
v∈V

d+(v) = ∑
v∈V

d−(v) = |E|.

The maximum outdegree of D is ∆+(D) = max{d+(v),v∈V (D)}, the maximum indegree of
D is ∆−(D) = max{d−(v),v ∈V (D)}, and the maximum degree of D is ∆(D) = max{d(v),v ∈
V (D)}. When D is clearly understood from the context, we often write ∆+, ∆− and ∆ instead
of ∆+(D), ∆−(D) and ∆(D) respectively.

The converse of the digraph D =(V,E) is the digraph D =(V (D),E) where E = {(v,u) | (u,v)∈
E}. A digraph D is symmetric if D = D.

An orientation of a graph G is a digraph D obtained by substituting each edge {x,y} by
exactly one of the two arcs (x,y) and (y,x). An oriented graph is an orientation of graph.

1.3 Walks, paths, cycles
Let G be a multigraph. A walk in G is a finite (non-empty) sequence W = v0e1v1e2v2 . . .ekvk
alternating vertices and edges such that, for 1 ≤ i ≤ k, vi−1 and vi are the endvertices of ei.
The vertex v0 is called start of W and vk terminus of W . They both are endvertices of W . The
vertices vi,1≤ i≤ k−1 are the internal vertices. One says that W links v0 to vk and that W is a
(v0,vk)-walk.

Let A and B be to set of vertices. An (A,B)-path is a path whose start is in A, whose end
is in B and whose internal vertices are not in A∪B. We usually abbreviate ({a},B)-path to
(a,B)-path, (A,{b})-path to (A,b)-path and ({a},{b})-path to (a,b)-path.

If W1 = u0e1u1e2u2 . . .epup and W2 = v0 f1v1 f2v2 . . . fqvq are two walks such that up = v0, the
concatenation of W1 and W2 is the walk u0e1u1e2u2 . . .epup f1v1 f2v2 . . . fqvq. The concatenation
of k walks W1, . . . ,Wk such that for all 1 ≤ i ≤ k− 1 the terminus of Wi is the start of Wi+1 is
then defined inductively as the concatenation of W1 and the concatenation of W2, . . . ,Wk.

If G is a graph, then the walk W is entirely determined by the sequence of its vertices. Very
often, we will then denote W = (v0,v1, . . . ,vk). The length of W is k, which is its number of
edges (with repetitions). A walk is said to be even (resp. odd) if its length is even (resp. odd).

A walk whose start and terminus are the same vertex is closed. A walk whose edges are all
distinct is a trail. A closed trail is a tour. A walk whose vertices are all distinct is a path and a
walk whose vertices are all distinct except the start and the terminus is a cycle. Observe that a
path is necessarily a trail and a cycle is a tour.

A path may also be seen as a non-empty graph P = (V,E) of the form V = {x0,x1, . . . ,xk}
and E = {x0x1,x1x2, . . . ,xk−1xk} where the vertices xi are all distinct. Similarly, a cycle may be
seen as a non-empty graph C =(V,E) of the form V = {x0,x1, . . . ,xk} and E = {x0x1,x1x2, . . . ,xk−1xk,xkx0}
where the xi are all distinct.

12 CHAPTER 1. BASIC CONCEPTS

Proposition 1.3. Let G be a multigraph.

(i) There is a (u,v)-walk in G if and only if there is a (u,v)-path.

(ii) An edge is in a closed trail if and only if it is in a cycle.

(iii) There is an odd closed walk, if and only if there is an odd cycle.

Proof. (i) Let P = v0e1v1e2v2 . . .ekvk be a shortest (u,v)-walk. Then P is a path. Indeed suppose
for a contradiction that there exists i < j such that vi = v j. Then v0e1 . . .eivie j+1 . . .ekvk is a
(u,v)-walk shorter than P, a contradiction.

(ii) Let C = ve1v1e2v2 . . .ekv be a shortest closed trail. Then C is a cycle. Indeed suppose
for a contradiction that there exists 1≤ i < j < k such that vi = v j. Then v0e1 . . .eivie j+1 . . .ekv
is a (u,v)-trail shorter than C, a contradiction.

(iii) Let C = ve1v1e2v2 . . .ekv be a shortest odd closed walk. Then C is an odd cycle.
Indeed suppose for a contradiction that there exists 1 ≤ i < j < k such that vi = v j. Then
v0e1 . . .eivie j+1 . . .ekv and viei+1 . . .e jv j are shorter closed walks than C. But the sum of the
lengths of these two walks is the length of C and so is odd. So, one of the lengths is odd, a
contradiction.

The distance between two vertices u and v in a multigraph is the length of a shortest (u,v)-
walk or +∞ if such a walk does not exists. It is denoted distG(u,v), or simply dist(u,v) if G
is clearly understood from the context. The proof of (i) in the above proposition shows that a
shortest (u,v)-walk (if one exists) is a (u,v)-path.

The word ”distance” is well chosen because dist is a distance in the mathematical sense, that
is a binary relation which is symmetric (for all u,v ∈ V (G), dist(u,v) = dist(v,u)) and which
satisfies the triangle inequality: for all u,v,w ∈ V (G), dist(u,w) ≤ dist(u,v)+ dist(v,w). See
Exercise 1.12.

In multidigraphs, a directed walk is a finite (non-empty) sequence W = v0e1v1e2v2 . . .ekvk
alternating vertices and arcs such that, for 1 ≤ i ≤ k, vi−1 is the start and vi the terminus of ei.
Directed trail, directed tour, directed path and directed cycle are then defined similarly to trail,
tour, path and cycle. Clearly, Proposition 1.3 has its analog for digraphs. Its proof is left in
Exercise 1.11.

Proposition 1.4. Let D be a multidigraph.

(i) There is a directed (u,v)-walk in D if and only if there is a directed (u,v)-path.

(ii) An edge is in a closed directed trail if and only if it is in a directed cycle.

(iii) There is an odd closed directed walk, if and only if there is an odd directed cycle.

The distance between two vertices in a multidigraph is defined analogously to the distance
in a mutigraph. However, it is no more a distance in the mathematical sense because it is not
symmetric. However it satisfies the triangle inequality. See Exercise 1.12.

1.4. CONNECTIVITY AND TREES 13

1.4 Connectivity and trees

A graph G is connected if for any two vertices u,v, there exists a (u,v)-path in G.

Proposition 1.5. Let G be a graph and x a vertex of G. The graph G is connected if and only if
for any vertex u in G, there is a (u,x)-path.

The connected components of a graph are its maximal connected subgraph.
A graph with no cycle is a forest. It is also said to be acyclic. A connected forest is a tree.

The leafs of a tree T are the vertices of degree at most 1.

Proposition 1.6. Let G be a graph. If δ(G)≥ 2 then G has a cycle.

Proof. Let P = (v1,v2, . . . ,vk) be a path of maximal length. Since v1 has degree 2 it is adjacent
to a vertex w 6= v2. The vertex w is in P otherwise (w,v1,v2, . . . ,vk) would be a longer path than
P. Thus w = v j for some j > 2 and so (v1,v2, . . . ,v j,v1) is a cycle.

Proposition 1.6 implies that every forest has at least one leaf. In fact, it implies that every
forest has at least two leaves.

Corollary 1.7. Every forest on at least two vertices has at least two leaves.

Proof. By induction on the number of vertices, the result holding trivially for the two forests on
two vertices.

Let F be a tree on n vertices, with n≥ 3. By Proposition 1.6, F has at least one leaf x. The
graph F− x is a forest on n−1 vertices. By the induction hypothesis, it has two leaves y1 and
y2. One of these two vertices, say y, is not adjacent to x since d(x)≤ 1. Hence y is also a leaf of
F .

Corollary 1.8. For every tree T we have |E(T)|= |V (T)|−1.

Proof. By induction on the number of vertices of T , the result holding trivially if T is the unique
tree on one vertex (K1).

Let T be a tree on at least two vertices. By Corollary 1.7, T has a leaf x. Since T is
connected, x has degree at least one, so d(x) = 1. Thus, |E(T − x)| = |E(T)| − 1. By the
induction hypothesis, |E(T − x)| = |V (T − x)| − 1 = |V (T)| − 2. Hence, |E(T)| = |V (T)| −
1.

Proposition 1.9. Let T be a graph. Then the following four statements are equivalent:
(i) T is a tree;
(ii) for any two vertices u,v of T , there exists a unique (u,v)-path;
(iii) T is connected-minimal, i.e. T is connected and T \e is not connected for all e ∈ E(T);
(iv) T is acyclic-maximal, i.e. T is acyclic but T ∪ xy has a cycle for any pair {x,y} of

non-adjacent vertices in T .

14 CHAPTER 1. BASIC CONCEPTS

Proof. (i)⇒(ii): By the contrapositive. Suppose that there exist two distinct (u,v)-paths P =
(p1, p2, . . . , pk) and Q = (q1,q2, . . . ,ql). Let i be the smallest index such that pi+1 6= qi+1 and
let j be the smallest integer greater than i such that p j ∈ {qi+1,qi+2, . . . ,ql}. Let j′ be the index
for which q j′ = p j. Then (pi, pi+1, . . . , p j,q j′−1,q j′−2, . . . ,qi) is a cycle.

(ii)⇒(iii): If there exists a unique path between any two vertices, then T is connected. Let
e = xy be an edge. Then (x,y) is the unique (x,y)-path in T . Thus T \ e contains no (x,y)-path
and so T is not connected. Hence T is connected-minimal.

(iii)⇒(i): By the contrapositive. Suppose that T is not tree. If T is not connected then it
is not connected-minimal. Thus we may assume that T is connected and so T contains a cycle
C. Let e be an edge of C. Let us show that T \ e is connected which implies that T is not
connected-minimal. Let x and y be two vertices. Since T is connected there is an (x,y)-path P
in T . If P does not contain e then it is also a path in T − e. If P contains e then replacing e by
C \ e in P, we obtain an (x,y)-walk in T \ e. By Proposition 1.3, there is an (x,y)-path in T \ e.

(i)⇒(iv): If T is a tree then it is acyclic. Let us show that it is acyclic-maximal. Let x and
y be two non-adjacent vertices. Then in T there is an (x,y)-path P since T is connected. The
concatenation of P and (y,x) is a cycle in T ∪ xy.

(iv)⇒(i): By the contrapositive. Suppose that T is not a tree. If it is not acyclic then it is not
acyclic-maximal. Thus we may assume that T is not connected. So there are two vertices x and
y for which there is no (x,y)-path in T . Let us show that T ∪ xy is acyclic which implies that
T is not acyclic-maximal. Indeed if there were a cycle C, then it must contain xy because T is
acyclic. Then C \ xy would be an (x,y)-path in T , a contradiction.

A subgraph H of a graph G is spanning if V (H) = V (G).

Corollary 1.10. A graph G is connected if and only if it has a spanning tree.

Proof. By induction on the number of edges of G. If G is connected-minimal, then by Propo-
sition 1.9, G is a tree and thus a spanning tree of itself. If G is not connected-minimal, then by
definition there is an edge e such that G\ e is connected. By the induction hypothesis, G\ e has
a spanning tree which is also a spanning tree of G.

1.5 Strong connectivity and handle decomposition

A digraph is strongly connected or strong if for any two vertices u,v there is a directed (u,v)-
path. Observe that swapping u and v implies that there is also a directed (v,u)-path. The strongly
connected components of a digraph G are its maximum strongly connected subgraphs.

The following proposition follows easily from the definition.

Proposition 1.11. Let D be a strongly connected digraph. Then every arc is in a directed cycle.

Proof. Let uv be an arc. Since D is strongly connected then there is a directed (v,u)-path in D.
Its concatenation with (u,v) is a directed cycle containing uv.

1.6. EULERIAN GRAPHS 15

Definition 1.12. The union of two digraphs D1 and D2 is the digraph D1∪D2 defined by V (D1∪
D2 = V (D1)∪V (D2) and E(D1∪D2) = E(D1)∪E(D2).

Let D be a digraph and H be a subdigraph of D. A H-handle is a directed path or cycle
(all vertices are distinct except possibly the two endvertices) such that its endvertices are in
V (H) and its internal vertices are in V (D)\V (H). A handle decomposition of D is a sequence
(C,P1, . . . ,Pk) such that:

• C = D0 is a directed cycle;

• for all 1≤ i≤ k, Pi is a Di−1-handle and Di = Di−1∪Pi;

• Dk = D.

The following proposition follows easily from the definitions.

Proposition 1.13. Let H be a strongly connected subdigraph of D. For any H-handle P, then
H ∪P is strongly connected.

Proof. Left in Exercise 1.26

Since every strongly connected digraph contains a directed cycle (Proposition 1.11), an easy
induction immediately yields the following.

Corollary 1.14. Every digraph admitting a handle decomposition is strongly connected.

The converse is also true: every strongly connected digraph admits a handle decomposition.
In addition, it has a handle decomposition starting at any directed cycle.

Theorem 1.15. Let D be a strongly connected digraph and C a directed cycle in D. Then D has
a handle decomposition (C,P1, . . . ,Pk).

Proof. Let H be the subdigraph of D that admits a handle decomposition (C,P1, . . .Pk) with
the maximum number of arcs. Since every arc xy in E(D) \E(H) with both endvertices in
V (H) is a H-handle, H is an induced subdigraph of D. Assume for a contradiction that H 6= D.
Then V (H) 6= V (D). Since D is strongly connected, there is an arc vw with v ∈ V (D) and
w ∈V (D)\V (H). Since D is strongly connected, D contains a (w,H)-path P. Then, (v,w,P) is
a H-handle in D, contradicting the maximality of H.

1.6 Eulerian graphs
A trail in a graph G is eulerian G if it goes exactly once through every edge of G. A graph is
eulerian if it has an eulerian tour.

Theorem 1.16 (Euler 1736). A connected graph is eulerian if and only if all its vertices have
even degree.

16 CHAPTER 1. BASIC CONCEPTS

Proof. The condition can easily seen to be necessary. Indeed if a vertex appears k times (or
k +1 if it appears as start and terminus) of an eulerian tour, it is incident to exactly 2k edges in
the tour and so it has degree 2k.

Let us now show that the condition is sufficient. The proof follows the lines of the following
algorithm.

Algorithm 1.1.

1. Initialise W := v for an arbitrary vertex v.

2. If all the edges of G are in W then return W .

3. If not an edge is not in W = v0e1v1 . . .elvl ,

4. If an edge incident to vl , say e = vlvl+1 is not in W , then W := v0e1v1 . . .elvlevl+1; go to 2.

5. If not all the edges incident to vl are in W . Since there is an even number of them, v0 = vl .
Then G has an edge e /∈W incident to a vertex vi in W , for it is connected. Let e = viu be
this edge.
W := viei+1vi+1 . . .elvle1v1 . . .eivieu; go to 2.

1.7 Exercises
Exercise 1.1. Show that Kn, the complete graph on n vertices, has

(n
2

)
edges.

Exercise 1.2. Build a cubic graph with 11 vertices. (cubic: d(v) = 3 for all vertex v.)

Exercise 1.3. Show that every graph has two vertices of same degree.

Exercise 1.4. Let G be a graph on at least 4 vertices such that for every vertex v, G−v is regular.
Show that G is either a complete graph or an empty graph.

Exercise 1.5. Let n and k be two integers such that n > k and H be a graph on n vertices. Show
that if |E(H)|> (k−1)(n− k/2) then H has a subgraph of minimum degree at least k.

Exercise 1.6 (Jealous husbands).
Three jealous husbands and their wives want to cross a river. But they just have a small boat
in which at most two persons can fit. None of the husbands would allow his wife to be with
another man unless he is present. Draw the graph of all the possible distributions across the
river and advice the walkers on the method to cross the river.

Exercise 1.7 (Dog, goat, cabbage).
A man wants to cross a river with his dog, his goat and his (huge) cabbage. Unfortunately, the

1.7. EXERCISES 17

man can cross the river with at most one of them. Furthermore, for obvious reasons, the man
cannot leave alone on one bank neither the goat and the dog nor the cabbage and the goat. Draw
the bipartite graph of all permissible situations. How does the man do to cross the river?

Exercise 1.8. Let u and v be two vertices of a graph G. Show that, if u and v have odd degree
and all the other vertices have even degree, then there is a (u,v)-path in G.

Exercise 1.9. Show that in a graph two paths of maximum length have a vertex in common.

Exercise 1.10. Find what is wrong in the following statement: An edge is in a closed trail if
and only if it is in a cycle.

Exercise 1.11. Show Proposition 1.4.

Exercise 1.12. 1) Show that of G is a multigraph then distG is symmetric and satisfies the
triangle inequality.

2) Show that of D is a multidigraph then distD satisfies the triangle inequality but may be
non-symmetric.

Exercise 1.13. Let D be a digraph without directed cycles. Show that D has a vertex with
indegree zero.

Exercise 1.14. Let G = (V,E) be a graph. Show the following.
(1) If |E| ≥ |V | then G contains a cycle.
(2) If |E| ≥ |V |+4 then G contains two edge-disjoint cycles.

Exercise 1.15. Let G be a graph of minimum degree at least 3. Show that G contains an even
cycle.

Exercise 1.16. Let G be a connected graph. Show that there exists an orientation of G such that
the outdegree of every vertex is even if and only if G has an even number of edges.

Exercise 1.17. Let G be a graph. Its diameter is the maximum distance between two vertices.

1) Show that if G has a diameter at least 3 then its complement G has diameter at most 3.

2) Deduce that every self-complementary graph (G = G) has diameter at most 3.

3) For k = 1,2,3, give an example of a self-complementary graph with de diameter k.

Exercise 1.18. Let T be a tree on at least two vertices. Show that if T has no vertex of degree
2 then T has at least |V (T)|/2+1 leaves.

Exercise 1.19 (Helly property for trees). Let T1, . . . ,Tk be subtrees if a tree T . Show that if
Ti∩Tj 6= /0 for all i, j, then

Tk
i=1 Ti 6= /0.

Exercise 1.20. Is the complement of a non-connected graph always connected?
Is the complement of a connected graph always non-connected?

18 CHAPTER 1. BASIC CONCEPTS

Exercise 1.21. 1) Show that every connected graph G has a vertex x such that G−x is connected.
2) Does the same hold for strongly connected digraphs?

Exercise 1.22. Let G be a connected graph and e an edge of G. Show that G has a spanning
tree containing e.

Exercise 1.23. A graph is cherry-free if every vertex has at most one neighbour of degree 1.
Prove that a connected cherry-free graph has two adjacent vertices u and v such that G−{u,v}
is connected.
Hint: Consider a path of maximum length.

Exercise 1.24. Let G be a connected graph and (V1,V2, . . . ,Vn) a partition of V (G) such that
G〈Vi〉 is connected for all 1≤ i≤ n. Show that there exists two indices i and j such that G−Vi
and G−Vj are connected.

Exercise 1.25. The aim of this exercise is to prove that if a graph has n vertices, m edges and k
connected components then n− k ≤ m≤ 1

2(n− k)(n− k +1).
1) Let G be a graph on n vertices with m edges and k connected components.

a) Show that if G is connected then m≥ n−1.

b) Deduce that if G has k connected components then m≥ n− k.

2) Suppose now that G is a graph on n vertices and k connected components with the maximum
number of edges.

a) Show that all the connected components of G are complete graphs.

b) Show that if G has (at least) two connected components then one of them has a unique
vertex.

c) Deduce that G has 1
2(n− k)(n− k +1) edges.

Exercise 1.26. Prove Proposition 1.13.

Exercise 1.27. Let D be a strongly connected digraph and D′ a strongly connected subdigraph
of D. Show that any handle decomposition (C,P1, . . . ,Pk) of D′ may be extended into a handle
decomposition (C,P1, . . . ,Pk, . . . ,Pl) of D.

Exercise 1.28. Let D be a strongly connected digraph of minimum outdegree 2. Prove that
there exists a vertex v such that D− v is strongly connected.

Exercise 1.29. Show that a graph has an eulerian trail if and only if it has zero or two vertices
of odd degree.

Exercise 1.30. Let G = (V,E) be a graph such that every vertex has even degree and |E| ≡ 0[3].
Prove that E can be partitionned into l = |E|

3 sets E1, . . . ,El such that for all 1≤ i≤ l, the graph
induced by Ei is either a path of length 3 or cycle of length 3.

Bibliography

[1] J. A. Bondy and U. S. R. Murty. Graph theory, Series: Graduate Texts in Mathematics,
Vol. 244, Springer, 2008.

[2] R. Diestel. Graph Theory, 3rd edition. Graduate Texts in Mathematics, 173. Springer-
Verlag, Berlin and Heidelberg, 2005.

[3] D. B. West. Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River, NJ,
1996.

19

20 BIBLIOGRAPHY

Chapter 2

Searches in graphs and digraphs

2.1 Searches and connectivity in graphs
Finding the connected component of a vertex v in a graph is not difficult. For this purpose, we
need a list of edges to be explored, initially containing all edges, and a list of already explored
vertices, initially containing only v. At each step, a new edge ab is explored with a already
explored and b is added in the list of explored vertices if it had not been explored yet. When the
procedures stops, the set of explored vertices is the connected component of v. This algorithm
may be modified to return a spanning tree T of the connected component of v.

Algorithm 2.1 (Search).

1. Mark v and initialize L to the set of all edges incident to v; V (T) := {v}, E(T) := /0.

2. If L = /0, then return T ; else let ab ∈ L. L := L\{ab}.

3. If b is not marked, then mark it; V (T) := V (T)∪{b}; E(T) := E(T)∪{ab}; add all the
edges incident to b to L.

4. Go to 2.

There are two well-known searches which correspond to two different orderings of the
edges:

- the breadth-first search (BFS) (Algorithm 2.2) explores first the neighbours of v, then the
neighbours of its children;

- the depth-first search (DFS) (Algorithm 2.3) explores first all the vertices of a branch
pending in v.

The difference between these two approaches is that the vertices are stored either in a queue
(FIFO) or in a stack (LIFO). A queue is just a list which is updated by either adding a new

21

22 CHAPTER 2. SEARCHES IN GRAPHS AND DIGRAPHS

element to one end (its tail) or removing an element from the other end (its head). A stack is
simply a list, one end of which is identified as its top; it may be updated either by adding a new
element as its top or else by removing its top element.

The following algorithms also compute the connected component C of v and a spanning tree
of C.

Algorithm 2.2 (Breadth-First Search).

1. Mark v, V (T) := {v}, E(T) := /0 and initialize a queue Q to v.

2. If F = /0 then return T . Else, remove the the vertex u fromt the head of Q.

3. For every unmarked vertex w adjacent to u, V (T) := V (T)∪{w}; E(T) = E(T)∪{uw};
add w to the tail of Q and mark w.

4. Go to 2.

Algorithm 2.3 (Depth-First Search).

0. For every vertex, L(u) := N(u).

1. Mark v; V (T) := {v}; E(T) := /0 and initialize a stack P to v.

2. If P = /0, then return T . Else, let u be the vertex on top of the stack P.

3. If L(u) = /0, then remove u from the top of the stack P and go to 2.

4. Else, remove a vertex w from L(u).

5. If w is marked go to 3. Else, V (T) := V (T)∪{w}; E(T) = E(T)∪{uw}; add w on top of
P and mark w.

6. Go to 2.

A tree obtained by running a breadth-first search is called a breadth-first search tree or BFS-
tree. Similarly, a tree obtained by running a depth-first search is called a depth-first search tree
or DFS-tree. If the search is run from vertex v, this vertex is called the root of the search tree.

Observe that in Algorithms 2.1, 2.2 and 2.3 every edge is examined at most twice (once per
endvertex). These algorithms can be modified in order to compute all the connected components
of a graph so that every edge is examined at most twice. For this purpose, while some vertex
does not belong to a connected component (i.e., has not been marked), it is sufficient to compute
its connected component.

2.1. SEARCHES AND CONNECTIVITY IN GRAPHS 23

2.1.1 Distance in graphs
A nice property of a breadth-first search tree is that is can give the distance from the root r
to all other vertices. Therefore we need at each vertex a value l(u), called level of u, which
corresponds to distT (r,u) as well as distG(r,u) as we will show later. Hence the following
algorithm is the following:

Algorithm 2.4 (Distance from r).

1. Mark r, l(r) := 0 and initialize a queue Q to v. [[V (T) := {v}; E(T) := /0;]]

2. If F = /0 then return l. Else, remove the first vertex u of Q.

3. For every unmarked vertex w adjacent to u, l(w) := l(u) + 1; add w to Q and mark w.
[[V (T) := V (T)∪{w}; E(T) = E(T)∪{uw};]]

4. Go to 2.

Observe that the construction of the tree T (operation between brackets at Step 1 and 3) is
practically useless. It just help us to show that the function l has the properties we announced.
The first ones justifies our referring to l as the level function.

Theorem 2.1. Let r be a vertex of a connected graph G and T be a BFS-tree (as constructed by
Algorithm 2.4). Then:

(i) for every vertex v of G, l(v) = distT (r,v);

(ii) every edge of G joins vertices on the same or consecutive levels of T ; that is

|l(u)− l(v)| ≤ 1, for all uv ∈ E(G).

Proof. The proof of (i) is left to the reader in Exercise 2.1. To establish (ii), it suffices to prove
that if uv ∈ E(G) and l(u) < l(v), then l(u) = l(v)−1.

We first establish, by induction on l(u), that if u and v are any two vertices such that l(u) <
l(v), then u joined Q before v. This evident if l(u) = 0 , because u is then the root r of T .
Suppose that the assertion is true whenever l(u) < k, and consider the case l(u) = k, where
k > 0. Let x be the predecessor of u, that is the vertex which is explored when we add u to
Q. Then it follows from line 3 of Algorithm 2.4 that l(x) = l(u)− 1. Similarly, if y is the
predecessor of v then l(y) = l(v)− 1. By induction, x joined Q before y. Therefore u being a
neighbour of x, joined Q before v.

Now suppose that uv ∈ E(G) and l(u) < l(v). If u is the predecessor of v, then l(u) =
l(v)−1, again by line 3 of Algorithm 2.4. If not, let y be the predecessor of v. Because v was
added to T by the edge yv, and not the edge uv, the vertex y joined Q before u, hence l(y)≤ l(u)
by the claim established above. Therefore l(v)−1 = ly)≤ l(u)≤ l(v)≤ l(v)−1, which implies
l(u) = l(v)−1.

24 CHAPTER 2. SEARCHES IN GRAPHS AND DIGRAPHS

The following theorem shows that Algorithm 2.4 runs correctly.

Theorem 2.2. Let T be a BFS-tree of a connected graph G, with root r. Then:

distT (r,v) = distG(r,v), for all v ∈V (G).

Proof. Clearly, distT (r,v)≥ distG(r,v) because T is a subgraph of G.
Let us establish the opposite inequality by induction on the length of a shortest (r,v)-path,

the proposition holding trivially when the length is 0.
Let P be a shortest (r,v)-path in G, where v 6= r, and let u be the predecessor of v on

P. The (r,u)-subpath of P is a shortest (r,u)-path, and dG(r,u) = dG(r,v)− 1. By induction,
l(u)≤ dG(r,u), and by Theorem 2.1-(ii), l(v) = l(u)≤ 1. Therefore

distT (r,v) = l(v)≤ l(u)+1≤ dG(r,u)+1 = dG(r,v).

2.2 Searches and strong connectivity in directed graphs
One can explore digraphs in much the same way as graphs, but by growing arborescences rather
than (rooted trees). An arboresence is an orientation of a rooted tree in which all the arcs are
directed from the root to the leaves. It can be seen as a digraph in which every vertex has
indegree 1 except one called the root which has indegree 0. As with search in graph, search in
digraph may be refined by restricting the choice of the arc to be added at each stage. In this
way, we obtain directed versions of breadth-first search and depth-first search. We now discuss
how search can be applied to find the strongly connected components of a digraph.

To test if a digraph D = (V,E) is strongly connected, one has to check for every pair u,v of
vertices if there is a (u,v)-dipath. Checking if such a path exists can be done by performing a
search, so running

(|V (D)|
2

)
searches will do the job. However running a search from a vertex u

finds all the vertices v that can be reached from u. So, in fact, one just need to run at most |V |
searches (one per vertex) yielding a total time O(|V ||E|).

The following proposition will yield an algorithm that test if a digraph is strong by running
only two searches.

Proposition 2.3. Let D be a digraph and v a vertex of D. D is strongly connected if and only if,
for every u 6= v, there are a (u,v)-path and a (v,u)-path.

Proof. If D is strongly connected, by definition, for every u 6= v, there are a (u,v)-path and a
(v,u)-path.

Let us assume now that for every u 6= v, there are a (u,v)-path and a (v,u)-path. Let us show
that D is strongly connected. Let u and w be two distinct vertices of D. There are a (u,v)-path
P and a (v,w) path Q the concatenation of which is a (u,w)-walk. By Proposition 1.3, there is a
(u,w)-path.

2.2. SEARCHES AND STRONG CONNECTIVITY IN DIRECTED GRAPHS 25

We now describe an algorithm that computes the strongly connected components of a vertex
v of a digraph. It is based on two searches starting from v, the first one in D and the reverse
D̄ of D. During the first search, the vertices u reachable from v are marked 1. During the
second search the vertices u from which v can be reached marked 2 and included in the strongly
connected component of v if they are already marked 1 (See Figure 2.1).

Algorithm 2.5 (Strongly connected component).

1. Search D starting from v marking the vertices with 1.

2. Search D̄ starting from v marking the vertices with 2.

3. Return the vertices marked with 1 and 2.

1
1

1 1

1

1

1

1

1

2

2

2

1

1

1

1,2

1,2

1,21,2

1,2

1,2

vv v

Digraph D State after second search

component of v.
Vertices in the strongly connected

State after first search

Figure 2.1: Execution of Algorithm 2.5

Contrary to Algorithm 2.1, Algoritm 2.5 does not give all strongly connected components
of D in a single search examining each edges twice. Indeed, let us consider the digraph D with
V (D) = {v1,v2, . . . ,vn} andE(D) = {(vi,v j) | i < j}. The components consist of each {vi}.
Hence, |V | executions of Algoritm 2.5 must be done. Moreover, at each execution, all edges are
considered.

2.2.1 Computing strongly connected components in one search
We now describe an algorithm that computes all strongly connected components of a digraph
in time O(|E|). It is a modified depth-first search in which two extra values are stored and
updated. When a vertex is explored u it becomes active and is associated to two values l(u) and
b(u). The first one l(u), called label of u, corresponds to the order of appearance of u during the

26 CHAPTER 2. SEARCHES IN GRAPHS AND DIGRAPHS

search. It will never change. A vertex w such that l(w)≥ l(u) is called a successor of u. A key
ingredient of the algorithm is that as long as u is active, there is a directed (u,w)-path to each of
its successors w. The second value b(u) corresponds to the smallest label of a vertex reachable
from u in the subdigraph induced by the explored arcs. Thus it needs to be updated when new
arcs are explored.

Algorithm 2.6 (All Strongly Connected Components).

0. Initialize i to 0.

1. If all vertices are marked, then terminate.

2. Else i := i+1.

3. Let u be an unmarked vertex. l(u) := i, b(u) := i, and u becomes active.

4. If at least one arc leaving u, say (u,v), is not marked, then do

4.1 Mark (u,v).

4.2 If v has already been explored and is active, then update b(u) : b(u) :=
min(b(u),b(v)).

4.3 Else v is a new vertex. v becomes active; i := i+1; l(v) := i; b(v) := l(v); u := v.

4.4 Go to 4.

5. Else, all arcs leaving u are marked, the exploration of u is over:

5.1 If b(u) = l(u) then all active successors of u induce a strongly connected component:
return it and all its vertices become inactive; Go to 1.

5.2 Else b(u) < l(u). Let w be the vertex from which u has been explored. Update b(w) :
b(w) := min(b(w),b(u)); u := w; Go to 4.

Correctness of Algorithm 2.6: We will show by induction the following three points.

1) If l(u) < l(v), and if u and v are active, then v is a successor of u;

2) At each step, for any active vertex v, there is a directed path from v to the vertex w with
label l(w) = b(v).

3) When the exploration of u terminates (Step 5), all the active vertices of S(u)= {v active | b(u)≤
l(v)≤ l(u)} are in the same strongly connected component as u.

4) b(u) = l(u) if and only if S(u) is a strongly connected component.

2.2. SEARCHES AND STRONG CONNECTIVITY IN DIRECTED GRAPHS 27

(5,5)

(6,6)

(7,5)

(1,1)(2,2)

(3,3)

(4,2)
(5,5)

(7,5)

(1,1)(2,2)

(3,3)

(4,2)

(6,5)

(1,1)

(4,2)

(3,2)

(2,1)(1,1)(2,2)

(4,2)

(3,2)

(1,1)(2,2)

(4,2)

(3,2)

(1,1) (1,1)(2,2)

(4,4)

(1,1)(2,2)

(3,3)

(1,1)(2,2)

(3,3)

(4,2)

(8,8)

(9,9)

(10,10)

(11,11)

(12,10)

(8,1)

(9,1)

10 is unmarked;

outneighbour (2)
(2,3) is an arc;

(4,2) is an arc;

no more arcs leaving 5
and b(5) = 5;

no more arcs leaving 3
and b(3) < 3;

(9,1) is an arc;

and b(9) < 9;
no more arcs leaving 9

no more arcs leaving 8
and b(8) < 8;
no more arcs leaving 2
and b(2) < 2;

and b(1) = 1;

(10,11) is an arc;
(11,12) is an arc;
(12,11) is an arc;

no more arcs leaving 1

(3,5) is an arc;
(5,6) is an arc;
(6,7) is an arc;
(7,5) is an arc;

(3,4) is an arc;

and b(4) < 4;
no more arcs leaving 4

(8,9) is an arc;

outneighbour;

(2,8) is an arc;

no more arcs leaving 7
and b(7) < 7;

no more arcs leaving 6
and b(6) < 6;

1 has a (unmarked)

8 has an inactive

Figure 2.2: A run of Algorithm 2.6. The vertex in a circle is the current vertex u. At each
step, (l(v),b(v)) is represented close to every active vertex v. Finally, once a vertex becomes
inactive, it is depicted by a square.

28 CHAPTER 2. SEARCHES IN GRAPHS AND DIGRAPHS

1) and 2) Left to the reader.
3) From Proposition 2.3, it is sufficient to show that, for every v in S(u), there is a directed

(u,v)-path and a directed (v,u)-path. Let v be a vertex in S(u).
Let us assume first that l(v) < l(u). Then, by 1), there is a directed (v,u)-path. Let w be the ver-
tex such that l(w) = b(u). By 2), there is a directed (u,w)-path, and by 1) there is a (w,v)-path.
The concatenation of these two paths is a directed (u,v)-walk. By Proposition 1.4 (i), there is a
directed (u,v)-path.
Let us now assume that l(v) > l(u). By 1) there is a (u,v)-path. Moreover, b(v) < l(v), since
otherwise, the vertex v would have become inactive at Step 5. Let v1 be the vertex with label
l(v1) = b(v). By 2), there is a directed (v,v1)-path P1. If l(v1) ≤ l(u), then, by 1), there is a
directed (v1,u)-path whose concatenation with P1 is a directed (v,u)-walk. Hence, a directed
(v,u)-path exists according Proposition 1.3 (i). If l(v1) > l(u), then b(v1) < l(v1), for otherwise,
the vertex v1 (and also v) would have become inactive at Step 5. Let v2 be the vertex such that
l(v2) = b(v1). Using similar arguments, while l(vi) > l(u), we have l(vi) > b(vi) and we denote
by vi+1 the vertex such that l(vi+1) = b(vi). Since the label of vi strictly decreases, the sequence
of the vi’s is finite. Let k be the last index of this sequence.Then l(vk) ≤ l(u). By 2), for every
1 ≤ i ≤ k, there is a directed (vi−1,vi)-path. Moreover, by 1), there is a directed (vk,u)-path.
The concatenation of all these paths is a directed (v,u)-walk, and then, by Proposition 1.4 (i),
there is a directed (u,v)-path.

4) If b(u) = l(u), then the arcs leaving S(u) have their heads inactive (vertices in a distinct
strongly connected component, by the induction hypothesis 3). Hence, S(u) is a strongly con-
nected component.
If b(u) < l(u), then the vertex v labelled b(u) is active. By 3), u and v are in the same strongly
connected component but v /∈ S(u). Hence S(u) is no a strongly connected component.

2.3 Bipartite graphs
A bipartition of a graph G is a partition (A,B) of V (G) into two stable sets. Hence, every edge
of G has an endvertex in A and the other in B. We often write G = ((A,B),E) for a bipartite
graph with bipartition (A,B).

Bipartite graphs satisfy some properties.

Proposition 2.4. Let G = ((A,B),E) be a bipartite graph.

(i) for any two vertices u and v, all the (u,v)-walks have the same length parity.

(ii) if G is connected then it has only two bipartitions (A,B) and (B,A).

Proof. (i) Without loss of generality, we may assume that u is in A. Let (v0,v1, . . . ,vk) be a
(u,v)-walk (so v0 = u and vk = v). Since G is bipartite and V0 ∈ A then v1 ∈ B and so v2 ∈ A.
And so on by induction, if i is even then vi ∈ A and if i is odd vi ∈ B. Thus if v ∈ A then k is
even and if v ∈ B k is odd.

2.3. BIPARTITE GRAPHS 29

(ii) Let u be a vertex. Let A0 (resp. A1) be the set of vertices at even (resp. odd) distance
to v0 in G. By (i), in any bipartition of G, A0 is included in the part containing u and A1 in the
other. A0∪A1 = V (G) since the graph is connected then there are only two possible partitions
of G: (A0,A1) and (A1,A0).

There are graphs which are not bipartite, for example the odd cycles. Indeed, in the cy-
cle (v0,v1, . . . ,v2k,v0) the path (v0,v2k) and (v0,v1, . . . ,v2k) are two (v0,v2k)-paths of different
length parity. Hence if a graph is bipartite, it contains no odd cycles. This easy necessary
condition to be bipartite is in fact sufficient.

Theorem 2.5. A graph G is bipartite if and only if it has no odd cycle.

Proof. Clearly, it suffices to prove it for connected graphs. Let G be a connected graph. If G
contains an odd cycle, it is not bipartite.

Conversely, assume that G contains no odd cycle. Let v0 be a vertex of G. Let A0 (resp.
A1) be the set of vertices at even (resp. odd) distance to v0 in G. Let us now show that (A0,A1)
is a bipartiton of G. Let uv be an edge of G and Pu (resp. Pv) be a shortest (u,v0)-path (resp.
(v,v0)-path). The concatenation Pu, Pv and (v,u) is a closed walk. By Proposition 1.3, this walk
has even length otherwise G would contain an odd cycle. Hence Pu and Pv have different length
parity and so uv has an endvertex in each of the Ai, i = 0,1.

The above proof may be translated into an algorithm which, given a connected graph G,
returns either a bipartition if G is bipartite or ”G is not bipartite” otherwise. Basicallly, it runs
a Breadth-First Search from a vertex and check if there is no edge between vertices of levels
of differents parity. Hence instead of marking the vertices with their level number as for the
distance (see Subsection 2.1.1), we mark them with the parity of their level and thus we just
need two marks, 0 and 1.

Algorithm 2.1 (Finding a bipartition).

1. Pick a vertex x and mark it with m(x) := 0; N := {x}.

2. If N is non-empty, then remove a vertex v of N and do the following.

For each neighbour w of v do

- If m(w) = m(v), return “G is not bipartite”;
- Otherwise if w is unmarked, then mark it with m(v)+ 1 mod 2 and put w in N;

Go to 2.

3. If N is empty, let Ai, i = 0,1 be the set of vertices marked i and return “G is bipartite with
bipartition” (A0,A1).

Algorithm 2.1 may be easily modified to return an odd cycle when G is not bipartite. See
Exercise 2.10.

30 CHAPTER 2. SEARCHES IN GRAPHS AND DIGRAPHS

2.4 Exercises
Exercise 2.1. Show Theorem 2.1-(i).

Exercise 2.2 (Entriger, Kleitman and Székely).
For a connected graph G, define σ(G) = ∑u,v∈V (G) dist(u,v).

1) Let G be a connected graph. For v ∈ V (G), let Tv be a BFS-tree of G rooted at v. Show
that ∑v∈V (G) σ(Tv) = 2(n−1)σ(G).

2) Deduce that every connected graph G has a spanning tree T such that σ(T) ≤ 2(1−
1
n)σ(G).

Exercise 2.3 (Tuza). Let G be a connected graph, let x be a vertex of G, and let T be a spanning
tree of G that maximizes the function ∑v∈V (G) distT (x,v). Show that T is a DFS-tree of G.

Exercise 2.4 (Chartrand and Kronk). Let G be a connected graph in which every DFS-tree is a
path (rooted at the start). Show that G is a cycle, a complete graph, or a bipartite graph in which
both parts have the same number of vertices.

Exercise 2.5 (Pósa). A chord of a cycle C in a graph G is an edge in E(G)\E(C) both of whose
endvertices lie on C. Let G be a graph such that |E(G)| ≥ 2|V (G)|− 3 and |V (G)| ≥ 4. Show
that G contains a cycle with at least one chord.

Exercise 2.6. Let a be vertex of a connected graph G. Prove that G is bipartite if and only if
dist(a,b) 6= dist(a,c) for all edge bc.

Exercise 2.7.
1) Show that every tree is bipartite.
2) Prove that every tree has a leaf in the largest part of its bipartition.

Exercise 2.8. Prove that a bipartite graph G has at most |V (G)|2/4 edges and give a graph
attaining this bound.

Exercise 2.9. Show that a graph is bipartite if and only if each of its subgraphs H has a stable
set of size at least |V (H)|/2.

Exercise 2.10. Give an algorithm that, given a connected graph G, returns either a bipartition if
G is bipartite or an odd cycle if G is non-bipartite.

Exercise 2.11. Describe an algorithm based on a breadth-first search for finding a shortest odd
cycle in a graph.

Exercise 2.12. Let G = ((A,B),E) be a bipartite graph without isolated vertices such that
d(x) ≥ d(b) for all xy ∈ E, where a ∈ A and b ∈ B. Prove that |A| ≤ |B|, with equality if
and only if d(a) = d(b) for all ab ∈ E.

Chapter 3

Complexity of algorithms

In this chapter, we see how problems may be classified according to their level of difficulty.
Most problems that we consider in these notes are of general character, applying to all mem-

bers of some family of graphs or digraphs. By an instance of a problem, we mean the problem
applied to one specific member of the family. For example, an instance of Algorithm 2.6 is the
problem of finding all the strongly connected components of a particular digraph.

An algorithm for solving a problem is a well-defined procedure which accepts any instance
of the problem as input and returns a solution to the problem as output. Designing computa-
tionally efficient algorithms for solving graphs problems is one of the main concern of graph
theorists and computer scientists. The two aspects of theoretical interest in this regards are,
firstly, to verify that a proposed algorithm does indeed perform correctly and, secondly, to
analyse how efficient a procedure is. In the previous chapters, we have already encountered
algorithms for solving a number of basic problems. In each case, we have established their
validity and estimated their running time.

By the computationnal complexity (or, for short, complexity) of an algorithm, we mean the
number of basic computational steps (such as arithmetical operations and comparisons) required
for its execution. This number clearly depends on the size and nature of the input. In the case
of graphs, the complexity is a function of the number of bits required to encode the adjacency
list of the input graph G = (V,E), a function of |V | and |E|. (The number of bits required
to encode an integer k is dlog2 ke.) Naturally, when the input includes additional information,
such as weights on the vertices or edges of the graph, this too must be taken into account in
calculating the complexity. If the complexity is bounded above by a polynomial in the input
size, the algorithm is called a polynomial-time algorithm. Such an algorithm is further qualified
as linear-time if the polynomial is a linear function, quadratic-time if it is a quadratic function,
and so on.

3.1 Computational complexity

Polynomial-time solvable algorithms The significance of polynomial-time algorithms is that
they are usually found to be computationally feasible, even for large input graphs. By contrast,

31

32 CHAPTER 3. COMPLEXITY OF ALGORITHMS

algorithms whose complexity is exponential in the size of the input have running times which
render then unusable even on inputs of moderate size.

For example, Algorithm 1.1 runs in polynomial time: The eulerian tour will be represented
with a function next such that at the end, next(e) is the edge that immediately follows e in the
tour. Each time we insert an edge e, we change the value of next for at most two edges: the one
of the edge el = vl−1vl if e = vlvl+1 is not in W , or those of vi−1vi and el = vl−1vl if e = viu.
But an edge is inserted exactly once so the complexity is O(|E|).

The algorithms discussed in Chapter 2 also run in polynomial time. In breadth-first search,
each edge is examined for possible inclusion in the tree just twice, (once per endvertex). The
same is true for depth-first search. Each time that an edge is considered, a constant number of
operations (test, addition or removal in a queue or a stack, mark). Hence, Algorithms 2.2 and
2.3 perform in time O(|E|). The complexity of Algorithms 2.4 and 2.5 is also O(|E|) since they
are variation of breadth-first search, as well as the complexity of Algorithm 2.6 because it is a
variation of depth-first search.

Although our analysis of these algorithms is admittedly cursory, and leaves out many perti-
nent details, it should be clear that they do indeed run in polynomial time. A thorough analysis
of these and other graph algorithms can be found in the books by Aho et al. [2] and Papadim-
itriou [6]. On the other hand, there are many basic problems for which polynomial-time al-
gorithms have yet to be found, and indeed might well not exist. Determining which problems
are solvable in polynomial time and which are not is evidently a fundamental question. In this
connection, a class of probems denoted by N P (standing for nondeterministc polynomial-time)
plays an important role. we give here an informal definition of this class: a precise treatment
can be found in the book of Garey and Johnson [4], or in Chapter 29 of the Handbook of Com-
binatorics [5].

The classes P , N P and co-N P A decision problem is a question whose answer is either
‘yes’ or ‘no’. Such a problem belongs to the class P if there is a polynomial-time algorithm
that solves any instance of the problem in polynomial time. It belongs to the class N P if, given
any instance of the problem whose answer is ‘yes’, there is a certificate validating this fact
which can be checked in polynomial time; such a certificate is said to be succint. Analogously,
a decision problem belongs the the class co-N P if, given any instance of the problem whose
answer is ‘no’, there is a succint certificate which confirms that this is so. It is immediate from
those definitions that P ⊆N P . Likewise, P ⊆ co-N P . Thus

P ⊆N P ∩ co-N P .

Consider, for example, the problem of determining whether a graph is bipartite. This deci-
sion problem belongs to N P , because a bipartition is a succint certificate: given a bipartition
(A,B) of a bipartite graph G, it suffices to check that each edge of G has one endvertex in A
and one endvertex in B. The problem also belongs to co-N P because, by Theorem 2.5, every
nonbipartite graph contains an odd cycle, and any such cycle constitutes a succint certificate
of the graph’s nonbipartite character. It thus belongs to N P ∩ co-N P . In fact, as shown by
Algorithm 2.1 which run in polynomial time, it belongs to P .

3.2. POLYNOMIAL REDUCTIONS 33

Consider now the problem of deciding whether a graph has a hamiltonian cycle, that is a
spanning cycle or its analog in digraph.

Problem 3.1 (Hamiltonian Cycle).
Instance: A graph G.
Decide: Does G have a hamiltonian cycle?

Problem 3.2 (Directed Hamiltonian Cycle).
Instance: A digraph G.
Decide: Does G have a directed hamiltonian cycle?

If the answer is ‘yes’, then any hamiltonian cycle would serve as a succint certificate. How-
ever, should the answer be ‘no’, what could consitute a succint certificate confirming this fact?
In constrast to the two problems described above, no such certificate is known! In other words,
notwithstanding that the Hamiltonian Cycle Problem is clearly member of the class N P , it has
not yet been shown to belong to co-N P , and might very well not belong to this class.

We have noted three relations of inclusion among the classes P , N P and co-N P , and it is
natural to ask wether these inclusiuons are proper. Because P = N P if and only if P = co-N P ,
two basic questions arise, both of which have been posed as conjectures.

Conjecture 3.3.
P 6= N P

Conjecture 3.4 (Edmonds).
P = N P ∩ co-N P

Conjecture 3.3 is one of the most fundamental open questions in all mathematics. (A prize
of one million dollar has been offered for its resolution). It is widely (but not universally)
believed that the conjecture is true, that there are problems in N P for which no polynomial-
time algorithm exists. One such problem would be the Directed Hamiltonian Cycle Problem.
As we show in Section 3.3, this problem is at least as hard to solve as any problem in the
class N P ; more precisely, if a polynomial-time algorithm for this problem should be found,
it could be adapted to solve any problem in N P in polynomial time by means of a suitable
transformation.

Conjecture 3.4 is strongly supported by empirical evidence. Most decision problems which
are known to belong to N P ∩ co-N P are also known to belong to P . A case in point is the
problem of deciding whether a given integer is prime. Although it had been known for some
time that this problem belongs to both N P and co-N P , a polynomial-time algorithm for testing
primality was discovered only much more recently, by Agrawal, Kayal and Saxena [1].

3.2 Polynomial reductions
A common approach to problem-solving is to transform the given problem into one whose
solution is already known, and then convert that solution into a solution of the original problem.

34 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Of course, this approach is feasible only if the transformation can be made rapidly. The concept
of polynomial reduction captures this requirement.

A polynomial reduction of a problem P to problem Q is a pair of polynomial-time algorithms
which transforms each instance I of P to an instance J of Q, and the other which transforms a
solution for the instance J to a solution for the instance I. If such a reduction exists, we say that
P is polynomially reducible to Q, and write P� Q. The significance of polynomial reducibility
is that if P � Q, and if there is a polynomial-time algorithm for solving Q, then this algorithm
can be converted into a polynomial-time algorithm for solving P.

In particular, if P and Q are both decision problems, it translates into symbols:

P� Q and Q ∈ P ⇒ P ∈ P . (3.1)

Observe that, since the solution of a decision problem is either ‘yes’ or ‘no’, the second algo-
rithm which transforms a solution for the instance J to a solution for the instance I, is trivial:
either it is identity (the solution to I is ‘yes’ if and only if the answer to J is ‘yes’) or the negation
(the answer to I is ‘yes’ if and only if the answer to J is ‘no’).

3.3 N P -complete problems

3.3.1 The class N P C
We have just seen how polynomial reductions may be used to produce new polynomial-time
algortihms from existing ones. By the same token, polynomial reductions may also be used to
link ‘hard’ problems, ones for which no polynomial-time algorithm exists, as can be seen by
writing (3.1) in a different form:

P� Q and P /∈ P ⇒ Q /∈ P .

This viewpoint led Cook and Levin to define a special class of seemingly intractable decision
problems, the class of N P -complete problems. Informally, there are the problems in the class
N P which are ‘at least as hard to solve’ as any problem in N P .

Formally, a problem P in N P is NP-complete if P′ � P for every problem P′ in N P . The
class of N P -complete problems is denoted by N P C . It is by no means obvious that N P -
complete problems should exist at all. On the other hand, once one such problem has been
found, the N P -completeness of other problems may be established by means of polynomial
reductions, as follows.

In order to prove that a problem Q in N P is N P -complete, it suffices to find a polynomial
reduction to Q of some known N P -complete problem P. Why is this so? Suppose that P is
N P -complete. Then P′ � P for all P′ ∈ N P . If P � Q, then P′ � Q for all P′ ∈ N P , by the
transitivity of the relation �. In other words, Q is N P -complete. In symbols:

P� Q and P ∈N P C ⇒ Q ∈N P C .

Cook and Levin made a fundamental breakthrough by showing that there do indeed exist
N P -complete problems. More precisely, they proved that the satisfiability problem for boolean

3.3. N P -COMPLETE PROBLEMS 35

formulae is N P -complete. We now describe this problem, and examine the theoretical and
practical implications of their discovery.

3.3.2 Boolean formulae and satisfiability
A boolean variable is a variable which takes on one of two values, f alse or true. Boolean
variables may be combined into boolean formulae, which may be defined recursively as follows.

• Every boolean variable is a boolean formula.

• If f is a boolean formula, then so too is (¬ f), the negation of f .

• If f1 and f2 are boolean formulae, then so too are:

– (f1∨ f2), the disjunction of f1 and f2,

– (f1∧ f2), the conjunction of f1 and f2.

These three operations may be thought of informally as ‘not f ’, ‘ f1 or f2’, and ‘ f1 and f2’,
respectively.

An assignment of values to the variables is called a truth assignment. Given a truth assign-
ment, the value of the formula may be computed according to the following rules:

• if f = f alse, then (¬ f) = true, else (¬ f) = f alse;

• if f1 = true or f2 = true, then (f1∨ f2) = true, else (f1∨ f2) = f alse;

• if f1 = true and f2 = true, then (f1∧ f2) = true, else (f1∨ f2) = f alse.

Two boolean formulae are equivalent (written ≡) if they take the same value for each as-
signment of the variable involved. It follows easily from the above rules that disjunction and
conjunction are commutative and associative. Hence, all the formulae obtained from k sub-
formulae f1, f2, . . . , fk by means of disjunction are all equivalent. Any of these is denoted by
(f1∨ f2∨·· ·∨ fk).

A boolean formula is satisfiable if there is a truth assignment of its variables for which the
value of the formula is true. Clearly, some boolean formulae are satisfiable and some are not.
This poses the general problem:

Problem 3.5 (SAT ; Boolean Satisfiability).
Instance: a boolean formula f .
Decide: Is f satisfiable?

Observe that SAT belongs to N P . Indeed given an appropriate truth assignment, it can be
checked in polynomial time that the value of the formula is indeed true.

Theorem 3.6 (Cook – Levin). The problem SAT is N P -complete.

36 CHAPTER 3. COMPLEXITY OF ALGORITHMS

The proof of the Cook-Levin Theorem involves the notion of a Turing machine, and is
beyond the scope of these notes. A proof may be found in the books of Garey and Johnson [4]
or Sipser [7].

Many combinatorial problems are shown to be N P -complete. See for example [4] or [3].
One of the most celebrated and to which many reductions are proved, is 3-SAT. To define it, we
need a few more definitions.

A variable x, or its negation x, is a literal, and a disjunction of literals is a clause. Any
conjuction of disjunctive clauses is referred to as a formula in conjunctive normal form. It
can be shown that every boolean formula is equivalent, via a polynomial reduction, to one in
conjunctive normal form (Exercise 3.1). Furthermore, every boolean formula is equivalent,
again via a polynomial reduction, to one in conjunctive normal form with exactly three literals
per clause. The decision problem for such boolean formulae is known as 3-SAT.

Problem 3.7 (3-SAT).
Instance: a boolean formula f in conjunctive normal form with exactly three literals per clause.
Decide: Is f satisfiable?

Theorem 3.8. The problem 3-SAT is N P -complete.

Proof. By Theorem 3.6, it suffices to prove that SAT � 3-SAT. Let f be a boolean formula in
conjunctive normal form. We show how to construct, in polynomial time, a boolean formula f ′

in conjunctive normal form such that:

(i) each clause in f ′ has three literals;

(ii) f is satisfiable if and only if f ′ is satisfiable.

Such a formula f ′ may be obtained by the addition of new variables and clauses, as follows.
Suppose that some clause of f has just two literals, for instance the clause (x1∨ x2). In this

case, we simply we simply replace this clause by two clauses with three literals, (x1 ∨ x2 ∨ x)
and (x1∨x2∨x), where x is a new variable. Clearly (x1∨x2) is equivalent to the conjunction of
these two clauses.

Clauses with single literals may be dealt with in a similar manner. If x1 is a clause, then we
first replace this clause by the two clauses with two literals (x1∨ x) and (x1∨ x), where x is a
new variable. We then replace each of these two clauses by two clauses with three literals as
above.

Now suppose that some clause (x1 ∨ x2 ∨ ·· · ∨ xk) of f has k literals, where k ≥ 4. In this
case, we add k−3 new variables y1,y2, . . . ,yk−3 and form the following k−2 clauses, each with
three literals.

(x1∨ x2∨ y1),(y1∨ x3∨ y2),(y2∨ x4∨ y3), . . . ,(yk−4∨ xk−2∨ yk−3),(yk−3∨ xk−1∨ xk).

One may verify that (x1∨x2∨·· ·∨xk) is equivalent to the conjunction of these k−2 clauses.

3.3. N P -COMPLETE PROBLEMS 37

3.3.3 Some N P -completeness proofs
As we have observed, in order to show that a decision problem Q in N P is N P -complete, it
suffices to find a polynomial reduction to Q of a known N P -complete problem. This is gen-
erally easier said than done. What is needed is to first decide on an appropriate N P -complete
problem P and then come up with a suitable polynomial reduction. In the case of graphs, the
latter step is often achieved by means of a construction whereby certain special subgraphs, re-
ferred to as ‘gadgets’, are inserted into the instance of P so as to obtain an instance of Q with the
required properties. We now describe an illustration of this technique by showing how 3-SAT

may be reduced to the Directed Hamiltonian Cycle Problem via an intermediate problem, the
Exact Cover Problem.

Let A be a family of subsets of a finite set X . An exact cover of X by A is a parti-
tion of X , each member of which belongs to A . For instance, if X = {x1,x2,x3} and A =
{{x1},{x1,x2},{x2,x3}}, then ({x1},{x2,x3}) is an exact cover of X by A . This notion give
rise to the following decision problem.

Problem 3.9 (Exact Cover).
Instance: a set X and a family A of subsets of X .
Decide: Is there an exact cover of X by A?

We first describe a polynomial reduction of 3-SAT to the Exact Cover Problem, and then a
polynomial reduction of the Exact Cover Problem to the Directed Hamiltonian Cycle Problem.
Since 3-SAT is N P -complete by Theorem 3.8, this implies that the Exact Cover Problem and
the Directed Hamiltonian Cycle Problem are N P -complete.

Theorem 3.10. 3-SAT is polynomially reducible to the Exact Cover Problem.

Proof. Let f be an instance of 3-SAT, with variables x1, . . . ,xn and clauses f1, . . . , fm. We first
construct a graph G from f by setting:

V (G) = {xi | 1≤ i≤ n}∪{xi | 1≤ i≤ n}∪{ f j | 1≤ j ≤ m},
E(G) = {xixi | 1≤ i≤ n}∪{xi f j | xi ∈ f j}∪{xi f j | xi ∈ f j},

where the notation xi ∈ f j (resp. xi ∈ f j) signifies that xi (resp. xi) is a literal of the clause f j.
We then obtain an instance (X ,A) of the Exact Cover Problem from this graph G by setting:

X = { f j | 1≤ j ≤ m}∪E(G), and
A = {E(xi) | 1≤ i≤ n}∪{E(xi) | 1≤ i≤ n}∪{{ f j}∪Fj | Fj ⊂ E(f j),1≤ j ≤ m},

where E(x) denotes the set of edges incident to vertex x in the graph G.
It can be verified that the formula f is satisfiable if and only if the set X has an exact cover

by the family A .

Corollary 3.11. The Exact Cover Problem is N P -complete.

Theorem 3.12. The Exact Cover Problem is polynomially reducible to the Directed Hamilto-
nian Cycle Problem.

38 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Proof. Let (X ,A) be an instance of the Exact Cover Problem, where X = {xi,1 ≤ i ≤ n} and
A = {A j | 1 ≤ j ≤ m}. We construct a digraph D as follows. Let P be a directed path whose
arcs are labelled by the elements of X , Q a directed path whose arcs are labelled by the elements
of A , and for 1 ≤ j ≤ m, R j a directed path whose vertices are labelled by the elements of A j.
The paths P, Q, and R j, 1≤ j ≤m, are assumed to be pairwise disjoint. We add an arc from the
start of P to the start of Q, and from the terminus of Q to the terminus of P. For 1≤ j ≤ m, we
also add an arc from the tail of the arc labelled A j of Q to the start of R j, and from the terminus
of R j to the head of the arc labelled A j of Q.

For 1 ≤ j ≤ m, we now transform the directed path R j into a digraph D j by replacing
each vertex labelled xi of R j by a symmetric path Pi j of length two, that is the symmetric
digraph obtained from a path of length two by replacing each edge by two arcs in each direction.
Moreover, for every such symmetric path, we add an arc from the start of Pi, j to the tail of the
arc labelled xi of P, and one from the head of xi to the terminus of Pi, j. We denote the resulting
digraph by D. See Figure 3.1.

P2,3

x3x2x1

P3,3P2,2P2,1

A2 A3A1

P1,1

Figure 3.1: The digraph D when X = {x1,x2,x3} and A = {{x1,x2},{x2},{x2,x3}}.

Observe now, that the digraph D has a directed hamiltonian cycle C if and only if the set X
has an exact cover by A .

Suppose first that D has a directed hamiltonian cycle C. If C does not use the arc labelled
A j in Q, it is obliged to traverse D j from its start to its terminus. Conversely, if C uses the arc
labelled A j in Q, it is obliged to include each one of the paths Pi, j in D j in its route from the
start of P to the terminus of P. Moreover, C traces exactly one of the paths Pi, j (for xi ∈ A j) in
travelling from the head of the arc of P labelled xi to its tail. Hence A j that label the arcs of
Q∩C form a partition of X .

Reciprocally, if we have an exact cover of X by A , a directed hamiltonian cycle C of D may
be constructed by taking the arcs labelled A j when A j is not a member of the exact cover and all
the paths Pi j for X j in the cover and xi ∈ X j and completing by adding arcs in an obvious way.

Finally, the number of vertices of D is

|E(D)|= |X |+ |A |+3
m

∑
j=1
|AJ|+2.

This function is bounded above by a linear function of the size of the instance (X ,A), so the
above reduction is indeed polynomial.

3.4. N P -HARD PROBLEMS 39

Corollary 3.13. The Directed Hamiltonian Cycle is N P -complete.

A huge number of decision problems have been shown to be N P -complete. See for example
the book of Garey and Johnson [4].

3.4 N P -hard problems
We now turn to the computational complexity of optimization problems such as the Travelling
Salesman Problem. An edge-weighted graph is a pair (G,w) where G = (V,E) is a graph and
w : E→ IR is a weight function.

Problem 3.14 (Travelling Salesman).
Instance: an edge-weighted complete graph (G,w).
Find: a hamiltonian cycle C of G of minimum weight, i.e. such that ∑e∈E(C) w(e) is minimum.

This problem contains the Hamiltonian Cycle Problem as a special case. To see this, as-
sociate with a given graph G the edge-weighted complete graph on V (G) in which the weight
function w is defined by w(uv) = 0 if uv ∈ E(G), and w(uv) = 1 otherwise. The resulting
edge-weighted complete graph has a hamiltonian cycle of weight zero if and only if G has a
hamiltonian cycle. Thus, any algorithm for solving the Travelling Salesman Problem will also
solve the Hamiltonian Cycle Problem, and we may conclude that the former problem is at least
as hard as the latter. Because the Hamiltonian Cycle Problem is N P -complete, (See Exer-
cise 3.2), the Travelling Salesman Problem is at least as hard as any problem in N P . Such
problems are called N P -hard.

Observe that every optimization problem implicitely includes an infinitude of decision prob-
lems. For example, the Travelling Salesman Problem includes, for each real number r, the fol-
lowing decision problem. Given an edge-weighted graph (G,w), is there a hamiltonian cycle
of weight at most r? If one of these problems is N P -complete, then the optimization prob-
lem is N P -hard. However, the problem may still be N P -hard even if all these problems are
polynomial-time solvable. For example, it is the case for the following basic problem.

Problem 3.15 (Maximum Clique).
Instance: a graph G.
Find: a clique of maximum size in G.

If k is a fixed integer not depending on |V (G)|, the existence of a k-clique can be decided
in polynomial time, simply by means of an exhaustive search, because the number of k-subsets
of V (G) is bounded above by |V (G)|k. However, if k depends on |V (G)|, this is no longer true.
Indeed, the problem of deciding whether a graph G has a k-clique, where k depends on |V (G)|
is N P -complete.

Theorem 3.16. The following problem is N P -complete.
Instance: a graph G.
Decide: ω(G)≥ |V (G)|/7?

40 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Corollary 3.17. The Maximum Clique Problem is N P -hard.

Since a subset S of V (G) is a stable set in G if and only if S is a clique in G, the following
problem is polynomially equivalent to the Maximum Clique Problem, and thus is N P -hard
also.

Problem 3.18 (Maximum Stable Set).
Instance: a graph G.
Find: a stable set of maximum size in G.

A huge collection of optimization problems have been shown to be N P -hard, see [?].

3.5 Approximation algorithms
For N P -hard optimization problems of practical interest, such as the Travelling Salesman Prob-
lem, the best that one can reasonably expect of a polynomial-time algorithm is that it should
always return a feasible solution which is not too far from optimality.

Given a real number r ≥ 1, an r-approximation algorithm for a minimization problem is
an algorithm that returns a feasible solution whose value is no more than r times the optimal
value; similarly, an r-approximation algorithm for a maximization problem is an algorithm that
returns a feasible solution whose value is no less than r times the optimal value; the smaller
the value of r, the better the approximation. Naturally, the running time of the algorithm is an
equally important factor. We give an example.

Problem 3.19 (Maximum Cut).
Instance: a graph G.
Find: a spanning bipartite subgraph F of G with the maximum number of edges.

It can be shown that the Maximum Cut Problem is N P -hard (Exercise 3.3).

Theorem 3.20. The Maximum Cut Problem admits a polynomial-time 2-approximation algo-
rithm.

Proof. We now describe an algorithm that find a bipartite subgraph F such that |E(F)| ≥
|E(G)|/2. Since an subgraph of G cannot have more than |E(G)| edges, this is a 2-approximation
algorithm.

Algorithm 3.1 (Maximum-Cut Approximation).

2. Take any ordering v1,v2, . . . ,vn of the vertices; A := /0; B := /0; E := /0.

2. For i = 1 to n, if vi has more neighbours in A than in B, then add vi to B and all edges
joining vi to elements of A to E. Else add vi to A and all edges joining vi to elements of B
to E.

3. Return ((A,B),E).

3.6. EXERCISES 41

This algorithm examined every vertex exactly once and each time its examines a vertex it
must counts the numbers of vertices in A and B and compare them. Then its complexity is at
most O(|V |2).

Let us now show that the returned bipartite graph F satisfies |E(F)| ≥ |E(G)|/2. Therefore
let us denote by Fi = ((Ai,Bi),Ei) the bipartite graph constructed after step i that is after having
examing vi at Step 2 in the above algorithm. and Gi = G〈{v1, . . . ,vi}〉. We prove by induction
that |E(Fi)| ≥ |E(Gi)|/2, the result holding vacuously when i = 0. Suppose now that i > 0 and
that the result holds for i−1. We obtained Fi from Fi−1 by adding Vi to the part in which it has the
smaller number of neighbours. Hence, the number of edges incident to vi that we add to Fi−1 is
at least has large has half the number of edges joining vi to a vertex in V (Fi−1) = {v1, . . . ,vi−1}.
Since |E(Fi−1)| ≥ |E(Gi−1)|/2 by the induction hypothesis, we have |E(Fi)| ≥ |E(Gi)|/2.

The analog of the Maximum Cut Problem in edge-weighted graph, called the Weighted
Maximum Cut Problem also admits a polynomial-time 2-approximation algorithm. See Exer-
cise 3.4.

If some algorithms admits polynomial-time approximation algorithms, some others do not.
For example, this is the case for the Travelling Salesman Problem: for any t ≥ 2, there cannot
exists a polynomial-time t-approximation algorithm for solving the Travelling Salesman Prob-
lem, unless P = N P . (Exercise 3.5). However some special cases the Travelling Salesman
Problem admit polynomial-time approximation algorithm. For example, such an algorithm,
when the weights satisfies the triangle inequality, is discussed in Section 4.2.3.

For more on approximation algorithms, we refer the interested reader to the book of Vazi-
rani [8].

3.6 Exercises
Exercise 3.1. Let f1 and f2 be two boolean formulae in conjuctive normal form.
1) Show that:

a) f1∧ f2 is in conjunctive normal form;

b) f1∨ f2 is equivalent to a boolean formula in conjunctive normal form;

c) ¬ f1 is equivalent to a boolean formula in conjunctive normal form;

2) Deduce that every boolean formula is equivalent to a boolean formula in conjunctive normal
form.

Exercise 3.2.
1) Describe a polynomial-time reduction of the Directed Hamiltonian Cycle Problem to the
Hamiltonian Cycle Problem.
2) Deduce the Hamiltonian Cycle Problem is N P -complete.

Exercise 3.3. Show that the Maximum Cut Problem is N P -hard.

42 CHAPTER 3. COMPLEXITY OF ALGORITHMS

Exercise 3.4. Describe a polynomial-time 2-approximation algorithm for the following prob-
lem, called the Weighted Maximum Cut Problem.
Instance: an edge-weighted graph (G,w).
Find: a spanning bipartite subgraph F of G with the maximum weight.

Exercise 3.5.
1) Let G be a graph on n vertices, n ≥ 3 vertices, and let t be a positive integer. Consider the
edge-weighted complete graph (K,w), where V (K) = V (G), in which w(e) = 1 if e ∈ E(G) and
w(e) = (t−1)n+2 if e ∈ E(K)\E(G). Show that:

a) (K,w) has a hamiltonian cycle of weight n if and only if G has a hamiltonian cycle;

b) any hamiltonian cycle of (K,w) of weight greater than n has weight at least tn+1.

2) Deduce that, unless P 6= N P , there cannot exist a polynomial-time t-approximation algo-
rithm for solving the Travelling Salesman Problem.

Bibliography

[1] M. Agrawal, N. Kayal and N. Saxena. PRIMES is in P. Ann. of Math. (2) 160:781–793,
2004.

[2] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Series in Computer Science and Information Processing,
Addison-Wesley, Reading, MA, 1975. Second printing.

[3] P. Crescenzi and V. Kann, eds. A N P -compendium of N P optimization problems.
http://www.csc.kth.se/ viggo/problemlist/.

[4] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and
Co., San Francisco, Calif., 1979.

[5] R. L. Graham, M. Grötschel and L. Lovász, eds. Handbook of Combinatorics. Vol. 1,2.
Elsevier, Amsterdam, 1995.

[6] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[7] M. Sipser. Introduction to the Theory of Computation. Second edition. Course Technol-
ogy, Boston, MA, 2005.

[8] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.

43

44 BIBLIOGRAPHY

Chapter 4

Algorithms in edge-weighted graphs

Recall that an edge-weighted graph is a pair (G,w) where G = (V,E) is a graph and w : E→ IR
is a weight function. Edge-weighted graphs appear as a model for numerous problems where
places (cities, computers,...) are linked with links of different weights (distance, cost, through-
put,...). Note that a graph can be viewed as an edge-weighted graph where all edges have weight
1.

Let (G,w) be an edge-weighted graph. For any subgraph H of G, the weight of H, denoted
by w(H), is the sum of all the weights of the edges of H. In particular, if P is a path, w(P) is
called the length of P. The distance between two vertices u and v, denoted by distG,w(u,v), is
the length of a shortest (with minimum length) (u,v)-path.

Observe that distG,w is a distance: it is symmetric, that is, distG,w(u,v) = distG,w(v,u), and it
satisfies the triangle inequality: for any three vertices x, y and z, distG,w(x,z) ≤ distG,w(x,y)+
distG,w(y,z).

4.1 Computing shortest paths

Given an edge-weighted graph (G,w), one of the main problems is the computation of distG(u,v)
and finding a shortest (u,v)-path. We have seen in Subsection 2.1.1, that if all the edges have
same weight then one can compute a shortest (u,v)-path by running a breadth-first search from
u. Unfortunately, this approach fails for general edge-weighted graphs. See Exercise 4.1. We
now describe algorithms to solve this problem in general. For this purpose, we solve the fol-
lowing more general problem.

Problem 4.1 (Shortest-paths tree).
Instance: an edge-weighted graph (G,w) and a vertex r.
Find: a subtree T of G such that ∀x ∈V (G),distG,w(r,x) = distT,w(r,x).

Such a tree is called a shortest-paths tree.

45

46 CHAPTER 4. ALGORITHMS IN EDGE-WEIGHTED GRAPHS

4.1.1 Dijkstra’s Algorithm
Dijkstra’s Algorithm is based on the following principle. Let S ⊂ V (G) containing r and let
S̄ = V (G)\S. If P = (r,s1, . . . ,sk, s̄) is a shortest path from r to S̄, then sk ∈ S and P is a shortest
path from r to s̄. Hence,

dist(r, s̄) = dist(r,sk)+w(sks̄)

and the distance from r to S̄ is given by the following formula

dist(r, S̄) = min
u∈S,v∈S̄

{dist(r,u)+w(uv)}

To avoid to many calculations during the algorithm, each vertex v ∈V (G) is associated to a
function d′(v) which is an upper bound on dist(r,v), and to a vertex p(v) which is the potential
parent of v in the tree. At each step, we have:

d′(v) = dist(r,v) if v ∈V (Ti)
d′(v) = min

u∈V (Ti−1)
{dist(r,u)+w(uv)} if v ∈V (Ti)

Algorithm 4.1 (Dijkstra).

1. Initialize d′(r) := 0 and d′(v) := +∞ if v 6= r. T0 is the tree consisting of the single vertex
r, u0 := r and i := 0.

2. For any v ∈V (Ti), if d′(ui)+w(uiv)≤ d′(v), then d′(v) := d′(ui)+w(uiv) and p(v) := ui.

3. Compute min{d′(v) | v∈V (Ti)}. Let ui+1 a vertex for which this minimum is reached. Let
Ti+1 be the tree obtained by adding the vertex ui+1 and the edge p(ui+1)ui+1.

4. If i = |V |−1, return Ti, else i := i+1 and go to Step 2.

Remark 4.2. The algorithm does not work if some weights are negative.

Complexity of Dijkstra’s Algorithm: To every vertex is associated a temporary label corre-
sponding to (d′(v), p(v)). They are depicted in Figure 4.1. We do

- at most |E| updates of the labels;

- |V | searches for the vertex v for which d′(v) minimum and as many removal of labels.

The complexity depends on the choice of the data structure for storing the labels: if it is a
list, the complexity is O(|E||V |+ |V |2). But it can be improved using better data structures.
For example, a data structure known as heap is commonly used for sorting elements and their

4.1. COMPUTING SHORTEST PATHS 47

10,u

111,u

112,u

112,u

111,u

112,u

r

0

419,u

+∞
+∞

+∞

+∞
+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞

+∞+∞

1

10

4

810
3

11 1

5

3 u0,0

u1,1

u0,0 u0,0

u1,1

u2,4

u1,1

u0,0 u2,4
u3,7

u4,11
u1,1

u0,0 u2,4
u3,7

u1,1

u0,0 u2,4
u3,7

u4,11
u6,13

u5,12

u1,1

u0,0 u2,4
u3,7

u4,11

u5,12

Figure 4.1: A run of Dijkstra’s Algorithm on the edge-weighted graph depicted top left. At each
step, bold vertices and edges are those of Ti. To each vertex t of Ti is associated its name and
the value d′(t) = dist(r, t). Next to each vertex v not in V (Ti) is a box containing the value d′(v)
and p(v) if d′(v) 6= +∞.

48 CHAPTER 4. ALGORITHMS IN EDGE-WEIGHTED GRAPHS

associated values, called keys (such as edges and their weights). A heap is a rooted binary tree
T should we define it? whose vertices are in one-to-one correspondence with the elements in
question (in our case, vertices or edges). The defining property of a heap is that the key of the
element located at vertex v of T is required to be at least as small as the keys of the elements
located at vertices of the subtree of T rooted at v. This condition implies, in particular, that the
key of the element at the root of T is one of smallest value; this element can thus be accessed
instantly. Moreover, heaps can be reconstituted rapidly following small modifications such as
the addition of an element, the removal of an element, or a change in the value of a key. A
priority queue is simply a heap equipped with procedures for performing such readjustments
rapidly.

Using a priority queue, the complexity of Dijkstra’s Algorithm is O(|E| log |V |+ |V | log |V |).

It should be evident that data structures play a vital role in the efficiency of algorithms. For
further information on this topic, we refer the reader to [4, 1, 5, 3].

4.1.2 Bellmann-Ford Algorithm

The algorithm performs n iterations, and gives a label h(v) to any vertex. At iteration i, h(v) is
the minimum weight of a path using at most i edges between r and v.

Note that, it always exists a shortest walk using at most |V (G)|− 1 edges between r and v
(otherwise the walk would contain a cycle of negative weight).

Algorithm 4.2 (Bellmann-Ford).

1. Initialization : h(r) := 0, h(v) := +∞,∀v 6= r.

2. For i = 0 to |V (G)|−1 do :
for all v ∈V (G),h(v) := min(h(v),min{h(u)+w(uv) | uv ∈ E(G)}).

3. Return d(r,v) = h(r,v).

Complexity of Bellmann-Ford’s Algorithm: Each iteration costs O(|E|) (all edges are con-
sidered), so the total complexity is O(|E||V |).

The algorithm works even if some edges have negative weight. It can also detect cycles with
negative weight. There is such a cycle if and only if, after the |V |th iteration, the labels h may
decrease. Finally, if during an iteration, no h(v) decreases, then h(v) = d(r,v). It is possible
to improve the algorithm by continuing the iteration only if h(v) becomes min{h(u)+ w(uv) |
uv ∈ E(G)} for at least one vertex. The algorithm run in time O(L|E|) where L is the maximum
number of edges in a shortest path.

4.2. MINIMUM-WEIGHT SPANNING TREE 49

4.2 Minimum-weight spanning tree

Another important problem is the following: given a connected edge-weighted graph, what is
the connected spanning subgraph with minimum weight? If all weights are non-negative, since
any connected graph has a spanning tree (Corollary 1.10), the problem consists of finding a
spanning tree with minimum weight.

Problem 4.3 (Minimum-Weight Spanning Tree).
Instance: a connected edge-weighted graph (G,w).
Find: a spanning tree T of G with minimum weight, i.e. for which ∑e∈T w(e) is minimum.

For S ⊂ V (G), an edge e = xy is S-transversal, if x ∈ S and y /∈ S. The algorithms to find
a minimum-weight spanning tree are based on the fact that a transversal edge with minimum
weight is contained in a minimum-weight spanning tree.

Lemma 4.4. Let (G,w) be an edge-weighted graph and let S⊂V . If e = ss̄ is an S-transversal
edge with minimum weight, then there is a minimum-weight spanning tree containing e.

Proof. Let T be a tree that does not contains e. There is a path P between s and s̄ in T . At least
one edge of P, say e′, is S-transversal. Hence, the tree T ′ = (T \ e′)∪{e} has weight w(T ′) =
w(T)+ w(e)−w(e′) ≤ w(T) since w(e) ≤ w(e′). Therefore, if T is a minimum spanning tree,
then so does T ′ and w(e) = w(e′).

In particular, Lemma 4.4 implies that if e is an edge of minimum weight, i.e., w(e) =
min f∈E(G) w(f) = wmin, then there is a minimum-weight spanning tree containing e.

4.2.1 Jarnı́k-Prim Algorithm

The idea is to grow up the tree T with minimum weight by adding, at each step, a V (T)-
transversal edge with minimum weight. At each step, ET is the set of the V (T)-transversal
edges.

Algorithm 4.3 (Jarnı́k-Prim).

1. Initialize the tree T to any vertex x and ET is the set of edges incident to x.

2. While V (T) 6= V (G):
Find an edge e ∈ ET with minimum weight. Add e and its end not in T to T . Let Ey be the
set of edges incident to y. Remplace ET by (ET4Ey).

50 CHAPTER 4. ALGORITHMS IN EDGE-WEIGHTED GRAPHS

Complexity of Jarnı́k-Prim Algorithm: During the execution, at most |E(G)| edges are
added in ET , and at most |E(G)| edges are removed. Indeed, an edge e is removed when both
its endvertices are in V (T). Since V (T) grows up, e will not be added anymore to ET . |V (G)|
selections of the edge of ET with minimum weight must be performed. To performs such an
algorithm we need a data structure allows the insertion, the removal and the selection of the
minimum-weight element efficiently. Using a priority queue, the total complexity of Jarnı́k-
Prim Algorithm is O(|E| log |E|).

4.2.2 Boruvka-Kruskal Algorithm
Boruvka-Kruskal Algorithm is close to Jarnı́k-Prim Algorithm and its correctness also comes
from Lemma 4.4. The idea is to start from a spanning forest and to make its number of con-
nected components decreases until a tree is obtained. Initially, the forest has no edges and, at
each step, an edge with minimum weight that links two components is added.

For this purpose, we need a fast mechanism allowing to test whether or not u and v are in
the same component. A way to do so consists in associating to each connected component the
list of all the vertices it contains. To every vertex u is associated a vertex p(u) in the same
component. This vertex p(u) is a representative of this component. It points to the set Cp(u) of
vertices of this component and to the size size(p(u)) corresponding to the size it.

Algorithm 4.4 (Kruskal).

1. Initalize T : V (T) := V (G), E(T) := /0. Order the edges in increasing order of the weights
and place them in a stack L; For all u ∈V (G), do p(u) := Cu and size(Cu) := 1.

2. If L = /0, terminate. Else, pull the edge e = uv with minimum weight;

3. If p(u) = p(v) (the vertices are in the same component), then go to 2. Else p(u) 6= p(v),
add e in T .

4. If size(p(u)) ≥ size(p(v)), then Cp(u) := Cp(u) ∪ Cp(v), size(p(u)) := size(p(u)) +
size(p(v)), and for any w ∈Cp(v), p(w) := p(u).
Else (size(p(u)) < size(p(v))), Cp(v) :=Cp(v)∪Cp(u), size(p(v)) := size(p(u))+size(p(v)),
and for any w ∈Cp(u), p(w) := p(v).

5. Go to 2.

Complexity of Boruvka-Kruskal Algorithm Ordering the edges takes time O(|E(G)| log |E(G)|).
Then, each edge is considered only once and deciding whether the edge must be added to the
tree or not takes a constant number of operations.

Now, let us consider the operations used to update the data structure when an edge is inserted
in the tree.

4.2. MINIMUM-WEIGHT SPANNING TREE 51

We do the union of to sets Cp(u) and Cp(v). If this sets are represented as lists with a pointor
to its last element, it takes a constant time. Such unions are done |V (G)|−1 times.

We also have to update the values of some p(w). Let x ∈ V (G) and let us estimate the
number of updates of p(x) during the execution of the algorithm. Observe that when p(x) is
updated, the component of x becomes at least twice bigger. Since, at the end, x belongs to a
component of size |V (G)|, then p(x) is updated at most log2(|V (G)|) times. In total, there are
at most |V (G)| log2 |V (G)| such updates.

Since |V (G)| ≤ |E(G)|+1 , the total time complexity is O(|E(G)| log |E(G)|).

4.2.3 Application to the Travelling Salesman Problem
Rosenkrantz, Sterns and Lewis considered the special case of the Travelling Salesman Problem
(3.14) in which the weights satisfy the triangle inequality: w(xy)+w(yz)≥w(xz), for any three
vertices x, y and z.

Problem 4.5 (Metric Travelling Salesman).
Instance: an edge-weighted complete graph (G,w) whose weights satisfy the triangle inequality.
Find: a hamiltonian cycle C of G of minimum weight, i.e. such that ∑e∈E(C) w(e) is minimum.

This problem is N P -hard (see Exercise 4.11) but a polynomial-time 2-approximation algo-
rithm using minimum-weight spanning tree exists.

Theorem 4.6 (Rosenkrantz, Sterns and Lewis). The Metric Travelling Salesman Problem ad-
mits a polynomial-time 2-approximation algorithm.

Proof. Applying Jarnı́k-Prim or Boruvka-Kruskal algorithm, we first find a minimum-weight
spanning tree T of G. Suppose that C is a minimum-weight hamiltonian cycle. By deleting any
edge of C we obtain a hamiltonian path P of G. Because P is a spanning tree, w(T)≤ w(P)≤
w(C).

We now duplicate each edge of T , thereby obtaining a connected eulerian multigraph H with
V (H) =V (G) and w(H) = 2w(T). The idea is to transform H into a hamiltonian cycle of G, and
to do so without increasing its weight. More precisely, we construct a sequence H0,H1, . . . ,Hn−2
of connected eulerian multigraphs, each with vertex set V (G), such that H0 = H, Hn−2 is a
hamiltonian cycle of G, and w(Hi+1)≤ w(Hi), 0≤ i≤ n−3. We do so by reducing the number
of edges, one at a time, as follows.

Let Ci be an eulerian tour of Hi, where i < n− 2. The multigraph Hi has 2(n− 2)− i > n
edges, and thus a vertex v has degree at least 4. Let xe1ve2y be a segment of the tour Ci; it
will follow by induction that x 6= y. We replace the edges e1 and e2 of Ci by a new edge e of
weight w(xy) linking x and y, thereby bypassing v and modifying Ci to an eulerian tour Ci+1 of
Hi+1 = (Hi \ {e1,e2})∪{e}. By the triangle inequality, we have w(Hi+1) = w(Hi)−w(e1)−
w(e2)+w(e)≤w(Hi). The final graph Hn−2, being a connected eulerian graph on n vertices and
n edges, is a hamiltonian cycle of G. Furthermore, w(Hn−2)≤ w(H0) = 2w(T)≤ 2w(C).

A 3
2 -approximation algorithm for the Metric Travelling Salesman Problem was found by

Christofides [2].

52 CHAPTER 4. ALGORITHMS IN EDGE-WEIGHTED GRAPHS

4.3 Algorithms in edge-weighted digraphs
Computing shortest paths in directed graphs can be done in much the same way as in undirected
graphs by growing arborescences rather than trees. Dijkstra’s Algorithm and Bellman-Ford
Algorithm translates naturally.

The Minimum-Weight Spanning Tree Problem is equivalent to finding the minimum-weight
spanning connected subgraph. The corresponding problem in digraph, namely, finding a con-
nected subdigraph with minimum weight in a connected digraph is much more complex. Ac-
tually, this problem is N P -hard even when all edges have same weight because it contains the
Directed Hamiltonian Cycle Problem as special case. One can easily describe a polynomial-
time 2-approximation algorithm. (See Exercise 4.12). Vetta [6] found a polynomial-time 3

2 -
approximation algorithm.

4.4 Exercices
Exercise 4.1. Show a edge-weighted graph G having a vertex u such that no breadth first seach
tree from u is a shortest-paths tree.

Exercise 4.2.

Consider the graph depicted in Figure 4.2.

1) Apply Dijkstra’s and Bellmann-Ford algorithms for finding a shortest-paths tree from r.

2) Apply the algorithms for finding a minimum-weight spanning tree.

3

5

2

1

3

3

1

2
3

4

2

1

1

2

1

−3

2

2

1

r

Exercise 4.3. Let (G,w) be a connected edge-weighted graph.
1) Prove that if w is a constant function then every shortest-paths tree is a minimum-weight

4.4. EXERCICES 53

spanning tree.
2) Exhibit a connected edge-weighted graph in which there is a shortest-paths tree which is not
a minimum-weight spanning tree.

Exercise 4.4. Four imprudent walkers are caught in the storm and nights. To reach the hut, they
have to cross a canyon over a fragile rope bridge which can resist the weight of at most two
persons. In addition, crossing the bridge requires to carry a torch to avoid to step into a hole.
Unfortunately, the walkers have a unique torch and the canyon is too large to throw the torch
across it. Due to dizziness and tiredness, the four walkers can cross the bridge in 1, 2, 5 and 10
minutes. When two walkers cross the bridge, they both need the torch and thus cross the bridge
at the slowest of the two speeds.

With the help of a graph, find the minimum time for the walkers to cross the bridge.

Exercise 4.5. Let T be a minimum-weight spanning tree of an edge-weighted graph (G,w)
and T ′ another spanning tree of G (not necessarily of minimum weight). Show that T ′ can be
transformed into T by successively exchanging an edge of T ′ by an edge of T so that at each
step the obtained graph is a tree and so that the weight of the tree never increases.

Exercise 4.6. Little Attila proposed the following algorithm to solve the Minimum-Weight
Spanning Tree Problem: he considers the edges successively in decreasing order with respect
to their weight and suppress the ones that are in a cycle of the remaining graph. Does this
algorithm give an optimal solution to the problem? Justify your answer.

Exercise 4.7. Let (G,w) be an edge-weighted graph. For all t ≥ 1, a t-spanner of (G,w) is a
spanning edge-weighted graph (H,w) of (G,w) such that, for any two vertices u,v, distH,w(u,v)≤
t×distG,w(u,v).

1) Show that (G,w) is the unique 1-spanner of (G,w).
2) Let k ≥ 1. Prove that the following algorithm returns a (2k−1)-spanner of (G,w).

1. Initalise H : V (H) := V (G), E(H) := /0. Place the edges in a stack in increasing order
with respect to their weight. The minimum weight edge will be on top of the stack.

2. If L is empty then return H. Else remove the edge uv from the top of the stack;

3. If in H there is no (u,v)-path with at most 2k−1 edges, add e to H.

4. Go to 2.

3) Show that the spanner returned by the above algorithm contains a minimum-weight span-
ning tree. (One could show that at each step the connected components of H and the forest
computed by Boruvka-Kruskal Algorithm are the same.)

Exercise 4.8.
We would like to determine a spanning tree with weight close to the minimum. Therefore we

study the following question: What is the complexity of the Minimum-Weight Spanning Tree
Problem when all the edge-weights belong to a fixed set of size s. (One could consider first the
case when the edges have the same weight or weight in {1,2}.

54 CHAPTER 4. ALGORITHMS IN EDGE-WEIGHTED GRAPHS

We assume that the edges have integral weights in [1,M]. We replace an edge with weight
in [2i,2i+1− 1] by an edge of weight 2i. (We sample the weight.) Prove that if we compute a
minimum-weight spanning tree with the simplified weight then we obtain a tree with weight at
most twice the minimum for the original weight.

What happens if we increase the number of sample weights?

Exercise 4.9. 1) Let G be 2-connected edge-weighted graph. (See Chapter 5 for the definition
of 2-connectivity.) Show that all the spanning trees have minimum weight if and only if all the
edges have the same weight.

2) Give an example of a connected edge-weighted graph for which all the spanning tree have
the same weight but whose edges do not all have the same weight.

Exercise 4.10. The diameter of an edge-weighted graph (G,w) is the maximum distance be-
tween two vertices: diam(G) := max{distG,w(u,v) | u ∈V (G),v ∈V (G)}.
Show that the following algorithm computes the diameter of an edge-weighted tree T .

1. Pick a vertex x of T .

2. Find a vertex y whose distance to x is maximum (using Dijkstra’s Algorithm for example).

3. Find a vertex z whose distance to y is maximum.

4. Return distT,w(y,z).

Exercise 4.11. Show that the Metric Travelling Salesman Problem is N P -hard.

Exercise 4.12.

1) Let D be a strongly connected digraph on n vertices. A spanning subdigraph of D is strong-
minimal if it is strongly connected and every spanning proper subdigraph is not strongly con-
nected.

a) Show that in the handle decomposition of a strong-minimal spanning subdigraph all the
handles have length at least 2.

b) Deduce that a strong-minimal spanning subdigraph of D has at most 2n−2 arcs.

2) Describe a polynomial-time 2-approximation for the following problem:
Instance: a strongly connected digraph D.
Find: a strongly connected spanning subdigraph with minimum number of arcs.

Exercise 4.13. An arborescence is an orientation of a tree in which every vertex has inde-
gree 1 except one called the root which has indegree 0. The aim of this exercise is to obtain
a polynomial-time algorithm for finding a minimum-weight spanning arborescence with pre-
scribed root u in an edge-weighted strong digraph (D,w).

1) Show that if xy is an arc with minimum weight in (D,w) and y 6= u, then there is a
minimum-weight spanning arborescence with root u containing xy.

2) Deduce a polynomial-time algorithm for finding a minimum-weight spanning arbores-
cence with root u in (D,w).

Bibliography

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data Structures and Algorithms. Addison-
Wesley Series in Computer Science and Information Processing, Addison-Wesley,
Reading, MA, 1983.

[2] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Management Sciences Research Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms.
Second Edition. MIT Press, Cambridge, MA, 2001.

[4] D. E. Knuth. The Art of Computer Programming. Vol. 1: Fundamental Algorithms.
Addison-Wesley, Reading, MA, 1969. Second printing.

[5] R. E. Tarjan. Data Structures and Networks Algorithms. CBMS-NSF Regional Con-
ference Series in Applied Mathematics, Vol. 44, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1983.

[6] A. Vetta. Approximating the minimum strongly connected subgraph via a matching
lower bound. Proceedings of the twelfth annual ACM-SIAM symposium on discrete
algorithms (SODA 2001), pages 417–426, 2001.

55

56 BIBLIOGRAPHY

Chapter 5

Connectivity

5.1 Introduction
The (strong) connectivity corresponds to the fact that a (directed) (u,v)-path exists for any
pair of vertices u and v. However, imagine that the graphs models a network, for example the
vertices correspond to computers and edges to links between them. An important issue is that
the connectivity remains even if some computers and links fail. This will be measured by the
notion of k-connectivity.

Let G be a graph. Let W be an set of edges (resp. of vertices). If G\W (resp. G−W) is not
connected, then W separates G, and W is called an edge-separator (resp. vertex-separator) or
simply separator of G.

For any k ≥ 1, G is k-connected if it has order at least k + 1 and no set of k− 1 vertices
is a separator. In particular, the complete graph Kk+1 is the only k-connected graph with k + 1
vertices. The connectivity of G, denoted by κ(G), is the maximum integer k such that G is
k-connected. Similarly, a graph is k-edge connected if it has at least two vertices and no set
of k− 1 edges is a separator. The edge-connectivity of G, denoted by κ′(G), is the maximum
integer k such that G is k-edge-connected.

For any vertex x, if S is a vertex-separator of G− x then S∪{x} is a vertex-separator of G,
hence

κ(G)≤ κ(G− x)+1.

However, the connecivity of G− x may not be upper bounded by a function of κ(G); see Exer-
cise 5.3 (ii).

Regarding egde-connectivity, things are a bit easier. Indeed, for any edge e ∈ E(G), F is an
edge-separator of G\ e if and only if F ∪{e} is an edge-separator of G. Hence

κ
′(G)−1≤ κ

′(G\ e)≤ κ
′(G).

By definition, being 1-connected, 1-edge-connected or connected is equivalent. For larger
value of k, k-connectivity implies k-edge-connectivity.

Proposition 5.1. Let G be a graph with at least two vertices.

κ(G)≤ κ
′(G)≤ δ(G).

57

58 CHAPTER 5. CONNECTIVITY

Proof. Removing all edges incident to a vertex makes the graph disconnected. Hence, κ′(G)≤
δ(G).

Let us assume that κ′(G) = k. Let F = {x1y1,x2y2, . . . ,xkyk} be an edge-separator of G
such that all xi’s are in the same connected component C of G \F . If G−{x1,x2, . . . ,xk} is
not connected, then κ(G) ≤ k. Else, C = {x1,x2, . . . ,xk}. Hence, x1 has at most k neighbours,
namely the xi’s for xi 6= x1 and the yi’s such that xi = x1. Then the neighbourhood of x1 is a
vertex-separator of size at most k. So κ(G)≤ k ≤ κ′(G).

Reciprocally, the edge-connectivity of a graph cannot be bounded by its connectivity. See
Exercise 5.3.

A natural question is how to add a vertex (computer) to an already existing k-connected
graph (network) so that it remains k-connected. Obviously, since the connectivity is at least
the minimum degree by Proposition 5.1, one needs to link the new vertex to at least k existing
vertices. This easy necessary condition is in fact sufficient.

Lemma 5.2. Let G be a k-connected graph. If G′ is obtained from G by adding a new vertex x
adjacent to at least k vertices of G, then G′ is k-connected.

Proof. Let S be a separator S of G′. Let us show that |S| ≥ k. If S contains x, then S \ {x}
must be a separator of G. Since G is k-connected then |S\{x}| ≥ k and so |S| ≥ k +1. Assume
now that x /∈ S. If N(x) ⊆ S then |S| ≥ k. Else, N(x) \ S 6= /0 and N(x) \ S belongs to a unique
connected component of G′\S (the one of x). Hence, S is a separator of G. Thus |S| ≥ k because
G is k-connected.

Similarly, adding a new vertex of degree k to a k-edge-connected graph yields a k-edge-
connected graph.

Lemma 5.3. Let G be a k-edge-connected graph. If G′ is obtained from G by adding a new
vertex x adjacent to at least k vertices of G, then G′ is k-edge-connected.

Proof. Left in Exercise 5.5

5.2 2-edge-connected graphs
For 2-edge-connected graphs, there is a structural theorem similar to Theorem 1.15 for strongly
connected digraphs. It can be proved in exactly the same way.

The following proposition follows easily from the definition of 2-edge-connectivity.

Proposition 5.4. Let D be a 2-edge connected graph. Then every edge is in a cycle.

Proof. Let e = uv be an edge. Since G is 2-edge-connected then G\ e is connected. Thus there
is a (v,u)-path in G\ e. Its concatenation with (u,v) is a cycle containing e.

Definition 5.5. Let G be a graph and H be a subgraph of G. A H-handle is a path or a cycle
(all vertices are distinct except possibly the two endvertices) such that its endvertices are in
V (H) and its internal vertices are in V (G)\V (H). A handle decomposition of G is a sequence
(C,P1, . . . ,Pk) such that:

5.3. 2-CONNECTED GRAPHS 59

• C = G0 is a cycle;

• for all 1≤ i≤ k, Pi is a Gi−1-handle and Gi = Gi−1∪Pi;

• Gk = G.

It is straightforward to show that if H is a 2-edge-connected subgraph of a graph G, the graph
H ∪P is 2-edge-connected for any H-handle P. (See Exercise 5.6.) Hence, an easy induction
immediately yields that every graph admitting a handle decomposition is 2-edge-connected.
Conversely, every 2-edge-connected graph admits a handle decomposition starting at any cycle.

Theorem 5.6. Let G be a 2-edge-connected graph and C a cycle. Then G has a handle decom-
position (C,P1, . . . ,Pk).

Proof. Let H be the largest subgraph of G such that H admits a handle decomposition (C,P1, . . .Pk).
Since every edge xy in E(G) \E(H) with both endvertices in V (H) is a H-handle, H is an in-
duced subgraph of G. Suppose for a contradiction that H 6= G, then V (H) 6= V (G). Since G is
2-edge connected, there is an edge vw with v ∈V (G) and w ∈V (G)\V (H). Since G is 2-edge
connected, G contains a (w,H)-path P. Then, the concatenation of (v,w) and P is a H-handle in
G, contradicting the maximality of H.

Corollary 5.7 (Robbins, 1939). A graph admits a strongly connected orientation if and only if
it is 2-edge connected.

Proof. Necessity: If a graph G is not connected, then there is no directed path between any two
vertices in distinct components whatever be the orientation. Let us assume that G has an edge
uv such that G\uv is not connected. Let Cu and Cv be the connected components of u and v in
G\uv. Then, if uv is oriented from u to v, there is no directed (v,u)-path using this orientation.

Sufficientcy: Let us assume that G is 2-edge connected. From Theorem 5.6, G admits a
handle decomposition (C,P1, . . . ,Pk). Orienting C into a directed cycle and each Pi, 1 ≤ i ≤ k,
into a directed path, we obtain an orientation D of G having a handle decomposition. So, by
Theorem 1.15, D is strongly connected.

5.3 2-connected graphs
For 2-connected graphs, there is a structural theorem similar to Theorems 5.6 and 1.15.

Observe that since a 2-connected graph is also 2-edge-connected by Proposition 5.1, every
edge of a 2-connected graph contains is in a cycle. More generally, for any two vertices x and y
(not necessarily adjacent) there is a cycle containing x and y. See Exercise 5.7.

Definition 5.8. Let G be a graph and H be a subgraph of G. A H-ear is a path whose endvertices
are in V (H) and whose internal vertices are in V (G) \V (H). An ear decomposition of G is a
sequence (C,P1, . . . ,Pk) such that:

• C = G0 is a cycle;

60 CHAPTER 5. CONNECTIVITY

• for all 1≤ i≤ k, Pi is a Gi−1-ear and Gi = Gi−1∪Pi;

• Gk = G.

It is straightforward to show that if H is a 2-connected subgraph of a graph G, the graph
H∪P is 2-connected for any H-ear P. (See Exercise 5.6.) Hence, an easy induction immediately
yields that every graph admitting an ear decomposition is 2-connected. Conversely, every 2–
connected graph admits an ear decomposition starting at any cycle.

Theorem 5.9. Let G be a 2-connected graph and C a cycle. Then G has an ear decomposition
(C,P1, . . . ,Pk).

Proof. Let H be the largest subgraph of D such that H admits an ear decomposition (C,P1, . . .Pk).
Since every edge xy in E(G)\E(H) with both endvertices in V (H) is a H-ear, H is an induced
subgraph of G. Suppose for a contradiction that H 6= G, then V (H) 6= V (G). Since G is con-
nected, there is an edge vw with v ∈V (G) and w ∈V (G)\V (H). Since G is 2-connected, G−v
contains a (w,H)-ear P. The concatenation of (v,w) and P is a H-ear in G, contradicting the
maximality of H.

5.4 Contraction and k-connected graphs
Definition 5.10. Let e = xy be an edge of a graph G = (V,E). Let G/e denote the graph
obtained from G by contracting the edge e in a new vertex ve that is adjacent to all neighbours
of x and y. Formally, G/e has vertex set V ′ = (V \ {x,y})∪ {ve} and edge set E ′ = {vw ∈
E | {v,w}∩{x,y}= /0}∪{vew | w ∈ (NG(x)∪NG(y))\{x,y}}.

If G is connected, then every edge e is contained in a spanning tree T (Exercice 1.22), and
T/e is a spanning tree of G/e. Hence, we have the following.

Proposition 5.11. Let G be a connected graph. For any edge e ∈ E(G), the graph G/e is
connected.

This result cannot be extended to 2-connectivity: there are 2-connected graphs that have an
edge e such that G/e is not 2-connected (See Exercice 5.9.). However, in a 2-connected graph,
there is an edge the contraction of which results in a 2-connected graph.

Proposition 5.12. If G is 2-connected and |V (G)| > 3, then there is an edge e of G such that
G/e is 2-connected.

Proof. Assume G is 2-connected and |V (G)|> 3. By Proposition 5.4, G contains a cycle. Let C
be a cycle of minimum length. By Theorem 5.9, G admits an ear decomposition (C,P1,P2, . . . ,Pr).
Let m be the greatest index such that Pm is not an edge. Then, G′ = G\

Sr
i=m+1 E(Pi) is a span-

ning 2-connected subgraph of G. Let e be an edge of Pm. If m = 1, then G = C is a cycle of
length at least 4 and thus G/e is a cycle and so 2-connected. If m ≥ 2, then G′/e can be ob-
tained from C by adding the H-paths P1,P2, . . . , ,Pm−1,Pm/e. Hence, from Theorem 5.9, G′/e
is 2-connected. Since G/e is a supergraph of G′/e (obtained by adding the edges corresponding
to Pi, m < i≤ r), then G/e is 2-connected.

5.4. CONTRACTION AND K-CONNECTED GRAPHS 61

Lemma 5.13. If G is 3-connected and |V (G)|> 4 then there is an edge e of G such that G/e is
3-connected.

Proof. Assume for a contradiction that such an edge does not exist. Then, for any xy ∈ E(G),
the graph G/xy contains a separator S with at most two vertices. Since κ(G)≥ 3, the vertex vxy
of G/xy resulting from the contraction is in S and |S|= 2. Let z be the vertex in S\{vxy}. Then,
{x,y,z} is a separator of G. Since no proper subset of {x,y,z} is a separator of G, every vertex
in {x,y,z} has a neighbour in each component of G−{x,y,z}.

Consider x, y and z, as above, such that a component C of G−{x,y,z} has minimum size.
Let v be the neighbour of z in C. By assumption, G/zv is not 3-connected, so there exists a
vertex w such that {z,v,w} is a separator of G. Again, every vertex in {z,v,w} has a neighbour
in every component of G−{z,v,w}.
At least one of x and y, say x is not w and so the connected component of x in G−{z,v,w}
contains all the connected components of G−{x,y,z}. Since x and y are adjacent, there is a
component D of G−{z,v,w} that contains none of x and y. Hence any other one (there is at
least one since G−{z,v,w} is not connected) must be included in C and thus is smaller than
because v ∈C. This contradicts the minimality of C.

Hence, any 3-connected graph can be reduced to K4 by a succession of edge-contractions.
One can show that, reciprocally, any such graph is 3-connected. See Exercise 5.22.

Theorem 5.14 (Tutte, 1961). A graph G is 3-connected if and only if there is a sequence
G0,. . . ,Gn of graphs such that:

(i) G0 = K4 and Gn = G;

(ii) for any i < n, there is an edge xy of Gi+1 such that d(x),d(y)≥ 3 and Gi = Gi+1/xy.

Propositions 5.11 and 5.12 and Lemma 5.13 cannot be generalized to the 4-connected case.
Indeed, the square of a cycle, depicted in Figure 5.1, is 4-connected. However, the contraction
of any edge creates a vertex with degree three.

Figure 5.1: 4-connected graph such that the contraction of any edge makes it 3-connected

Any 4-connected graph (except K5) can be modified into a smaller 4-connected graph by
contracting one or two edges. If k≥ 6, for any b≥ 1, there are k-connected graphs with arbitrary

62 CHAPTER 5. CONNECTIVITY

size that cannot be reduced to a k-connected graph by contracting at most b edges (e.g., planar
triangulations of a torus). The question is open for k = 5. For more on this topic, we refer the
reader to the survey of M. Kriesell [1].

5.5 Connectivity in digraphs
Similar concepts to k-connectivity and k-edge-connectivity may be defined for digraphs.

Let D be a digraph. Let W be an set of arcs (resp. of vertices). If D \W (resp. D−W) is
not strongly connected, then W separates D, and W is called an arc-separator (resp. vertex-
separator) or simply separator of D.

For any k ≥ 1, D is k-strongly connected if if it has order at least k + 1 and set of k− 1
vertices is a separator. In particular, the complete symmetric digraph ~Kk+1 is the only k-strongly
connected digraph with k + 1 vertices. The strong connectivity of D, denoted by κ(D), is the
maximum integer k such that D is k-strongly connected. Similarly, D is k-arc connected if it has
at least two vertices and no set of k−1 arcs is a separator. The arc-connectivity of D, denoted
by κ′(D), is the maximum integer k such that D is k-arc-connected.

Results similar to the one proved in Section 5.1 hold for strong-connectivity and arc-connectivity.
For any vertex x, if S is a vertex-separator of D−x then S∪{x} is a vertex-separator of D, hence

κ(D)≤ κ(D− x)+1.

However, the strong connectivity of D− x may not be upper bounded by a function of κ(D).
For any arc e ∈ E(D), F is an arc-separator of D\e if and only if F ∪{e} is an arc-separator

of D. Hence
κ
′(D)−1≤ κ

′(D\ e)≤ κ
′(D).

By definition, being 1-strongly connected, 1-arc-connected or strongly connected is equiva-
lent. For larger value of k, k-strong connectivity implies k-arc-connectivity.

Proposition 5.15. Let D be a graph with at least two vertices.

κ(D)≤ κ
′(D)≤min{δ+(D),δ−(D)}.

Proof. Removing all arcs leaving a vertex results in a digraph which not strongly connected.
Hence, κ′(D)≤ δ+(D). By directional duality, κ′(D)≤ δ+(D).

Let us assume that κ′(D) = k ≥ 2. Let F = {x1y1,x2y2, . . . ,xkyk} be an arc-separator of D.
Then D\F has two strongly connected components X and Y such that xi ∈ X and yi ∈Y , for all
1 ≤ i ≤ k and there is no arc with tail in X and head in Y except those of F (see Exercise 5.4-
2)). If D− is not strongly connected, then κ(G) ≤ k. Else X = {x1, . . . ,xk}. Then x1 has at
most k outneighbours, namely the xi’s for xi 6= x1 and the yi’s such that xi = x1. Then the
outneighbourhood of x1 is a vertex-separator of size at most k. So κ(D)≤ k ≤ κ′(D).

Reciprocally, the arc-connectivity of a graph cannot be bounded by its strong connectivity.

5.6. MENGER’S THEOREM 63

In fact, as we shall see, all the results on connectivity and edge-connectivity may be seen as
particular cases of results on strong connectivity and arc-connectivity for symmetric digraphs.
Indeed, for any graph G, its associated digraph, denoted ~G is the symmetric digraph obtained
from G by replacing each edge xy by the two arcs (x,y) and (y,x).

The following proposition follows directly form the definition of ~G.

Proposition 5.16. Let G be a graph and ~G is associated digraph.

(i) (v1,v2, . . . ,vp) is a path in G if and only if (v1,v2, . . . ,vp) is a directed path in ~G.

(ii) G is connected if and only if ~G is strongly connected.

Theorem 5.17. Let G be a graph and ~G is associated digraph. Then

(i) κ(G) = κ(~G).

(ii) κ′(G) = κ′(~G).

Proof. Let W be a set of vertices. Then the digraph associated to G−W is ~G−W . Hence by
Proposition 5.16-(ii) the graph G−W is connected if and only if ~G−W is strongly connected.
In other words, W is a vertex-separator of G if and only if it is a vertex-separator of~(G). This
implies (i).

Let us now prove (ii). Let F be a minimum edge-separator of G. Then G \ F has two
components X and Y (see Exercise 5.4-1)). Let F = {x1y1,x2y2, . . . ,xkyk} with xi ∈ X and
yi ∈ Y , for all 1≤ i≤ k. Then ~F = {(x1,y1),(x2,y2), . . . ,(xk,yk)} is an arc-separator of ~G since
there are no arcs with tail in X and head in Y . So κ′(~G)≤ κ′(G).

Conversely assume that ~F = {(x1,y1),(x2,y2), . . . ,(xk,yk)} is a minimum arc-separator of ~G.
Then ~G\~F has two strongly connected components X and Y such that xi ∈ X and yi ∈Y , for all
1≤ i≤ k and there is no arc with tail in X and head in Y except those of ~F (see Exercise 5.4-2)).
Thus F = {x1y1,x2y2, . . . ,xkyk} is an edge-separator of G.

In view of Theorem 5.17, Proposition 5.1 may be seen as Proposition 5.15 in the case of
symmetric digraphs.

5.6 Menger’s Theorem
Let W be an edge-separator (resp. vertex-separator) of a graph G. If two vertices u and v are
in two distinct connected components of G \W (resp. G−W) , then W separates two vertices
u and v and is called a (u,v)-separator. A separator of a graph is necessarily a (u,v)-separator
for some pair of vertices. In addition, if we consider a vertex-separator, these two vertices are
not adjacent.

Let u and v be two vertices of a graph G. The edge-connectivity between u and v or (u,v)-
edge-connectivity in G, denoted by κ′G(u,v) or simply κ′(u,v), is the minimum cardinality of
a (u,v)-edge-separator. If u and v are not adjacent, then the connectivity between u and v or
(u,v)-connectivity in G, denoted by κG(u,v) or simply κ(u,v), the minimum cardinality of a

64 CHAPTER 5. CONNECTIVITY

(u,v)-vertex-separator. Clearly, κ(G) = min{κ(u,v) | u,v ∈ V (G),uv /∈ E(G)} and κ′(G) =
min{κ′(u,v) | u,v ∈ V (G)}. So, to compute κ(G) (resp. κ′(G)), it is sufficient to compute
κ(u,v) (resp. κ′(u,v)) for every pair of vertices u and v.

Similar concept may be defined in digraphs. Let W be an arc-separator (resp. vertex-
separator) of a digraph D. If there is no directed (u,v)-path in D \W (resp. D−W) , then
W separates u from v and is called a (u,v)-separator. Observe that contrary to the undirected
case, a (u,v)-separator is not necessarily a (v,u)-separator. A separator of a digraph is neces-
sarily a (u,v)-separator for some pair of vertices. In addition, if we consider a vertex-separator,
uv is not an arc (but vu may be an arc).

Let u and v be two vertices of a digraph D. The arc-connectivity between u and v or
(u,v)-arc-connectivity in D, denoted by κ′D(u,v) or simply κ′(u,v), is the minimum cardi-
nality of a (u,v)-edge-separator. If uv is not an arc, then the connectivity between u and
v or (u,v)-connectivity in D, denoted by κD(u,v) or simply κ(u,v) the minimum cardinal-
ity of a (u,v)-vertex-separator. Clearly, κ(G) = min{κ(u,v) | u,v ∈ V (G),uv /∈ E(G)} and
κ′(G) = min{κ′(u,v) | u,v ∈ V (G)}. So, to compute κ(G) (resp. κ′(G)), it is sufficient to
compute κ(u,v) (resp. κ′(u,v)) for every pair of vertices u and v.

Two (directed) paths are independent if their internal vertices are distinct. In particular, two
(directed) (s, t)-paths are independent if their sole common vertices are s and t. The maximum
number of pairwise independent (directed) (s, t)-paths is denoted by Π(s, t). If W is an (s, t)-
vertex-separator of a graph or digraph, then two independent (s, t)-paths intersect W in distinct
vertices, so

κ(s, t)≤Π(s, t). (5.1)

Similarly, if F is an (s, t)-edge-separator in a graph, then two edge-disjoint (s, t)-paths in-
tersect W in distinct edges, and if F is an (s, t)-arc separator in a digraph, then two arc-disjoint
directed (s, t)-paths intersect W in distinct arcs. Hence denoting by Π′(s, t) the maximum num-
ber of pairwise edge-disjoint (s, t)-paths (resp. arc-disjoint directed (s, t)-paths), we have

κ
′(s, t)≤Π

′(s, t). (5.2)

Menger’s Theorem shows that Inequalities 5.1 and 5.2 are in fact equalities.

Theorem 5.18 (Menger, 1927). (i) Let s and t be two distinct vertices of a graph (resp. digraph)
such that st is not an edge (resp. arc). Then, the minimum size of an (s, t)-vertex-separator
equals the maximum number of independent (s, t)-paths. In symbols,

κ(s, t) = Π(s, t).

(ii) Let s and t be two distinct vertices of a graph (resp. a digraph). Then, the minimum
size of an (s, t)-edge-separator (resp. arc-separator) equals the maximum number of pairwise
edge-disjoint (s, t)-paths (resp. pairwise arc-disjoint directed (s, t)-paths). In symbols,

κ
′(s, t) = Π

′(s, t).

5.6. MENGER’S THEOREM 65

Proof. Let us first prove (ii) in a digraph D. We will use a recursive algorithmic approach as
follows. Suppose we have found a set of k pairwise arc-disjoint directed (s, t)-paths, then we
will either construct a set of k + 1 pairwise arc disjoint paths from s to t or find an (s, t)-arc-
separator of size k.

The induction can be started with k = 0 or k = 1 by finding a directed (s, t)-path.
Let P = {P1, . . . ,Pk} be a set of k pairwise arc-disjoint directed (s, t)-paths. Let E(P) =

E(P1)∪·· ·∪E(Pk). Let us construct a set S of vertices with the following algorithm.

Algorithm 5.1 (Constructing S).

1. Put s in S.

2. If there exist x ∈ S and an arc xy in E(D) \E(P) (i.e. xy is in none of the paths Pi), then
add y to S. Go to 2.

3. If there exist x ∈ S and an arc yx in E(P), then add y to S. Go to 2.

Observe that the so constructed set S is connected but not necessarily strongly connected.
(The graph underlying D〈S〉 is connected). Two cases can appear at the end of the algorithm.
Case 1: t ∈ S. In that case we will construct a set of k + 1 pairwise arc-disjoint directed (s, t)-
paths.

Since S is connected there is an oriented (not necessarily directed) (s, t)-path Pk+1, that is
a sequence x0e1x1 . . .x je j+1x j+1 . . .epxp where x0 = s, xp = t and for all 1≤ j ≤ p, e j is either
the arc x j−1x j or the arc x jx j−1. If e j = x j−1x j, then e j is called a forward arc; if not it is called
a backward arc. Observe that by construction of S, if an arc is forward in Pk+1 if and only if it
is not in E(P).

If Pk+1 does not contain any backward arc, then the set of paths (P1,P2, . . . ,Pk,Pk+1) is a set
of k +1 pairwise arc-disjoint directed (s, t)-paths.

Otherwise starting from the set P and Pk+1), we shall construct a set P ′ = (P′1, . . . ,P
′
k) of k

pairwise arc-disjoint directed (s, t)-paths and an oriented (s, t)-path P′k+1 having one backward
arc fewer than Pk+1 and such that if an arc is forward in P′k+1 if and only if it is not in E(P ′).
Repeating this construction p times (wherep is the number of backward arcs in Pk+1), we obtain
a set of k +1 pairwise arc-disjoint directed (s, t)-paths.

Let j be the smallest index for which e j is backward and let i0 be the index such that
e j ∈ E(Pi0). Let us define the following paths.

- P′i = Pi for 1≤ i 6= i0 ≤ k;

P′i0 is the concatenation of the directed (s,x j−1)-subpath of Pk+1 and the directed (x j−1, t)-
subpath of Pi0;

P′k+1 is the concatenation of the directed (s,x j)-subpath of Pi0 and the oriented (x j, t)-
subpath of Pk+1.

66 CHAPTER 5. CONNECTIVITY

It is simple matter to check that the paths P′1, . . . ,P
′
k,P
′
k+1 satisfy the property describe above.

Case 2: t /∈ S. In that case we will find an (s, t)-arc-separator of size k.
Let T = V \S. Let F be the set of arcs from S to T , i.e. with tail in S and head in T . Then

F separates S from T and so form an (s, t)-arc-separator. But every such arc belongs to E(P);
otherwise we could have applied Step 2 of Algorithm 5.1 and so this algorithm was not finished.
Furthermore, a path Pi cannot contain two arcs from S from T , otherwise there will exist an arc
yx from T to S in Pi and this arc should have been added to the set S by Step 3 of Algorithm 5.1.
Hence |F | ≤ k.

Let us deduce (i) for digraphs. We outline the proof. Some details are left in Exercise 5.16.
Let D be a digraph and s and t two vertices such that st is not an arc. The split digraph S(D)

is the digraph D obtained in splitting every vertex into an arc v−v+:

V (S(D)) =
[

v∈V (D)

{v−,v+},

E(S(D)) = {v−v+ | v ∈V (D)}∪{u+v− | uv ∈ E(D)}.

An arc of the form v−v+ is called an inner arc of S(D).
Trivially, if W is an (s, t)-vertex-separator of D then {v−v+ | v ∈W} is an (s+, t−)-arc-

separator of S(D). Conversely, one can show that there is a minimum (s+, t−)-arc-separator F
in S(D) made of inner arcs and for such an F , the set {v | v−v+ ∈ F} is an (s, t)-vertex-separator
of D. Hence κD(s, t) = κ′S(D)(s

+, t−).
For any directed path P = (x1, . . . ,xp), its split path S(P) is defined as the directed path

(x+
1 ,x−2 ,x+

2 , . . . ,x+
p−1,x

−
p). One can easily see that every directed (s+, t−)-path is the split path of

some directed (s, t)-path. Moreover, one shows that P1, . . . ,Pk are pairwise independent directed
(s, t)-path in D if and only if S(P1), . . . ,S(Pk) are pairwise arc-disjoint directed (s+, t−)-path in
S(D). Hence, ΠD(s, t) = Π′S(D)(s

+, t−).
Now by (ii) for digraphs, we have κ′S(D)(s

+, t−) = Π′S(D)(s
+, t−). Thus κD(s, t) = ΠD(s, t).

Both assertions (i) and (ii) for graphs may be deduced from themselves for digraphs using
the fact that connectivity in graphs corresponds to connectivity in symmetric digraphs. Let
G be a graph and ~G its associated digraph. Similarly to Theorem 5.17, one can show that
κG(s, t) = κ~G(s, t) and κ′G(s, t) = κ′~G(s, t). It is also not difficult to show that ΠG(s, t) = Π~G(s, t)
and Π′G(s, t) = Π′~G(s, t). (See Exercise 5.15).

We now give a short inductive proof of Theorem 5.18-(i) for graphs.

Alternative proof of Theorem 5.18-(i) for graphs: For sake of contradiction, let k = κ(s, t) be
the smallest integer contradicting the theorem. Clearly, k ≥ 2. Let G be a counterexample (for
this minimum value of k) that has the minimum number of edges. Then, there are at most k−1
independent (s, t)-paths.

There is no vertex x adjacent both to s and t otherwise G−x would be a counterexample for
k−1, a contradiction to the minimality of k.

5.6. MENGER’S THEOREM 67

Let W be an (s, t)-vertex-separator of size k.
Let us assume first that both s and t are not adjacent to all vertices in W . Then, each of s

and t has a neighbour in V (G)\W (otherwise, the neighbourhood of s or t would be a smallest
vertex-separator). Let Gs be the graph obtained from G by contracting the component C of G\W
containing s in a single vertex s′ (i.e. replacing C by a single vertex adjacent to all vertices in
W). In Gs, an (s′, t)-vertex-separator has size at least k. Since C has at least 2 vertices, Gs
has less edges than G. By minimality of G, there are at least k independent (s′, t)-paths in Gs.
Removing s′, we obtain k paths from W to t such that, for any w ∈W , w is the start of exactly
one of these paths. Performing the same operation in Gt (obtained in the same way as Gs), we
obtain k independent paths from s to W such that, for any w ∈W , w is the terminus of exactly
one of these paths. For any w ∈W , let us concatenate the (s,w)-path and the (w, t)-path. We
obtain k independent (s, t)-paths in G, a contradiction.

So, we can assume that, for every (s, t)-vertex-separator W of size k, either s or t is ad-
jacent to all vertices of W . Let P = (s,x1,x2, . . . ,xl, t) be a shortest (s, t)-path. Then, l ≥ 2b
because s and t have no common neighbours. By minimality of G, in G \ x1x2, there is an
(s, t)-vertex-separator W0 of size k− 1. Hence, W1 = W0∪{x1} and W2 = W0∪{x2} are (s, t)-
vertex-separators in G. Since s is not adjacent to x2 because P is a shortest path, then t is adjacent
to all vertices of W2. Similarly, s is adjacent to all the vertices in W1. Hence, all vertices of W0
(which is not empty) are common neighbours of s and t, a contradiction.

Corollary 5.19 (Menger, 1927). Let G be a graph with at least two vertices.
(i) G is k-connected if and only if any two vertices can be joined by k independent paths.
(ii) G is k-edge-connected if and only if any two vertices can be joined by k edge-disjoint

paths.

Proof. (i) If any two vertices can be joined by k independent paths, then G is clearly k-connected.
Now, if G is k-connected, by Theorem 5.18-(i), any 2 non-adjacent vertices can be joined by k
independent paths. It remains to show that if G is k-connected, then any two adjacent vertices x
and y can be joined by k independent paths.

Let G′ be obtained from G by adding a vertex x′ adjacent to all neighbours of x and a vertex
y′ adjacent to all neighbours of y. Since δ(G) ≥ κ(G) ≥ k, by Lemma 5.2, G′ is k-connected.
Since x′ and y′ are not adjacent, there are k independent (x′,y′)-paths P1, . . . ,Pk in G′. For any
1≤ i≤ k, let P′i be the path obtained as follows:

- if {x,y} ⊂V (Pi) then P′i = (x,y);

- if {x,y}∩V (Pi) = {x}, take the (x,y′)-subpath of Pi and replace y′ by y;

- if {x,y}∩V (Pi) = {y}, take the (x′,y)-subpath of Pi and replace x′ by x;

- if {x,y}∩V (Pi) = /0, P′i is obtained by replacing x′ with x and y′ with y.

We get k independent (x,y)-paths.

(ii) Straightforward from Theorem 5.18-(ii).

68 CHAPTER 5. CONNECTIVITY

Corollary 5.20. Let G be a k-connected graph and let A and B be two subsets of V (G). If
|A| ≥ k and |B| ≥ k, then there are k disjoint (A,B)-paths

Proof. Let G′ be the graph obtained from G by adding two vertices a and b respectively adjacent
to all vertices of A and B. From Lemma 5.2 (applied twice), G′ is k-connected and so κG′(a,b)≥
k. By Menger’s Theorem, there are k independent (a,b)-paths in G′. Removing a and b from
these paths, we obtain k disjoint (A,B)-paths.

5.7 Exercises
Exercise 5.1. Compute κ(u,v) and κ′(u,v) in the graph below:

vu

Exercise 5.2. Prove the following assertion or give a counterexample. If P is a (u,v)-path in a
2-connected graph G, then there exists a (u,v)-path Q independent of P.

Exercise 5.3. Let k and l be two integers with 1≤ k < l. Give graphs G1, G2 and G3 such that :

• (i) κ(G1) = 1 and κ′(G1) = l;

• (ii) κ(G2) = k and κ(G2− x) = l for some particular vertex x;

• (iii) κ′(G3− x) = k and κ′(G3 \ xy) = l for some particular edge xy.

Exercise 5.4. 1) Show that if the edge-connectivity of a graph is k ≥ 1, then when removing
at most k edges then we obtain at most two connected components. Does there exists a similar
result for connectivity? arc-connectivity?

2) Let D be a k-arc connected digraph and F = {x1y1, . . . ,xkyk} a minimum arc-separator.
Show that D\F has two strongly connected components X and Y such that xi ∈ X and yi ∈ Y ,
for all 1≤ i≤ k and there is no arc with tail in X and head in Y except those of F .

Exercise 5.5. Prove Lemma 5.3.

Exercise 5.6. Show that if H is a 2-edge-connected subgraph of a graph G, then for any H-
handle P, the graph H ∪P is 2-edge-connected.

Exercise 5.7. Let G be a graph on at least 2 vertices. Show that the following propositions are
equivalent:

5.7. EXERCISES 69

• (i) G is 2-connected;

• (ii) any two vertices are in a cycle;

• (iii) any two edges are in a cycle and δ(G)≥ 2;

• (iv) for any three vertices x,y et z, there is a (x,z)-path containing y.

Exercise 5.8. Let G be a graph on at least 3 vertices. Show that the following propositions are
equivalent:

• (i) G is 2-edge-connected;

• (ii) any edge is in a cycle;

• (iii) any two edges are in a tour and δ≥ 1;

• (iv) any two vertices are in a tour.

Exercise 5.9. Give an example of a 2-connected graph G with an edge e such that G/e is not
2-connected.

Exercise 5.10. Let d1 ≤ d2 ≤ ·· · ≤ dn be the degree sequence of a graph. We assume that
d j ≥ j + k−1 for 1≤ j ≤ n−1−dn−k+1.
Show that G is k-connected.

Exercise 5.11. Let G be a regular bipartite graph on at least two vertices. Prove that κ(G) 6= 1.

Exercise 5.12. Show a graph which is not 2-connected but admits a strongly connected orien-
tation.

Exercise 5.13. Inspired by Algorithm 2.6, give an algorithm in time O(|E|) that computes the
2-connected components of a graph.

Exercise 5.14. Let G be a connected graph, all vertices of which have even degree. Show that
G is 2-edge-connected.

Exercise 5.15. Let G be a graph and ~G its associated digraph. Show that

(a) there are k independent (s, t)-paths in G if and only there are k independent directed (s, t)-
paths in ~G, and

(b) there are k pairwise edge-disjoint (s, t)-paths in G if and only there are k pairwise arc-
disjoint directed (s, t)-paths in ~G.

Exercise 5.16. Let D be a digraph and S(D) its split digraph. Let s and t be two vertices of D
such that st is not an arc.

1) a) Let F be an (s+, t−)-arc-separator in S(D). For an non-inner arc e = u+v−, we define
r(e) to be u−u+ if u 6= s and v−v+ otherwise. Show that if e is non-inner then the set
(F \{e})∪{r(e)} is also an (s+, t−)-arc-separator.

70 CHAPTER 5. CONNECTIVITY

b) Show that if F is an (s+, t−)-arc-separator made of inner arcs, then {v | v−v+ ∈ F} is a
vertex-separator of S(D).

c) Deduce κD(s, t) = κ′S(D)(s
+, t−).

2) a) Shows that P1, . . . ,Pk are pairwise independent directed (s, t)-paths in D if and only if
S(P1), . . . ,S(Pk) are pairwise arc-disjoint directed (s+, t−)-paths in S(D). Hence,

b) Deduce ΠD(s, t) = Π′S(D)(s
+, t−).

Exercise 5.17.
Let G be a graph on at least three vertices which is not a complete graph.
1) Show that G has three vertices u, v, and w such that uv ∈ E(G), vw ∈ E(G) and uw /∈ E(G).
2) Show that if G is 2-connected and δ(G)≥ 3 then there exists such a triple u,v,w such that, in
addition, G−{u,w} is connected.

Exercise 5.18. Let a and b be two vertices of a graph G. Let X and X ′ be two (a,b)-vertex-
separators. Let us denote Ca (resp. C′a) the connected component of a in G−X (resp. G−X ′)
and Cb (resp. C′b) the connected component of b in G−X (resp. G−X ′).

Prove that the two sets Ya = (X ∩C′a)∪ (X ∩X ′)∪ (X ′∩Ca) and Yb = (X ∩C′b)∪ (X ∩X ′)∪
(X ′∩Cb) are (a,b)-separators.

Exercise 5.19 (Dirac, 1960). Let x be a vertex of a graph G and U a set of vertices of G not
containing x. An (x,U)-fan is a set of (x,U)-paths such that the intersection of any two is {x}.
Prove that G is k-connected if and only if it has at least k + 1 vertices and for any choice of x
and U such that x /∈U and |U | ≥ k, there is a (x,U)-fan of cardinality k.

Exercise 5.20. Let k≥ 2 be an integer. Prove that, if G is k-connected, then any set of k vertices
is contained in a cycle. Is the converse also true?

Exercise 5.21. Let G be a cubic graph.
1) Show that if κ′(G)≥ 2 then κ(G)≥ 2.
2) Show that if κ′(G) = 3 and κ(G)≥ 2 then κ(G) = 3.

Exercise 5.22. Let x and y be two adjacent vertices of degree at least k in a graph G. Show that
if G/xy is k-connected then G is also k-connected.

Exercise 5.23. Let k ≥ 2 be an integer. Let G be a k-connected graph and xy an edge of G.
Show that G/xy is k-connected if and only if G−{x,y} is (k−1)-connected.

Exercise 5.24. Let G be a 2-connected graph of order at least 4. Prove that for every edge e,
G\ e or G/e is 2-connected.

Exercise 5.25. Let v be a vertex of a 2-connected graph G. Show that v has a neighbour u such
that G−{u,v} is connected.

Exercise 5.26. Let xy be an edge of a 2-connected graph G. Show that G\ xy is 2-connected if
and only if x and y are in a cycle of G\ xy.

5.7. EXERCISES 71

Exercise 5.27. A graph G is non-separable if G = K2 or G is 2-connected. A block of a graph
is a subgraph which is non-separable and is maximal with respect to this property.

1) Show that two blocks intersect in at most one vertex.

2) Show that if a vertex v is in two blocks if and only if it is a separating vertex, that is {v}
is a separator.

3) The block graph of G, denoted B(G), is the graph whose vertices are the blocks of G and
in which two blocks are joined by an edge if they intersect. Show that if G is connected,
then B(G) is a tree.

4) The end-blocks of G are the blocks which are leaves in B(G). Assume that B1 and B2 are
two different end-blocks of a connected graph G. Show that if v1 and v2 are two vertices
of B1 and B2 respectively which are not separating, then G−{v1,v2} is connected.

Exercise 5.28 (W. T. Tutte). A wheel is a graph obtained from a cycle by adding a vertex
adjacent to all vertices of the cycle.

Let G be a 3-connected graph different from a wheel. Show that, for any edge e, either G/e
or G\ e is also a 3-connected graph.

72 CHAPTER 5. CONNECTIVITY

Bibliography

[1] M. Kriesell. A survey on contractible edges in graphs of a prescribed vertex connectiv-
ity. Graphs and Combinatorics 18(1):1–30, 2002.

73

74 BIBLIOGRAPHY

Chapter 6

Matching in Graphs

Let G be a graph. Two edges are independent if they have no common endvertex. A set M
of independent edges of G is called a matching. The matching number, denoted µ(G), is the
maximum size of a matching in G.

In this chapter, we consider the problem of finding a maximum matching, i.e. with maximum
size. In particular, we will try to characterise the graphs G that admit a perfect matching, i.e. a
matching covering all vertices of G.

Let M be a matching. The vertices that are incident to an edge of M are matched or covered
by M. If U is a set of vertices covered by M, then we say that M saturates U . The vertices
which are not covered are said to be exposed.

Let G = (V,E) be a graph and M a matching. An M-alternating path in G is a path whose
edges are alternatively in E \M and in M. An M-alternating path whose two endvertices are
exposed is M-augmenting. We can use an M-augmenting path P to transform M into a greater
matching (see Figure 6.1). Indeed, if P is M-alternating, then the symmetric difference between
M and E(P)

M′ = M4E(P) = (M \ (E(P)∩M)∪ (E(P)\M)

is also a matching. Its size |M′| equals |M|−1+ x where x is the number of exposed ends of P.

P

Figure 6.1: Getting of a greater matching from an augmenting path P. Bold edges are the one
of the matching.

Hence if M is maximum, there are no augmenting paths. In fact, as shown by Berge, this
necessary condition is also sufficient.

75

76 CHAPTER 6. MATCHING IN GRAPHS

Theorem 6.1 (Berge 1957). Let M be a matching in a graph G. Then M is maximum if and
only if there are no M-augmenting paths.

Proof. Necessity was shown above so we just need to prove sufficiency. Let us assume that M
is not maximum and let M′ be a maximum matching. The symmetric difference Q = M4M′ is
a subgraph with maximum degree 2. Its connected components are cycles and paths where the
edges of M and M′ alternate. Hence, the cycles have even length and contain as many edges
of M and of M′. Since M′ is greater than M, Q contains at least one path P that contains more
edges of M′ than of M. Therefore, the first and the last edges of P belong to M′, and so P is
M-augmenting.

6.1 Matching in bipartite graphs
Let G = ((A,B),E) be a bipartite graph. If |A| ≤ |B|, the size of maximum matching is at most
|A|. We want to decide whether it exists a matching saturating A. If there is such a matching M,
then, for any subset S of A, the edges of M link the vertices of S to as many vertices of B.

Hence, we have a necessary condition, known as Hall’s c Condition, for the existence of a
matching saturating A:

|N(S)| ≥ |S| for all S⊆ A (6.1)

where N(S) is the set of vertices of G \ S adjacent to at least one vertex of S. The set N(S) is
called the neighbourhood of S: N(S) =

S
s∈S N(s)\S.

Actually, this condition is sufficient.

Theorem 6.2 (Hall 1935). Let G =((A,B),E) be a bipartite graph. G has a matching saturating
A if and only if |N(S)| ≥ |S| for all S⊆ A.

We give two proofs of this theorem. The first one uses some basic arguments, while the
second one is based on augmenting paths.

First proof: By induction on |A|, the result holding trivially for |A| = 1. Let us assume that
|A| ≥ 2 and that Condition (6.1) is sufficient for any matching saturating A′ with |A′|< |A|.

i) Assume first that |N(S)| ≥ |S|+1 for every non-empty proper subset S of A. Let ab∈E(G)
and consider G′ = G−{a,b}. Then, any subset S⊆ A\{a} satisfies:

|NG′(S)| ≥ |NG(S)|−1≥ |S|.

By the induction hypothesis, G′ has a matching M′ saturating A \ {a}. Hence, the matching
M′∪{ab} is a matching of G saturating A.

ii) Assume now that there is a non-empty proper subset A′ of A such that |N(A′)| = |A′|.
By the induction hypothesis, the subgraph G′ induced by A′ ∪N(A′) admits a matching M′

6.1. MATCHING IN BIPARTITE GRAPHS 77

saturating A′.
Let G′′ = G−G′. For any set S⊆ A\A′,

|NG′′(S)| ≥ |NG(S∪A′)|− |NG(A′)| ≥ |S∪A′|− |A′| ≥ |S|.

Hence, by the induction hypothesis, G′′ admits a matching M′′ saturating A \A′. The union
M′∪M′′ is a matching of G saturating A.

Second proof: The proof is algorithmic. Given a matching M with maximum size which does
not cover a0, it returns a set S⊆ A such that |N(S)|< |S|. Let A0 = {a0} and B0 = N(a0). Note
that all vertices of B0 are covered (if b0 ∈ B0 is not covered, the edge a0b0 can be added to
the matching). If B0 = /0, S = A0 is a set such that |N(S)| < |S| and the algorithm terminates.
Else, B0 is matched with |B0| vertices of A distinct from a0. We set A1 = NM(B0)∪{a0}, where
NM(B0) is the set of vertices matched with vertices of B0. We have |A1| = |B0|+ 1 ≥ |A0|+ 1.
Let B1 = N(A1). Again, no vertices in B1 is exposed, otherwise there is an M-augmenting
path. If |B1| < |A1|, the algorithm terminates with |N(A1)| < |A1|. If not, let A2 = NM(B1)∪
{a0}. Then|A2| ≥ |B1|+ 1 ≥ |A1|+ 1. And so on, the following algorithm is executed until it
terminates.

Algorithm 6.1 (Finding a set violating Hall’s Condition).

1. A0 := {a0}, i := 0;

2. If |Bi|= |N(Ai)|< |Ai|, terminate and return Ai;

3. Else, do Ai+1 := Ai∪NM(Bi), i := i+1 and go to Step 2.

The algorithm eventually terminates because the sequence |Ai| is strictly increasing. Hence,
it returns a set S⊆ A such that |N(S)|< |S|.

Hall’s Condition (6.1) applies for matching saturating A but it can be generalised for match-
ing of any size.

Theorem 6.3. Let G = ((A,B),E) be a bipartite graph and k ∈ IN. G has a matching of size k
if and only if |N(S)| ≥ |S|− |A|+ k for any S⊆ A.

Proof. Let us add |A|−k new vertices to B, each of them being linked to all vertices of A. Then,
in this new graph, |N(S)| ≥ |S| for any S⊂ A. Thus, by Hall’s Theorem (6.2), the new graph has
a matching saturating A. But at most |A|−k edges (the ones incident to a new vertex) are not in
G. Hence G has a matching of size at least k.

Corollary 6.4. If G = ((A,B),E) is a k-regular bipartite graph (k ≥ 1), then G has a perfect
matching.

78 CHAPTER 6. MATCHING IN GRAPHS

B0A0 B0A1 A1 B1 A2 B1 A2 B2 B2A3

Figure 6.2: A run of Algorithm 6.1. The bold edges are those of the maximum matching. The
vertices of Ai (resp. Bi) are represented by white (resp. black) squares.

Proof. If G is k-regular, then clearly |A|= |B|. So every matching saturating A is perfect.
Let S ⊆ A. The set S is incident to k|S| edges that belong to the k|N(S)| edges incident to

N(S). Hence, k|S| ≤ k|N(S)|. Thus, G satisfies Hall’s Condition (6.1) and so by Theorem 6.2,
admits a matching saturating A, which is a perfect matching.

Using the same method as in the second proof of Hall’s Theorem, we give an algorithm
which, given a bipartite graph ((A,B),E) computes either a matching saturating A or a set
S such that |N(S)| < |S|. This algorithm, known as the hungarian method, is based on the
sequence ao,b1,a1,b2,a2, . . . viewed as a tree T .

Algorithm 6.2 (Hungarian Method).

0. Start with any matching M.

1. If M saturates A, then return M. Else, let a0 ∈ A be an exposed vertex. Let T be the tree
consisting of the single vertex a0. Let A′ = V (T)∩A and B′ = V (T)∩B.

2. If N(A′) = B′ then |N(A′)| < |A′| because |A′| = |B′|+ 1. Return S = A′. Else, let b ∈
N(A′)\B′ and a′ one of its neighbours in A′.

3. If b is covered by M, say with a, then add the edges a′b and ba to T . (See Figure 6.3).
Then A′ becomes A′∪{a} and B′, B′∪{b}. Go to Step 2. Else P, the (a0,b)-path in T , is
an M-augmenting path. Replace M by M4E(P). Go to Step 1.

6.2 Matching and vertex cover
We now show a duality theorem for the maximum matching in bipartite graphs.

6.2. MATCHING AND VERTEX COVER 79

b

a′

a′

b matched

b exposed

new tree

new matching

b

a0

a0

a0a0
a′

ab

Figure 6.3: Step 3 of the Hungarian Method

Definition 6.5. Let G = (V,E) be a graph. A set K ⊂V is a vertex cover of E if any edge of G
is incident to a vertex in K. The vertex cover number of G, denoted ν(G), is the minimum size
of a vertex cover of G.

Let K be a vertex cover of a graph. Then, for any matching M, K contains at least one
endvertex of each edge of M. Hence, |M| ≤ |K|. So, the maximum size of a matching is at most
the minimum size of a vertex cover. For a bipartite graph, they are equal.

Theorem 6.6 (König 1931, Egerváry 1931). Let G = ((A,B),E) be a bipartite graph. The size
of a maximum matching equals the size of a minimum vertex cover, that is

µ(G) = ν(G).

Proof. Let M be a maximum matching, let U be the set of exposed vertices in A, and let V ′ be
the set of vertices of G linked to U using M-alternating paths. Let A′ = A∩V ′ and B′ = B∩V ′.
See Figure 6.4. The set B′ is saturated by M. Indeed, if a vertex b ∈ B′ is not matched, then
the M-alternating path that links b to a vertex in U is an M-augmenting path, contradicting the
maximality of M (Theorem 6.1). Moreover, N(A′) = B′ by definition of V ′. Let K = B′∪(A\A′)
Then, any edge of G has an endvertex in K. Therefore, K is a vertex cover of G. But |K|= |M|
because A\A′ is the set of vertices in A that are matched with some vertices in B\B′.

Hall’s Theorem (6.2) can be deduced from this theorem.

Proof of Hall’s Theorem (6.2): If G has no matching saturating A, then by Theorem 6.6, there
is a vertex cover K with less than |A| vertices. Let A′= A∩K and B′= B∩K. Then, |A′|+ |B′|=
|K|< |A| and

|B′|< |A|− |A′|= |A\A′|

80 CHAPTER 6. MATCHING IN GRAPHS

B′

A′

U

Figure 6.4: Finding a minimum vertex cover (squares) from a maximum matching (bold edges).

By definition of a vertex cover, there are no edges between A\A′ and B\B′, hence

|N(A\A′)| ≤ |B′|< |A\A′|

The set A\A′ does not satisfies Hall’s Condition (6.1).

An edge-cover of a graph G is a set of edges F ⊂ E(G) such that every vertex v ∈ V (G) is
incident to an edge e ∈ F . Note that an edge-cover can exist only if G has no isolated vertices.
The edge-cover number of G, denoted ρ(G), is the minimum size of an edge-cover of G.

Theorem 6.7 (Gallai, 1959). Let G = (V,E) be a graph without isolated vertices. Then

α(G)+ν(G) = |V |= ρ(G)+µ(G).

Proof. By definition, S is a stable set if and only if V \S is a vertex cover. Hence α(G)+ν(G) =
|V |.

Let M be a matching of size µ(G). For each of the |V |−2|M| vertices v missed by M, add
to M and edge incident to v. We obtain an edge-cover of size |M|+(|V |− 2|M|) = |V |− |M|.
Hence ρ(G)≤ |V |−µ(G). Let F be an edge-cover of size ρ(G). For each v ∈V delete from F ,
dF(v)− 1 edges incident to v. We obtain a matching of size at least |F |−∑v∈V (dF(v)− 1) =
|F |− (2|F |− |V |) = |V |− |F |. Hence µ(G)≥ |V |−ρ(G).

Gallai’s Theorem (6.7) and König-Egerváry Theorem (6.6) immediately imply the follow-
ing.

Corollary 6.8 (König). Let G be a bipartite graph without isolated vertices. Then α(G) = ρ(G).

6.3. MAXIMUM-WEIGHT MATCHING 81

6.3 Maximum-weight matching

Previous results on maximum matching in bipartite graphs can be generalized to maximum-
weight matching in bipartite edge-weighted graphs. Note that, we may assume weights are
non-negative.

The notion of vertex cover can be generalized to edge-weighted graphs

Definition 6.9. Let G be an edge-weighted graph. A fractional vertex cover is a function c :
V (G)→ IR+ such that, for any edge xy of G, c(x)+ c(y) ≥ w(xy). The weight of a fractional
vertex cover c of G is c(G) = ∑v∈V (G) c(v).

Let M be a matching and c be a fractional vertex cover in an edge-weighted graph (G,w).
Then, the weight of c is at least the weight of M. Indeed, by summing all inequalities c(x)+
c(y)≥ w(xy) over all edges of M, we get c(G)≥ w(M).

König-Egerváry Theorem is generalised to the weighted case:

Theorem 6.10. In bipartite edge-weighted graph, the minimum weight of a fractional vertex
cover equals the maximum weight of a matching.

Proof. Let (G,w) be a bipartite edge-weighted graph. Free to add edges of weight 0, we may
assume that G = Kn,n.

We provide an algorithm to finding a matching M and a fractional vertex cover c with same
weight. Note that, for any edge xy of M, we have c(x)+ c(y) = w(xy).

Definition 6.11. Let c be a fractional vertex cover of (G,w). The excess of an edge xy is
c(x)+ c(y)−w(xy). The equality graph of c, denoted by Gc, is the graph induced by the edges
of excess 0.

Algorithm 6.3.

0. Initialization: Take the fractional vertex cover c defined by c(a) := max{w(ab),ab ∈ E} if
a ∈ A and c(b) := 0 if b ∈ B.

1. Find a maximum matching M in Gc.

2. If M is perfect in G, return “the maximum-weight matching is” M “and the minimum-
weight fractional vertex cover is” c.

3. Else, let K be a fractional vertex cover with size |M| in Gc. Let R = A∩K and T = B∩K.
Let ε = min{c(a)+c(b)−w(ab) | a∈ A\R,b∈ B\T}. For any a∈ A\R, c(a) := c(a)−ε

and for any b ∈ B\T , c(b) := c(b)+ ε. Go to 1.

82 CHAPTER 6. MATCHING IN GRAPHS

6.4 Matching in general graphs
Given a graph G, let odd(G) denote the number of odd (i.e. with an odd number of vertices)
connected components of G. Clearly, if G admits a perfect matching, then

odd(G−S)≤ |S| for allS⊂V (G).

Indeed, if G has a perfect matching, each odd component C of G− S contains at least one
vertex matched with a vertex not in C. Moreoever, this vertex must belong to S since there are
no edges between distinct components of G\S.

This necessary condition is actually sufficient.

Theorem 6.12 (Tutte 1947). A graph G admits a perfect matching if and only if imp(G−S)≤
|S| for any S⊂V (G).

Proof. Let G = (V,E) be a graph with no perfect matching. We will show that there is S⊂V (G)
such that odd(G−S) > |S|.

Let G′ be the supergraph G with no perfect matching which has the maximum number of
edges. For any S, a component of G′− S is the union of components of G− S. Hence, an odd
component of G′−S contains an odd component of G−S. Hence, it is sufficient to find a bad
set S, i.e., for which odd(G′−S) > |S|.

If G′ contains a bad set, clearly it satisfies the Property (?).

Property (?): S is complete, every component of G′− S is complete, and every vertex of S is
adjacent to all vertices of G′−S.

Conversely, if a set satisfies Property (?) then S or /0 is bad. Indeed, if /0 is not bad, then
|V (G)| is even. If, in addition, S is not bad, then it is possible to matched (independently)
a vertex of each odd component with a vertex in S and complete the matching in a perfect
matching of the graph.

A vertex is universal if it is adjacent to every vertex but itself. Let S be the set of universal
vertices in G′. We shall prove that S satisfies (?) and, so S is bad.

For sake of contradiction, assume that S does not satisfy (?). Then, a component of G− S
contains two non-adjacent vertices a and a′. Let a, b and c be the first three vertices in a shortest
(a,a′)-path in this component. Then, ab,bc∈E(G′) and ac /∈E(G′). Since b is not in S, a vertex
of G′, say d, ins not adjacent to b. By maximality of G′, G′∪ac contains a perfect matching M1
and G′ ∪ bd has a perfect matching M2. Note that ac ∈ M1 and bd ∈ M2 otherwise M1 or M2
would be a perfect matching in G′.

The graph induced by M1∪M2 is the union of even cycles alternating edges of M1 and M2.
Let C be the cycle containing bd. If C does not contain the edge ac, then by replacing in M2 the
edges of E(C)∩M2 by the edges in E(C)∩M1 , we get a perfect matching of G′, a contradiction.
If C contains ac, then, let P be the path in C \ bd with start d and last edge ac. Without loss
of generality, we may assume that a is the terminus of P. Let C′ be the cycle obtained from
P\a by adding the edges bc and bd. Replacing in M2 the edges of E(C′)∩M2 by the edges of
E(C′)∩M2, we get a perfect matching of G′, a contradiction.

6.5. PATH-COVER OF DIGRAPHS 83

6.5 Path-cover of digraphs
Consider a bipartite graph G = ((A,B),E) and orient all its edges from A to B to get the digraph
D. Then König-Egerváry’s Theorem (Theorem 6.6) says how many disjoint directed paths are
necessary to cover all vertices of D. Indeed, all directed paths have length 1 or 0, and the number
of directed paths of such a ”cover” is the smallest possible when it contains as many directed
paths of length 1 as possible, i.e., a maximum matching.

In this section, we consider the following general question: given a digraph (non necessarily
bipartite), how many paths are necessary to cover all its vertices?

Definition 6.13. A path-cover of a graph is a set of disjoint directed paths that cover all vertices.
It can be viewed as a spanning forest every component of which is a directed path.

Recall that α(D) denotes the maximum size of a stable set in D.

Theorem 6.14 (Gallai and Milgram 1960). Every digraph D has a path-cover of at most α(D)
directed paths.

Proof. If P is a directed path, let us denote by ter(P) its terminus. Let P1 and P2 be two
path-covers of D. We say that P1 < P2 if {ter(P) | P∈ P1} ⊂ {ter(P) | P ∈ P2} and |P1|< |P2|.

Let us show by induction that, if P is a path-cover which is minimum for <, then there is a
stable set intersecting every directed path of P .

Let P = {P1,P2, . . . ,Pm} be a path-cover minimum for < in D. Let vi = ter(Pi) for any
1 ≤ i ≤ m. If {vi | 1 ≤ i ≤ m} is a stable, then, the result holds. W.l.o.g., we may assume that
(v2,v1) is an arc. Since the concatenation of P2 and (v2,v1) is a directed path, by minimality of
P , v1 is not the unique vertex of P1. Let v be the vertex preceding v1 in P1 and set P′1 = P1− v1.
Then P ′ = {P′1,P2, . . . ,Pm} is a path-cover of D− v.

Let us show that P ′ is minimum for < in D− v. Assume that there is a path-cover Q ′ < P ′.
If Q contains a directed path P with terminus v or v2, then replacing P by the concatenation of
P and (v,v1) or (v2,v1), we get a path-cover Q < P , a contradiction. If not, then Q ′ consists of
at most m−2 directed paths and Q ′∪{(v1)}< P , a contradiction.

Hence, P ′ is minimum for < in D−v. So, by the induction hypothesis, D−v admits a stable
set intersecting every directed path of P ′. Clearly, this stable set also intersects every directed
path of P .

Remark 6.15. In 1990, Hahn and Jackson [2] conjectured that this theorem is best possible
in the following strong sense. For each positive integer k, there is a digraph D with stability
number k such that deleting the vertices of any k−1 directed paths in D leaves a digraph with
stability number k. This was recently proved by Fox and Sudakov [1].

Definition 6.16. An ordered set is a pair (P,≤) such that P is a set and ≤ is a binary relation
over P that is reflexive (for all x ∈ P, x ≤ x), antisymmetric (if x ≤ y and y ≤ x then x = y) and
transitive (if x≤ y and y≤ z then x≤ z). Two elements x and y of P are comparable if x≤ y or
y≤ x. A chain of (P,≤) is a set of pairwise comparable elements, and an antichain of (P,≤) is
a set of pairwise non-comparable elements.

84 CHAPTER 6. MATCHING IN GRAPHS

Corollary 6.17 (Dilworth 1950). For any ordered set (P,≤), the minimal number of chains
covering P equals the maximum size of an antichain.

Proof. If A is an antichain of maximum size in (P,≤), then at least |A| chains are necessary
to cover P because any chain contains at most one element of A. To show that |A| chains are
sufficient, consider the digraph D = (P,E<) with E< = {(x,y)|x ≤ y and x 6= y}. Clearly, there
is a one-to-one correspondence between the chains of (P,≤) and the directed paths of D, and
there is a one-to-one correspondence between the antichains of (P,≤) and the stable sets of D.
Hence Theorem 6.14 applied to D yields the result.

6.6 Exercises
Exercise 6.1. The french figure skating federation wants to form couples (one girl and one boy)
for dance on ice in order to prepare the Olympic Winter Games. Six girls and six boys of high
enough level volunteer. In view of temper incompatibility between some girls and some boys
as well as aestethic criterias supposedly displeasing the judges (the federation does not have
enough money to corrupt all judges), the following table has been designed. A cross in a square
means that the two iceskaters cannot form a couple.

Girl 1 Girl 2 Girl 3 Girl 4 Girl 5 Girl 6
Boy 1 × × × ×
Boy 2 ×
Boy 3 × × × ×
Boy 4 × × ×
Boy 5 × ×
Boy 6 × × × ×

How many couples at most can the federation form? Justify your answer.

Exercise 6.2. A managing director has to launch the marketing of a new product. Several
candidate products are at his disposal and he has to choose the best one. Hence, he let each
of these products be analysed by a team made of an engineer and a trader who write a review
together. The teams are made along the following graph; each edge corresponds to a product
and its endvertices to the engineer and trader examining it.

trader

engineer

How many people at least does the managing director gather in order to have the report on all
the products? (The report can be given by either the engineer or the trader.)

6.6. EXERCISES 85

Exercise 6.3.
1) Show that a tree has at most one perfect matching.
2) Show that a tree T has a perfect matching if and only if odd(T − v) = 1 for all vertex v.

Exercise 6.4. Let G = ((A,B),E) be a bipartite graph.
1) Prove that the number of edges in a maximum matching is |A|−maxA′⊂A{|A′|−|N(A′)|}.
2) Deduce that if |A|= |B|= n and |E(G)|> (k−1)n then G has a matching of cardinality

k.

Exercise 6.5. Let G = ((A,B),E) a bipartite graph such that |N(S)| > |S| for all subset S of A
distinct from /0 and A. Show that every edge e ∈ E(G) is in a matching saturating A.

Exercise 6.6. Let G = ((A,B),E) be a bipartite graph. Suppose that S ⊆ A, T ⊆ B and G
contains a matching M1 saturating S and a matching M2 saturating T . Prove that there exists a
matching which saturates both S and T .

Exercise 6.7. Let G = ((A,B),E) be a bipartite graph such that |A|= |B|= n and δ(G)≥ n/2.
Show that G has a perfect matching.

Exercise 6.8. Let G = ((A,B),E) be a bipartite graph and W be the set of vertices with minimum
degree in G.
1) Prove that G contains a matching saturating A∩W .
2) Deduce that there exists a matching saturating W . (One could use Exercice 6.6).

Exercise 6.9. A pack of m× n cards with m values and n colours is made of one card of each
value and colour. The cards are arranged in an array with n lines and m columns. Show that
there exists a set of m cards, one in each column, such that they all have distinct values.

Exercise 6.10. Prove that a bipartite graph G has a matching of size at least |E(G)|/∆(G).

Exercise 6.11. Let G = ((A,B),E) be a connected bipartite graph such that |A|= |B|= 2k +3.
Show that if all the vertices have degree k or k + 1 then G has a perfect matching unless it is a
graph H which has an edge e such that G\e has two connected components which are subgraphs
of Kk+2,k+1.

Exercise 6.12 (Alon). Let G = ((A,B),E) be a bipartite graph such that d(a)≥ 1 for all a ∈ A
and d(a)≥ d(b) for all ab ∈ E, where a ∈ A and b ∈ B. Show that G has a matching saturating
A.

Exercise 6.13 (Alon). Let G = ((A,B),E) be a bipartite graph in which each vertex of A is of
odd degree. Suppose that any two vertices of A have an even number of common neighbours.
Show that G has a matching saturating A.

Exercise 6.14 (Petersen’s Theorem). Let G be a cubic graph.
1) Prove that if G is 2-edge-connected then it has a perfect matching.
2) Give an example of cubic graph with no perfect matching.
3)

86 CHAPTER 6. MATCHING IN GRAPHS

a) Prove that if G is 2-edge-connected then, for all edge e, G\ e has a perfect matching.

b) Deduce that if G has a unique bridge (separating edge) then G has a perfect matching.

Exercise 6.15. Let G be a connected graph.
1) Prove that if |V (G)| ≥ 4 and every edge of G is in a perfect matching then G is 2-connected.
2) More generally, show that if |V (G)| ≥ 2k and every set of k−1 independent edges is included
in a perfect matching then G is k-connected.

Exercise 6.16. Let G be a graph on at least 2k +2 vertices which has a perfect matching.
Show that if every set of k independent edges is included in a perfect matching then every set
of k−1 independent edges is included in a perfect matching.

Exercise 6.17. Let D be a digraph. A cycle-factor of D is a spanning subdigraph F of D such
that d+

F (v) = d−F (v) = 1 for all v ∈V (D).
The bipartite associated to D, denoted B(D), is defined by

• V (B(D)) = V (G)×{1,2} and

• E(B(D)) = {((u,1),(v,2)) | uv ∈ A(D)}

1) Show that D has a cycle-factor if and only if B(D) has a perfect matching.
2) Assume that for every vertex v of D, d+(v) = d−(v) = k for some fixed k > 0. Show that

D has a cycle-factor.
3) Let G be a 2k-regular graph. A 2-factor in G is a spanning 2-regular graph. Deduce from

the previous question that G has a 2-factor.

Exercise 6.18. Two persons are playing the following game on a graph. One after another the
players choose vertices (one per turn) v1,v2,v3, . . . so that vi is adjacent to vi−1 for all i≥ 0. The
last player which is able to choose a vertex wins.

Prove that the first player has a winning strategy if and only if the graph has no perfect
matching.

Exercise 6.19. The claw is the graph K1,3 = ({x,y1,y2,y3},{xy1,xy2,xy3}). Show that an even
connected graph with no claw as an induced subgraph has a perfect matching.

Exercise 6.20. Let G be a connected graph with an even number of edges. Prove that E(G) may
be partitionned into |E(G)|/2 sets of two adjacent edges. One could show that a “line graph”
with an even number of vertices has a perfect matching.

Exercise 6.21 (Erdős ans Szekeres). Prove that a sequence of rs + 1 integers contains an in-
creasing subsequence of r +1 integers or a decreasing subsequence of s+1 integers.

Exercise 6.22. Let G be a graph with vertices v1, . . . ,vn. Give an algorithm that, given a se-
quence d1, . . . ,dn, decides in polynomial time if G admits an orientation such that d+(vi) = di
for all 1≤ i≤ n.

Bibliography

[1] J. Fox and B. Sudakov. Paths and stability number in digraphs. manuscript.

[2] G. Hahn and B. Jackson. A note concerning paths and independence number in di-
graphs. Discrete Math. 82:327–329, 1990.

87

88 BIBLIOGRAPHY

Part II

Lecture Notes (1st Term)

89

Chapter 7

Flow Problems

7.1 Introduction and definitions
Problems related to transport have been investigated since the early fifties. The problem is to
route some goods, called commodities, from production sites to consumption sites, through
a network consisting of communication links inter-connecting the sites (pipe-lines, routes,
telecommunication networks). Moreover, each link has a maximum admissible throughput,
called the capacity of the link.

In general, most of the sites of the network do not produce nor consume anything, they are
only used to interconnect links. To each production or consumption site is associated some real
number that corresponds to the maximum production or consumption.

The main objective is to maximize the throughput of the traffic.

We first consider networks with directed links, i.e., that can be used in one direction. For-
mally, a flow network is defined as follows.

Definition 7.1 (Flow network). A flow network is a four-tuple (G, prmax,comax,c) such that:

• G is a digraph (or a mulitdigraph), the vertices of which represent the sites and the arcs
represent the links;

• prmax is a function from V (G) to IR+∪+∞; prmax(v) corresponds to the maximum pro-
duction possible in v. If v is not a production site, then prmax(v) = 0.

• comax is a function from V (G) to IR+∪+∞; comax(v) corresponds to the maximum con-
sumption possible in v. If v is not a consumption site, then comax(v) = 0.

• c is a function from E(G) to IR+∪+∞; c(e) corresponds to the capacity of the link e.

Definition 7.2 (Flow). The flow is a triple F = (pr,co, f) where

- pr is a function of production such that, for any vertex v, 0≤ pr(v)≤ prmax(v);

91

92 CHAPTER 7. FLOW PROBLEMS

- co is a function of consumption such that, for any vertex v, 0≤ co(v)≤ comax(v);

- f is a function over E, called flow function that satisfies the following constraints:
Positivity: ∀e ∈ E(G) , f (e)≥ 0

Capacity constraint: ∀e ∈ E(G), f (e)≤ c(e)
Flow conservation: ∀v ∈V (G), ∑

(u,v)∈E(G)
f ((u,v))+ pr(v) = ∑

(v,u)∈E(G)
f ((v,u))+ co(v)

By summing, the |V (G)| equations of flow conservation, we get:

∑
v∈V (G)

pr(v) = ∑
v∈V (G)

co(v)

In other words, the sum of all produced commodities equals the sum of all consumed commodi-
ties. This value corresponds to the amount of routed traffic, it is the flow value, denoted by
v(F).

2
1

1

2

1

1 2

0

1

0
1

0
0

4

3

3

2

3

3

3

1

1

3

2

1

2 co = 3

prmax = 5

prmax = 2

comax = 3

comax = 2
prmax = 1

pr = 2

pr = 1
co = 1

pr = 1

Figure 7.1: Example of flow network (left) and a flow of value 4 in it (right)

Hence, the problem is the following:

Problem 7.3 (Maximum Flow).
Instance: a flow network N.
Find: a flow with maximum value.

A flow with maximum value is said to be a maximum flow.

7.2 Reducing to an elementary network
Before studying this problem, we show that it is equivalent to consider an elementary prob-
lem where there is a unique production site with infinite maximum production and a unique
consumption site with infinite maximum consumption.

7.2. REDUCING TO AN ELEMENTARY NETWORK 93

Definition 7.4 (Elementary network). A flow network (G,∞s,∞t ,c) is elementary:

- s and t are two distinct vertices where s is a source (i. e. d−(s) = 0) and t is a sink (i.e.
d+(t) = 0);

- ∞s(s) = +∞ and ∞s(v) = 0 for all v 6= s;

- ∞p(t) = +∞ and ∞p(v) = 0 for all v 6= t.

We denote (G,∞s,∞t ,c) by (G,s, t,c).

Definition 7.5 (Associated elementary network). If N = (G, prmax,comax,c) is a flow network,
its associated elementary network is the following elementary network N = (Ḡ,s, p, c̄) obtained
from N in the following way:

- add a source s and a sink t;

- link s to all vertices v with non-null production with an arc (s,v) of capacity prmax(v);

- link all vertices v with non-null consumption to t with a link (v, t) of capacity comax(v);

0

4

3

3

2

3

3

3

1

1

3
2

1

2

p

s

1

5

2

3

2

2

p

s

1

3

2 1

11 2

0

1

1

0
1

2

1

0

1

Figure 7.2: Elementary network associated to the flow network depicted in Figure 7.1 (right)
and the flow in this network corresponding to the one of Figure 7.1 (left)

It is easy to see that there is a one-to-one correspondence between any flow F = (pr,co, f)
of the elementary network and a flow F ′= (pr′,co′, f ′) of the initial problem defined as follows:
for any production site u, pr′(u) = f ((s,u)); for any consumption site v, co′(v) = f ((v, t)) and
for any arc (x,y), f ′((x,y)) = f ((x,y)).

Clearly, both flows have same value v(F) = v(F ′) = pr(s) = co(t). Hence:
Finding a maximum flow in a flow network is equivalent to finding a maximum flow solve
in its associated elementary network.

In the following, we only consider elementary flow networks.

94 CHAPTER 7. FLOW PROBLEMS

Note that, in an (elementary) flow network N = (G,s, t,c), the flow conservation constraint
can be written:

∀v ∈V (G)\{s, t}, ∑
(u,v)∈E(G)

f ((u,v)) = ∑
(v,u)∈E(G)

f ((v,u))

Moreover, a flow F = (pr,co, f) of an (elementary) flow network is well defined by the flow
function f since, by the flow conservation constraint in s and t, we have

v(F) = pr(s) = ∑
u∈V (G),(s,u)∈E(G)

f ((s,u))

= co(t) = ∑
u∈V (G),(u,t)∈E(G)

f ((u, t))

Therefore, for ease of presentation, we often identify a flow F with its function f , and we
note the flow value by v(f).

To simplify the notations in the sequel, for a flow f or a capacity c, and an arc (u,v), we
write f (u,v) instead of f ((u,v)), and c(u,v) instead of c((u,v)).

7.3 Cut and upper bound on the maximum flow value
We will show that the value of a maximum flow in a network is limited by the existence of
some bottlenecks through which the traffic must go. Roughly, to go from the source to the sink,
the flow must cross the border of a set of vertices, its size (the sum of the capacities of the
corresponding edges) will limit the value of the flow. Such a border is called a cut.

Definition 7.6 (Cut). In a flow network N = (G,s, t,c), an (s, t)-cut, or simply a cut, is a bipar-
tition C = (Vs,Vt) of the vertices of G such that s ∈ Vs and t ∈ Vt . The arcs form Vs to Vt (i.e.
with tail in Vs and head in Vt) are the arcs of C. Their set is denoted by E(C). The capacity of
the cut C, denoted by δ(C), is the sum of the capacities of its arcs: ∑e∈E(C) c(e).

Let f be a flow and C = (Vs,Vt) be a cut, out(f ,C) denotes the flow on arcs leaving Vs and
in(f ,C) the flow entering Vs :

out(f ,C) = ∑
(u,v)∈E(C), u∈Vs,v∈Vt

f (u,v)

in(f ,C) = ∑
(u,v)∈E(G), u∈Vt ,v∈Vs

f (u,v)

Note that the flow conservation implies that

for all cut C, v(f) = out(f ,C)− in(f ,C)

In particular, the value of the flow is always at most out(f ,C). But clearly out(f ,C)≤ δ(C),so

v(f)≤ δ(C). (7.1)

7.4. AUXILIARY NETWORK AND “PUSH” ALGORITHM 95

2

3

1

2

2

3

2

2

Vp

s
p

Vs

Figure 7.3: A flow network and a cut with capacity 4. Bold arcs are those of the cut

A cut can be viewed as a set of arcs that the flow must cross and whose capacity limits the
value of the flow.

Let vmax = max{v(f), f a flow} and δmin = min{δ(C), C a cut}. Equation 7.1 applied to a
maximum flow and a minimum-capacity cut yields

vmax ≤ δmin. (7.2)

In fact, the next theorem,due to Ford and Fulkerson, states that there is equality.

Theorem 7.7 (FORD–FULKERSON THEOREM). The maximum value of an (s, t)-flow equals
the minimum capacity of an (s, t)-cut, i.e.,

vmax = δmin.

We often say that max flow equals min cut. It is an example of“min-max theorem”
There are many proofs of this theorem, some being non-constructive proof of this theorem.

In the next section, we present the original proof which is based on an algorithm computing a
maximum flow and a cut with minimum capacity.

7.4 Auxiliary Network and “push” Algorithm
Most of the algorithms for computing maximum flows are based on the following idea: Starting
from an existing flow (initially, it may be null), the flow is increased by going from the source
to the sink by “pushing” the commodity where it is possible.

The difference between the algorithms mainly consists of the way used to decide where and
how to push some flow.

For this purpose, we define an auxiliary network. This graph, denoted by N(f), depends on
the existing flow f .

96 CHAPTER 7. FLOW PROBLEMS

Definition 7.8 (Auxiliary network). Given a flow network N = (G,s, t,c) and a flow f , we build
the auxiliary network N(f) = (G(f),s, t,c f) as follows.
For any pair of vertices (u,v), let

c f (u,v) = c(u,v)− f (u,v)+ f (v,u)

with c(u,v), f (u,v) and f (v,u) equal to 0 when they are not defined (if (u,v) is not an arc of G).
Note that c f (u,v)≥ 0 since c(u,v)− f (u,v)≥ 0. Then, G(f) is defined as follows

V (G(f)) = V (G)
E(G(f)) = {(u,v) | c f (u,v) > 0}

Note that c f (u,v)+c f (v,u) = c(u,v)+c(v,u). Intuitively, c f (u,v) is the sum of the remain-
ing capacity on the arc (u,v), i.e., c(u,v)− f (u,v), plus a virtual capacity f (v,u), that allows
to ”remove” some flow on the arc (v,u), which corresponds to virtually push some flow along
(u,v). See examples in Figures 7.4 and 7.5.

Note that the auxiliary network has no arc with capacity 0. This is important because it
ensures that, for any directed path P in G(f), the minimum capacity of the arcs of P is positive.

4

1

5

72

5 5

4

14

4

3 3

4

3

1

1 3

5

41

5

s

Flow network Flow Auxiliary network

s

p

s

p p

Figure 7.4: A flow network, a flow and the corresponding auxiliary network

Let P be a directed (s, t)-path in N(f) where the minimum capacity of an arc in P is ε > 0.
The flow f ′ obtained by pushing ε units of flow along P is defined by:
For any arc (u,v) ∈ E(P), we push the flow along (u,v), that is, we increase the flow with ε

units on (u,v). Two cases may happen:

- If the remaining capacity of (u,v) is sufficient for the ε units of flow, i.e., f (u,v)+ ε ≤
c(u,v), then f ′(u,v) = f (u,v)+ ε and f ′(v,u) = f (v,u).

- If the remaining capacity of (u,v) is not sufficient for the ε units of flow, i.e., f (u,v)+
ε > c(u,v), then, by definition of the auxiliary network, we have f (v,u) ≥ f (u,v)+ ε−
c(u,v) > 0. Hence, (v,u) has a flow excess of f (u,v) + ε− c(u,v) units that we must
remove. We set f ′(u,v) = c(u,v) and f ′(v,u) = f (v,u)− (f (u,v)+ ε)+ c(u,v).

7.4. AUXILIARY NETWORK AND “PUSH” ALGORITHM 97

If (u,v) and (v,u) do not belong to P, the flow remains unchanged on these arcs, f ′(u,v) =
f (u,v) and f ′(v,u) = f (v,u).

Lemma 7.9. If f is a flow of value v(f), then f ′ is a flow of value v(f)+ ε.

Proof. See Exercice 7.5.

For instance, from the flow depicted in Figure 7.4, by taking the directed (s, t)-path depicted
in Figure 7.5 with minimum capacity 1 and pushing the flow, we obtain the new flow and the
new auxiliary network depicted in Figure 7.5.

5

4 3 4

5
1

1

3

2
2

2

4

3
2

2

2

s

(s, p)-path New flow New auxiliary network

p

s

p

s

p

Figure 7.5: Push along a directed (s, t)-path of the auxiliary network in Figure 7.4.

Now, we have some elements of an algorithm:

1. Start with any flow f ;

2. Compute the auxiliary network N(f);

3. Find a directed path from s to p in G(f);

4. If such a directed path P exists, then push some flow along P and update f .

Note that, if there is no directed path from the source to the sink in the auxiliary graph, the
previous algorithm does nothing. We will see that, in this case, the existing flow is maximum.

Proposition 7.10. If G(f) does not contain a path from the source to the sink, then the flow f
is maximum.

Proof. Let Vs be the set of all vertices that can be reached from s in G(f). Vs does not contain
the sink since there are no (s, t)-paths. Hence, p ∈Vt = V \Vs. Let C be the cut (Vs,Vt).

Let (u,v) be an arc of C. By definition of Vs, the arc (u,v) is not in G(f). So, by definition
of G(f), this means that c f (u,v) = 0. Hence, f is such that f (u,v) = c(u,v) and f (v,u) = 0.

We get that out(f ,C) = δ(C) and in(f ,C) = 0. Informally, there is no flow entering Vs and
all arcs of C (that is leaving Vs) are saturated.

98 CHAPTER 7. FLOW PROBLEMS

But v(f) = out(f ,C)− in(f ,C), therefore

v(f) = δ(C)

The current flow has the same value as the capacity of the cut C. Hence, f is maximum by
Equation (7.2).

Note that this proof also exhibit a cut (Vs,Vt) with same capacity as the maximum value of
a flow. Hence it is a minimum-capacity cut. It shows that it is easy to find a minimum-capacity
cut (Vs,Vt) from a maximum flow: Vs is the set of the vertices reachable from the source in the
auxiliary network and Vt its complement.

Now, we can prove Theorem 7.7.
Proof of Theorem 7.7: Let f be a flow with maximum value in a flow network (G,s, t,c), and
let N(f) be the auxiliary network. In G(f), there are no directed (s, t)-paths, otherwise we
obtain a flow with greater value by pushing some flow along this path (Lemma 7.9). Hence,
by the proof of Proposition 7.10, the cut C = (Vs,Vt), where Vs is the set of vertices v such that
there is a directed (s,v)-path in G(f), has capacity v(f) = vmax. Therefore, δmin ≤ δ(C)≤ vmax.
�

7.5 Ford-Fulkerson algorithm
We now have the following algorithm:

Algorithm 7.1 (Ford and Fulkerson (1956)).

1. Start with null flow f = 0;

2. Compute the auxiliary network N(f);

3. Look for a directed path from s to t in G(f);

4. If such a directed path P exists, then push some flow along P, update f and go to 2;

5. Else terminate and return f .

This algorithm is correct in the sense that If the algorithms terminates, then it returns a
maximum solution. But

1) does it always terminate?

2) If it terminates, what is its complexity?

7.5. FORD-FULKERSON ALGORITHM 99

The answer to question 1 is somehow yes and no: we will see that the algorithm always
terminates if the capacities are rational, but it can take infinite time if capacities are real. Be-
sides, even when the capacities are integers, the running time depends linearly on the value of
the maximum flow that may be huge.

Analysis of Ford-Fulkerson Algorithm

Proposition 7.11. (i) If all capacities are integers, then Algorithm 7.1 terminates after at most
vmax searches of a directed path.

(ii) If all the capacities are rational, then Algorithm 7.1 terminates after at most µ · vmax
searches of a directed path, with µ the least common multiple of the denominators of the capac-
ities.

Proof. (i) If capacities are integers, at each iteration, the algorithm pushes at least one unit
of flow (since, in this case, ε is integral). Each iteration requires the search of a path
from s to p in G(f). This can be done in time O(|E(G)|) by any search algorithm (See
Chapter 2). Hence, its total running time is at most

O(vmax · |E(G)|).

(ii) If capacities are rational, the algorithm terminates since the flow increases of at least 1
µ

at each iteration. µ can be very large, but it is fixed. Actually, we can solve the problem
by multiplying all capacities by µ and by solving the integral problem obtained: it is
proportional the initial one.

Remark 7.12. If some capacities are integers, then the Ford-Fulkerson algorithm returns an
integral maximum flow.

Proposition 7.13. If the capacities are real, the algorithm may not terminate. Moreover, the
increasing sequence of the flow value may converge to a value a lot smaller than the optimal
value.

Proof. Consider the flow network shown in Figure 7.6 for which the capacities of all edges are
infinite (or if the reader prefers, a huge integer M). Let α denote the positive root of x3 +x−1 =
0. Clearly 1/2 < α < 1. Let the initial flow f0 be as shown in Figure 7.6.

We shall prove that by employing a well (or very badly) chosen sequence of four augmenting
paths over and over, Algorithm 7.1 will produce an infinite sequence of flows, the values of
which are monotone increasing and which converge to a limit not exceeding 16. For any m≥ 0,
start from the flow f4m and push along the directed path (s,c,d,a,b, t). The pushed amount
is α4m+1 because of arc (a,b) in the auxiliary network. The resulting flow is f4m+1. Push
along the directed path (s,c,b,a,d, t) an amount of α4m+2 (because of (c,b)) to produce f4m+2,
push along the directed path (s,a,b,c,d, t) an amount of α4m+3 (because of (c,d)) to produce

100 CHAPTER 7. FLOW PROBLEMS

α

d

p
c

b

a

s

d

p
c

b

a

s

11

1+α2

α+α2

α

α2

Figure 7.6: A flow network and the initial flow f0

f4m+3 and push along the directed path (s,a,d,c,b, t) an amount of α4m+4 (because of (a,d)) to
produce f4m+4. See Figure 7.7.

For k ≥ 1, the augmentation of the value from fk−1 to fk is αk and hence

v(fk) = v(f0)+α+α
2 + · · ·+α

r

= (1+α+α
2)+α+α

2 + · · ·+α
r

=
1
α

(α+α
2 +α

3 +α
2 +α

3 + · · ·+α
r+1)

=
1
α

(α+α
2 +(1−α)+α

2 +α
3 + · · ·+α

r+1)

=
1
α

(1+2α
2 +α

3 + · · ·+α
r+1)

<
1
α

(1+α+α
2 +α

3 + · · ·+α
r+1)

<
1

α−α2 =
1

α4 < 16.

From this construction, it is easy to construct an example of a network where some ca-
pacities are irrational such that even starting with a null flow, the sequence of flows obtained
by pushing along some directed paths converges to a value less than 16, while the value of a
maximum flow is infinite (or arbitrarily large). See Exercise 7.9.

Remark 7.14. While the termination is not ensured in case of irrational capacities, Theorem 7.7
(vmax = δmin) remains valid. We prove the real case by taking the limit of the rational case. In
practice, the rational case is the only important problem, since computers works with a finite
precision.

7.6. PUSHING ALONG SHORTEST PATHS 101

f4m

d

c

b

a

α4m

α4m+2

α4m+1

d

c

b

a

α4m+2

α4m+3

α4m+4

d

c

b

a

α4m+2

α4m+3

α4m+1

d

c

b

a

α4m+3

α4m+5

α4m+4

f4m+1 f4m+2 f4m+3

Figure 7.7: The sequence of flows. The arcs leaving s and the arcs entering t are not drawn

The bound of Proposition 7.11 on the number of pushes is not good because it depends on
the value of the maximum flow which may be huge. Figure 7.8 shows an example where vmax
pushes, if they are badly chosen, are necessary to reach a flow with maximum value. Indeed, if

1s p

k

k

b

a

k

k

Figure 7.8: Example where 2k = vmax pushes may be performed.

the pushes are alternatively performed along P1 = (s,a,b, t) and P2 = (s,b,a, t), then one unit
of flow is pushed at each iteration because the capacity of (a,b) or (b,a) equals 1. Therefore,
2k = vmax pushes are necessary (k along P1 and k along P2).

To improve the previous algorithm and to ensure its quick termination in all cases, the idea
is to consider the pushes on some specific directed paths.

7.6 Pushing along shortest paths
Instead of pushing the flow along an arbitrary directed path (s, t)-path in the auxiliary network,
a better algorithm consists in pushing along a shortest directed (s, t)-path. Here, by shortest

102 CHAPTER 7. FLOW PROBLEMS

path, we mean a shortest path in terms of number of arcs, not of total capacity.

Algorithm 7.2 (Edmonds-Karp, 1970).

1. Start with null flow f = 0;

2. Compute the auxiliary network N(f) ;

3. Look for a shortest directed path from s to p in G(f);

4. If such a path P exists, push some flow along P, update f and go to 2;

5. Else terminate and return f .

We will show that such an algorithm performs at most |E(G)||V (G)|
2 iterations. That is, its time

complexity is at most |E(G)||V (G)|
2 times the complexity of finding a shortest path. Note that,

contrary to the Ford-Fulkerson Algorithm (7.1), this bound is independent from the capacities.
The proof is based on two simple properties.

1) During the iterations, the distance between s and t in the auxiliary graph cannot decrease.

2) During the iterations, the distance between s and t remains unchanged at most |E(G)|
consecutive iterations.

Let f0 be a flow and let G0 = G(f0); We set:

- E ′ the set of arcs of G0 that belong to a shortest path from s to t in G0;

- E ′− the arcs obtained by reversing the ones in E ′ ;

- G1 the graph obtained from G0 by adding the arcs in E ′−.

Lemma 7.15. The graph G1 has the following properties:

(i) A directed path from s to t with length distG0(s, t) does not use any arc in E ′−.

(ii) The distance from s to p in G1 is distG0(s, t);

Proof. (i) Let P be a directed (s, t)-path in G1 that contains some arcs in E ′−, and let (v,u) be
the last arc of E ′− that belongs to P. Let us show that P is not a shortest directed (s, t)-path.
Since (u,v) belongs to a shortest directed (s, t)-path, we have distG0(u, p) = distG0(v, p) + 1.
Since between u and p, the path P uses only arcs in G0, its length is l +1+distG0(u, p) (where l
is the length of the subpath of P between s and v). Hence, P has length l +2+distG0(v, p). The
path P′ obtained by following P until v and then using a shortest directed (v, p)-path has length
l +distG0(v, p) = l +distG0(v, p). Therefore, P is not a shortest directed (s, t)-path.

(ii) Follows from (i).

7.7. ALGORITHM USING A SCALE FACTOR 103

Theorem 7.16. Algorithm 7.2 performs at most |E(G)||V (G)| iterations. Its time-complexity is
|E(G)||V (G)| searches of shortest directed paths, so O(|E(G)|2|V (G)|).

Proof. During a push, we add to the auxiliary network the arcs in E ′−. By Lemma 7.15, it does
not decrease the distance between s and p. The algorithm consists of |V | steps corresponding to
the set of all possible distances between s and p. A step consists of a set of iterations when the
distance between s and p remains unchanged.

Let us consider successive iterations that let the distance dist(s, t) unchanged. During some
iterations, the auxiliary network G0 changes since some arcs are added and other arcs are re-
moved. However, since d(s, t) remains the same, the paths along which pushes are performed
use only arcs of G0. Since at each iteration, at least one arc of G0 is removed (we push the max-
imum possible along the chosen path, so one arc is removed), at most |E(G)| such iterations are
performed.

Since dist(s, t) ≤ |V (G)|, we have at most |V (G)| steps of at most |E(G)| iterations each.
At each iteration we mainly have to find a shortest directed (s, t)-path. This can be done
in time O(|E(G)|) by any search algorithm (See Chapter 2). Hence the total complexity is
O(|E(G)|2|V (G)|).

7.7 Algorithm using a scale factor
If the capacities are integral then Algorithm 7.1 may take time to find the maximum flow be-
casue of the disparity of the values of the capacities. In the example in Figure 7.8, the pushes
may be performed along an arc with capacity 1, while there is a path between the source and
the sink with capacity k. This problem may be overcome by using a scale factor. The idea is to
try to work with capacities with similar values, to saturate them and then to consider capacities
with smaller values. The idea is to start with the greatest capacities, to push some flow in a
network that consists only of these links and to try to saturate them as much as possible. Then,
the network is replaced by the current auxiliary network to which we add new links with smaller
capacities than the one considered yet.

Algorithm 7.3 (Scaling Algorithm).

0. Compute the smallest integer m such that c(e) < 2m for any arc e.
For all e ∈ E(G), set c(e) = ∑

m−1
j=0 2 jc j(e) with c j(e) ∈ {0,1}.

1. k := m−1; for all e ∈ E(G), c′(e) := 0 and f (e) := 0;

2. If k < 0, then terminate, else for all e ∈ E(G), c′(e) := c′(e)+2kck(e).

3. Increase as much as possible the flow f in (G,s, t,c′); k := k−1; go to Step 2.

104 CHAPTER 7. FLOW PROBLEMS

Clearly, this algorithm computes a maximum flow because, at the end, all capacities are
taken into account.

Let us consider the complexity of this algorithm. For this purpose, we need the following
proposition the proof of which is left in Exercise 7.10.

Proposition 7.17. Let N = (G,s, t,c) be a flow network and α a positive real. Let e be an arc of
G and N′ be the flow network (G,s, t,c′) where c′ is defined by c′(e) = c(e)+α and c′(f) = c(f)
for all f 6= e. Then vmax(N′)≤ vmax(N)+α.

Theorem 7.18. Algorithm 7.3 performs less than (log2(vmax)+1) · |E(G)| pushes.

Proof. Let c′i = ∑
m−1
j=i 2 jc j be the capacity at Step 3 when k = i, gi be the flow added during this

step, and fi+1 be the total flow before this step. Hence fi = fi+1 +gi.

Let us prove by decreasing induction that at Step 3-(i) Algorithm 7.3 performs at most
|E(G)| pushes and that fi(e) is a multiple of 2i for every arc e.
The results holds trivially for i = n. Suppose now that the results holds for i + 1. Since the
capacity c′i and the flow f i+1 are multiple of 2i, in the auxiliary network, the capacity of the arcs
are multiples of 2i. Hence finding gi corresponds to finding a maximum flow g′i in the network
with integral capacities (G,s, t,(c′i− fi+1)/2i) with v(g′i) ≤ v(gi)/2i. Moreover, at the end of
Step 3-(i + 1), the flow could not be increased anymore, therefore, there are no directed paths
with minimum capacity 2i+1. Hence, at Step 3.(i), any directed path in the auxiliary network
has minimal capacity 2i. Hence, each iteration pushes exactly 2i units of flow at Step 3.(i). Thus
v(gi) ≤ 2i · |E(G)| and so v(g′i) ≤ 2i|E(G)|. By Proposition 7.11, finding g′i and gi is done in
at most |E(G)| pushes. In addition, by Remark 7.12, the flow g′i has integral values and so the
values of gi are multiple of 2i.

Let i0 be the largest integer such that a push has been done at i0. If 2i0 ≥ vmax, then after
pushing once at Step 3-(i0), we obtained a flow of value 2i0 , which must be a maximum flow.

Otherwise, i0 < log2(vmax) and for each i, 0 ≤ i ≤ i0, Algorithm 7.3 performs at most
|E(G)| pushes. Hence in total, the number of pushes it at most (i0 +1)|E(G)| ≤ (log2(vmax)+
1) · |E(G)|.

7.8 Flows in undirected graphs
Until now, we have considered the problem in directed graphs. However, there are some con-
texts in which the corresponding network is undirected. For instance, when the links are bidi-
rectional. In this case, each link has one maximum capacity but the flow may circulate in both
directions if the sum of the two traffics is at most the capacity of the link.

A undirected flow network N = (G, prmax,comax,c) is defined similarily to the directed case.
The definition of the flow is a bit modified since two values must be associated to each edge uv:
f (u,v) corresponds to the traffic from u to v and f (v,u) corresponds to the traffic from v to u.

Definition 7.19 (Undirected Flow). The flow is a three-tuple F = (pr,co, f) where

7.8. FLOWS IN UNDIRECTED GRAPHS 105

- pr is a function of production such that, for any vertex v, 0≤ pr(v)≤ prmax(v);

- co is a function of consumption such that, for any vertex v, 0≤ co(v)≤ comax(v);

- f is a function over the ordered pair (u,v) (with u and v adjacent), called flow function
that satisfies the following constraints:

Positivity: ∀e ∈ E , f (e)≥ 0
Capacity constraint: ∀uv ∈ E, f ((u,v))+ f ((v,u))≤ c(uv)
Flow conservation: ∀v ∈V , ∑

(u,v)∈E
f ((u,v))+ pr(v) = ∑

(v,u)∈E
f ((v,u))+ co(v)

As in the directed case, the value of the flow F is

v(F) = ∑
v∈V

pr(v) = ∑
v∈V

co(v)

Let N = (G, prmax,comax,c) be an undirected flow network. The (directed) flow network as-
sociated to N is ~N = (~G, prmax,comax,~c) obtained by replacing each edge uv by an arc (u,v) and
an arc (v,u) each of which has capacity c(u,v). Formally, (~G = (V (G),

[
uv∈E(G)

{(u,v),(v,u)})

and~c((u,v)) =~c((v,u)) = c(uv).
Clearly, a flow function f in N and a flow function ~f in ~N satisfy the same constraints but

the capacity constraint. The one in N:

∀uv ∈ E(G), f ((u,v))+ f ((v,u))≤ c(uv)

is stronger than the one in ~N:

∀uv ∈ E(G), ~f ((u,v))≤ c(uv) et ~f ((v,u))≤ c(uv)

Hence, any flow of N is a flow in ~N. Hence, the maximum value of a flow in N is at most
the maximum value of a flow in ~N. In other words, vmax(N)≤ vmax(~N). We show that they are
equal.

Definition 7.20 (simple flow). A flow is simple if, for any pair of vertices {u,v}, we have either
f (u,v) = 0 or f (v,u) = 0. To any flow, there is a corresponding simple flow defined as follows.
If f (u,v) ≥ f (v,u) > 0 then f̃ (u,v) = f (u,v)− f (v,u) and f̃ (v,u) = 0. It is easy to see that
v(f) = v(f̃) since f (v,s) = 0 for any vertex v because d−(s) = 0 and so f (s,v) = f̃ (s,v).

Proposition 7.21. Let N be an undirected flow network and let ~N be the associated flow net-
work:

vmax(N) = vmax(~N)

Proof. Let ~F = (pr,co, ~f) be a flow in ~N. Let F = (pr,co, f) be the simple flow of ~F . Then
v(F) = v(~F). Since F is simple, for any edge uv ∈ E(G), we have f (u,v) = 0 or f (v,u) = 0.
Besides, the capacity constraint in ~N gives f (u,v) ≤ c(uv) ou f (v,u) ≤ c(uv). Hence, for any
uv ∈ E(G), f ((u,v))+ f ((v,u))≤ c(uv). Then, F is a flow for N.

Therefore, any flow of ~N corresponds to a flow of N with same value.

This proposition allows us to reduce the undirected problem to the directed case. To find a
maximum flow in an undirected network, it is sufficient to solve the problem in the associated
directed network and to take the corresponding simple flow.

106 CHAPTER 7. FLOW PROBLEMS

7.9 Applications of flows

7.9.1 Connectivity in graphs

Menger’s Theorem (Theorem 5.18 is very closely related to Theorem 7.7. Observe that the arc
set of an (s, t)-cut in a flow network corresponds to an (s, t)-edge-separator. Hence one can
deduce Menger’s Theorem from Theorem 7.7. We now do it for Theorem 5.18-(ii) for digraphs.
In fact the proof of this results we gave in Section 5.6 was using the push technique (in disguise).

Proof of Theorem 5.18-(ii) for digraphs. Let G be a digraph. The edge-connectivity κ′(s, t) is
the value of the capacity of a cut in the flow network N obtained by assigning to each arc a
capacity of 1, and choosing s as source and t as sink. Indeed, if C = (Vs,Vt) is a cut, then after
the removal of the arcs of C, there remain no (s, t)-paths. Hence κ′(s, t)≤ δmin(N). Reciprocally,
let E ′ be an arc-separator of G and G′ = G \E ′. Let Vs be the set of vertices w of G′ such that
there exists a directed (s,w)-path in G′, and Vt = V \Vu. By definition of Vs, any arc (x,y) with
x ∈Vs and y ∈Vt is in E ′. Hence, δ((Vs,Vt))≤ |E ′|. Therefore, δmin(N)≤ κ′(s, t).

From Theorem 7.7, there is a flow of value κ′(s, t) in this network. Moreover, by Re-
mark 7.12, we may assume that this flow is integral. Since the edges have unit capacity, the
flow of value κ′(s, t) can be decomposed into a set of κ′(s, t) pairwise edge-disjoint (s, t)-paths.
Hence κ′(s, t) = Π′(s, t).

The other cases of Menger’s Theorem may also be derived from Theorem 7.7. See Exer-
cise 7.13. Thus Menger’s Theorem can be viewed as a particular case of Theorem 7.7. In fact,
they are equivalent and it is not too difficult to prove Theorem 7.7 from Menger’s Theorem. See
Exercise 7.14.

7.9.2 Maximum matching in bipartite graphs

The theorems on matching in bipartite graphs that we proved in Chapter 6 are direct applications
of flows. Indeed to every bipartite graph G = ((A,B),E), one can associate the flow network
NG = (H,s, t,c) defined as follows: H is the digraph obtained from G by orienting all edges of
G from A to B and adding a source s and a sink t, all arcs (s,a) for a ∈ A and (b, t) for b ∈ B;
the capacity equals 1 for all arcs. See Figure 7.9.

1

s p

1

1

11

1

1
1

11

1

11

1

1

1

1

1

Figure 7.9: A bipartite graph and its associated flow network

7.9. APPLICATIONS OF FLOWS 107

There is a one-to-one correspondence between the matchings of G and the integral flows in
NG: to every matching M corresponds the flow fM with value 1 on the arc set

S
(a,b)∈E(G){(s,a),(a,b),(b, t)}.

Moreover the size of M is equal to the value of the flow fM. In addition, an M-augmenting path
in G corresponds to a directed (s, t)-path in the auxiliary network NG(fM). Hence Algorithm 6.2
is a particular case of Algorithm 7.1.

One can also deduce all the results of Chapter 6 from Theorem 7.7. For example, we now
give a proof of Theorem 6.3 (“Let G = (A,B) bipartite, there is a matching of size k if and only
if ∀S⊂ A, |A|− |S|+ |N(S)| ≥ k”) using flows.

Proof of Theorem 6.3. Let us prove that the maximum size µ of a matching in G is equal to the
maximum value of a flow in NG. If M is a matching of size µ in G, then fM has value µ. Hence
µ ≤ vmax. Reciprocally, from Remark 7.12, there is a maximum flow f with integral values. It
is in one-to-one correspondence with a matching M of size v(f) = vmax. Hence, µ≥ vmax.

Let C = (Vs,Vt) be a minimum cut. Let As = A∩Vs and Bs = B∩Vs. If there is a vertex
b ∈ (B∩N(As))\Bs, then setting C′ = (Vs∪{b},Vt \{b}), we get δ(C′)≤ δ(C)−1+1 = δ(C).
So, by adding the vertices of (B∩N(As))\Bs in Vs if needed, we may assume that the minimum
cut that we consider is such that N(As)⊆ Bs.

Let us consider the capacity of C.

δmin = δ(C) = |{(s,a) | a ∈ A\As}|+ |{(b, t) | b ∈ Bs}|+ |{(a,b)} | a ∈ As,b ∈ B\Bs}|
= |A|− |As|+ |Bs|

Since N(As) ⊆ Bs, it follows that δmin ≥ |A| − |As|+ |N(As)|. Moreover, the cut (As ∪
N(As),V (H) \ (As ∪N(As))) has capacity |A| − |As|+ |N(As|. So δmin = |A| − |As|+ |N(As)|.
We conclude that

δmin = min{S⊂ A | |A|− |S|+N(S)}

Hence, from Theorem 7.7, µ = vmax = δmin = min{S⊂ A | |A|− |S|+N(S)}.

7.9.3 Maximum-gain closure
In this problem, we have several jobs. Each job j ∈ J is associated to a gain g(j). The gain may
be negative (if so, it corresponds to a loss). We note J+ (resp. J−) the set of jobs with positive
gain (resp., negative gain).

Besides, there are several closure constraints.That is, the choice of a job may imply the
choice of one or several other jobs. We represent this closure relation (e.g., implication relation)
by an implication digraph DJ: its vertices are the jobs and there is an arc (j1, j2) if and only if
the choice of j1 implies the choice of j2.

The objective is to find a set of compatiblejobs with maximum gain, that is a subset A of J
such that:

- there are no arcs leaving A (E((A,A)) = /0) i.e. A is a closure in DJ;

- ∑ j∈A g(j) is maximum.

108 CHAPTER 7. FLOW PROBLEMS

Let us show how this problem can be reduced to a problem of cut with minimum capacity,
hence to a maximum flow problem. Let N = (G,s, t,c) be the following flow network (See
Figure 7.10:

- V (G) = T ∪{s, t};

- for any job j with positive gain, link the source s to the job j with an arc (s, j) with
capacity c(s, j) = g(j);

- for any job j with non-positive gain, link j to the sink t with an arc (j, t) with capacity
c(j, t) =−g(j);

- if a job j1 implies a job j2, we add the arc (j1, j2) with infinite capacity in the network.

10

4

5

3

−2

−5

−15

−2
3

5

4

10

15

2

2

5 ps

+∞

T−

+∞

T +
+∞

+∞

+∞+∞

+∞ +∞

+∞

+∞

Figure 7.10: An implication digraph and its corresponding flow network

Let us consider a cut C = (Vs,Vt) with finite capacity in the network. We have S = {s}∪A
with A ⊂ J. Moreover, since the cut has finite capacity, its arc set contains no arcs of DJ , so A
is a set of compatible jobs. Let A+ = A∩ J+ and A− = A∩ J−. The capacity of C is:

δ(C) = ∑
j∈J+\A+

c(s, j)+ ∑
j∈A−

c(j, t)

= ∑
j∈J+\A+

g(j)− ∑
j∈A−

g(j)

= ∑
j∈J+

g(j)− ∑
j∈A+

g(j)− ∑
j∈A−

g(j)

= ∑
j∈J+

g(j)−∑
j∈A

g(j)

Since ∑ j∈J+ g(j), the sum of all positive gains, is a constant, minimizing the capacity of the cut
S = {s}∪A is equivalent to maximizing the gain of A.

7.10. EXERCICES 109

7.10 Exercices
Exercise 7.1. Let N be the flow network and f0 the (s, t)-flow in N as depicted in the figure
below.

31

2

2

2

2

2

1

1

2

22

2

4

3

network initial flow

psps

1) Start from f0 and find a maximum (s, t)-flow. Detail the steps of the algorithm.
2) Describe a minimum cut of this network.

Exercise 7.2. Find a maximum (s, t)-flow and a minimum (s, t)-cut in the network depicted
below. (Detail the steps of the “push” algorithm.)

5

3

2

6

5

2

22
ps

Exercise 7.3. There are 3 production sites A,B,C and 5 consumption sites 1,2,3,4,5; their
production and consumption, respectively, are given in the following tables.

A B C
5 4 7

1 2 3 4 5
3 4 5 2 1

Finally, each production sites can only serve the consumption sites as summarized in the fol-
lowing table.

A B C
13 24 345

The problem is to satisfy the consumption sites. Model the following problem in terms of
flows and give a solution to the problem or explain why it could not exist.

Exercise 7.4. Prove the following property: for all (s, t)-cut C = (Vs,Vt), v(f) = out(f ,C)−
in(f ,C). Why is the hypothesis s ∈Vs and p ∈Vt important?

Exercise 7.5. Prove Lemma 7.9. Verify that the positivity, the capacity constraint and the flow
conservation are satisfied for f ′.

110 CHAPTER 7. FLOW PROBLEMS

Exercise 7.6. The support of a flow is the set of arcs on which the flow function is positive.
Show that there always exists a maximum flow whose support has no directed cycle.

Exercise 7.7. Let N = (G,s, t,c) be a flow network such that, for all arc e, c(e) is an even
integer.
1) Prove that the maximum value of a flow is an even integer.
2) Show that there is a maximum flow f such that, for all arc e, f (e) is an even integer.

Exercise 7.8. Modify Algorithm 7.1 to obtain an algorithm finding a minimum cut in a flow
network.

Exercise 7.9. Construct a flow network for which Algorithm 7.1 produces a sequence of flow
whose values converges to a finite value when pushing on some sequence of directed paths,
while the value of a maximum flow is infinite (or arbitrarily large).

Exercise 7.10. Prove Proposition 7.17.

Exercise 7.11. In this exercise, we study a variant of the algorithm for finding a maximum flow,
in which we push the flow along a directed path of maximum residual capacity.

1) Give an algorithm finding a directed path of maximum residual capacity.
2) Show that if we push an amount of x at one step, then we push an amount of at least x at

each following step.

Exercise 7.12. Let N = (G,s, t,c) be a flow network. To each vertex v ∈ V (G), we associate
an real w(v). We want to compute a flow f of maximum value satisfying the following extra
constraint: ∀v ∈ V (G) the flow entering v is at most w(v) (i.e. ∑u∈N−(v) f (uv) ≤ w(v)). Show
how to find such a flow by computing a maximum flow on a network obtained from N by slight
modifications.

Exercise 7.13. Deduce Menger’s Theorem (5.18) from Theorem 7.7 . (Hint: One can use
Exercise 7.12 to prove Theorem 5.18-(i).

Exercise 7.14. Deduce Theorem 7.7 from Menger’s Theorem (5.18).

Exercise 7.15. Several companies send members to a conference; the ith company send mi
members. During the conference, several workshops are organized simulteanously; the ith
workshops can receive at most n j participants. The organizers want to dispatch participants
into workshops so that two members of a same company are not in a same workshop. (The
workshop do not need to be full.)

a) Show how to use a flow network for testing if the constraints may be satisfied.
b) If there are p companies and q workshops indexed in such a way that m1 ≥ ·· · ≥ mp

and n1 ≤ ·· · ≤ nq. Show that there exists a dispatching of participants into groupes satisfying
the constraints if and only if, for all 0≤ k ≤ p and all 0≤ l ≤ q, we have k(q− l)+∑

l
j=1 n j ≥

∑
k
i=1 mi.

7.10. EXERCICES 111

Exercise 7.16 (Unsplittable flow). We consider a flow network with one production site s and
many consumption sites, say t1, t2, . . . tn. The consumption at site ti is di. We want to route
commodities for s to ti with the following additionnal constraint: the traffic from s to ti must be
routed along a unique directed path (it cannot be split).

Show that this problem is NP-complete.

112 CHAPTER 7. FLOW PROBLEMS

Chapter 8

Graph colouring

8.1 Vertex colouring
A (vertex) colouring of a graph G is a mapping c : V (G)→ S. The elements of S are called
colours; the vertices of one colour form a colour class. If |S|= k, we say that c is a k-colouring
(often we use S = {1, . . . ,k}). A colouring is proper if adjacent vertices have different colours.
A graph is k-colourable if it has a proper k-colouring. The chromatic number χ(G) is the least
k such that G is k-colourable. Obviously, χ(G) exists as assigning distinct colours to vertices
yields a proper |V (G)|-colouring. An optimal colouring of G is a χ(G)-colouring. A graph G is
k-chromatic if χ(G) = k.

In a proper colouring, each colour class is a stable set. Hence a k-colouring may also be seen
as a partition of the vertex set of G into k disjoint stable sets Si = {v | c(v) = i} for 1 ≤ i ≤ k.
Therefore k-colourable are also called k-partite graphs. Moreover, 2-colourable graphs are very
often called bipartite.

Clearly, if H is a subgraph of G then any proper colouring of G is a proper colouring of H.

Proposition 8.1. If H is a subgraph of G, then χ(H)≤ χ(G).

Proposition 8.2. χ(G) = max{χ(C),C connected component of G}.

Proof. Proposition 8.1 gives the inequality χ(G) ≥ max{χ(C),C connected component of G}
because every connected component of G is a subgraph of G.

Let us now prove the opposite inequality. Let C1,C2, . . . ,Cp be the connected components of
G. For 1≤ i≤ p, let ci be a proper colouring of Ci with colours 1,2, . . . ,χ(Ci). Let c be the union
of the ci that is the colouring of G defined by c(v) = ci(v) for all v∈Ci. Since there is no edge be-
tween two vertices in different connected component, c is a proper colouring of G with colours
1,2, . . . ,max{χ(Ci) | 1≤ i≤ p}. Hence χ(G)≤max{χ(C),C connected component of G}.

Often in the following, we will consider connected graphs.
The 1-colourable graphs are the empty graphs (i.e. graphs with no edges). The 2-colourable

graphs are the bipartite graphs and can be characterized and recognized in polynomial time (See
Section 2.3. However for k ≥ 3 the k-colouring problem becomes difficult: for all k ≥ 3. it is

113

114 CHAPTER 8. GRAPH COLOURING

M2

v1

v2

M3

w2

w1

z

M4

z

v1

v2

v3

v4

v5

w1

w2

w4

w5

w3

Figure 8.1: The graphs M2, M3 and M4.

N P -complete to decide if a graph is k-colourable. See [11]. Furthermore, it is N P -hard to
approximate the chromatic number within |V (G)|ε0 for some positive constant ε0 as shown by
Lund and Yannakakis [17].

8.1.1 Lower bounds for χ(G)

Clearly, the complete graph Kn requires n colours, so χ(Kn) = n. Together with Proposition 8.1,
it yields the following.

Proposition 8.3. χ(G)≥ ω(G).

This bound can be tight, but it can also be very loose. Indeed, for any given integers k ≤ l,
there are graphs with clique number k and chromatic number l. For example, the fact that a
graph can be triangle-free (ω(G) ≤ 2) and yet have a large chromatic number has been estab-
lished by a number of mathematicians including Descartes (alias Tutte) [7] (See Exercise 8.7),
Kelly and Kelly [15] and Zykov [27]. We present here a proof of this fact due to Mycielski [19].

Theorem 8.4. For every positive integer k, there exists a triangle-free k-chromatic graph.

Proof. The Mycielski graphs Mk, k ≥ 1 are defined inductively as follows. M1 = K1 and
M2 = K2. For k ≥ 2, let V (Mk) = {v1,v2, . . . ,vn}. The graph Mk+1 is defined by V (Mk+1) =
V (Mk)∪{w1,w2, . . . ,wn,z} and E(Mk+1) = E(Mk)∪{wiv j,viv j ∈ E(Mk)}∪{wiz,1 ≤ i ≤ n}.
See Figure 8.1.

Let us show by induction on k ≥ 1 that Mk+1 is triangle-free and k-chromatic, the result
holding trivially for k = 1.

Let us first show that it is triangle-free. W = {w1,w2, . . . ,wn} is a stable set of Mk+1 and z is
adjacent to no vertex of Mk. So z is in no triangle. In addition, if there is a triangle T in Mk+1,
then two of the three vertices must belong to Mk and the third vertex must belong to W , say

8.2. CHROMATIC NUMBER AND MAXIMUM DEGREE 115

V (T) = {wi,v j,vk}. Since wi is adjacent to v j and vk, by definition of Mk+1 it follows that vi is
also adjacent to v j and vk. Hence vi, v j and vk induce a triangle in Mk, which is a contradiction.
Thus, as claimed, Mk+1 is triangle-free.

Next, we show that χ(Mk+1) = k + 1. Since Mk is a subgraph of Mk+1, by Proposition 8.1,
χ(Mk+1) ≥ k. Let a k-colouring of H in {1, . . . ,k} be given. Assign to wi the same colour
that is assigned to vi for 1 ≤ i ≤ n and assign k + 1 to z. The obtained colouring is a proper
(k + 1)-colouring of Mk+1 and so χ(Mk+1) ≤ k + 1. Suppose that χ(Mk+1) = k. Then there
is a k-colouring of Mk+1 with colours {1, . . . ,k}. Without loss of generality, we may ssume
that z is coloured k. Then no vertex of W is coloured k. For each vertex vi of Mk coloured k,
recolour it with the colour assigned to wi. Because the neighbours of vi are also neighbours of
wi, this produces a proper colouring of Mk. Moreover this colouring uses k−1 colours. This is
a contradiction, thus χ(Mk+1)≥ k +1 and so χ(Mk+1) = k +1.

Proposition 8.5. χ(G)≥ |V (G)|
α(G) .

Proof. Let c be a proper colouring of G with colours 1,2, . . . ,χ(G). For 1≤ i≤ χ(G), let Si be
the stable set of vertices coloured i. Then |Si| ≤ α(G). So

|V (G)|=
χ(G)

∑
i=1
|Si| ≤

χ(G)

∑
i=1

α(G)≤ χ(G).α(G).

Hence χ(G)≥ |V (G)|
α(G) .

Again this bound can be very loose. For example, consider a graph G with n connected
components all of which are isomorphic to K1 except one which is isomorphic to Kk. Then
χ(G) = k and |V (G)|

α(G) = n+k−1
n which is less than 2 for n sufficiently large.

8.2 Chromatic number and maximum degree
Most upper bounds on the chromatic number come from algorithms that produce colourings.
The most widespread one is the greedy algorithm. A greedy colouring relative to a vertex
ordering (v1 < · · ·< vn) of V (G) is obtained by colouring the vertices in the order v1, . . . ,vn, as-
signing to vi the smallest-indexed colour not already used on its lower-indexed neighbourhood.
In a vertex-ordering, each vertex has at most ∆(G) earlier neighbours, so the greedy colouring
cannot be forced to use more than ∆(G)+1 colours.

Proposition 8.6. χ(G)≤ ∆(G)+1.

The bound ∆(G)+1 is the worst number of colours that a greedy colouring can have. How-
ever there is a vertex ordering whose associated colouring is optimal colouring. Indeed, if c is
an optimal colouring of G, then any ordering σopt = (v1 < · · · < vn) such that for any i < j,
c(vi)≤ c(v j) will be. But finding such an ordering among the n! possible orderings is difficult
because it is N P -hard to determine the chromatic number of a graph.

116 CHAPTER 8. GRAPH COLOURING

The bound ∆(G)+1 may be lowered by finding orderings yielding a greedy colouring with
less than ∆(G) + 1 colours. A graph G is k-degenerate if each of its subgraphs has a vertex
of degree at most k. The degeneracy of G, denoted δ∗(G), is the smallest k such that G is
k-degenerate. It is easy to see that a graph is k-degenerate if and only if there is an ordering
(v1 < v2 < · · · < vn) of the vertices such that for every 1 < i ≤ n, the vertex vi has at most k
neighbours in {v1, . . . ,vi−1}. Hence the greedy colouring relative to this ordering uses at most
δ∗(G)+1 colours.

Proposition 8.7.
χ(G)≤ δ

∗(G)+1.

Note that finding an ordering as above (and thus the degeneracy of a graph) is easy. It
suffices to recursively take a vertex vn of minimum degree in the graph and to put it at the end
of the ordering v1, . . . ,vn−1 of G− vn.

Proposition 8.8. Let G be a connected graph. Then δ∗(G) = ∆(G) if and only if G is regular.

Proof. Assume first that G is regular. Then for all ordering the last vertex has ∆(G) lower
indexed neighbours. So δ∗(G) = ∆(G).

Assume now that G is not ∆-regular. Let vn be a vertex of degree less than ∆. Since G is
connected, one can grow a spanning tree of G from vn, assigning indices in decreasing order as
we reach vertices. We obtain an ordering v1 < · · ·< vn such that every vertex other than vn has
a higher-indexed neighbour. Hence δ∗(G) < ∆(G).

This proposition and Proposition 8.6 implies the following.

Corollary 8.9. Let G be a connected graph. If G is not regular, then χ(G)≤ ∆(G).

In view of this corollary, one may wonder which connected graphs G satisfies χ(G) = ∆(G).
It is the case for complete graphs. On can also easily see that it is also the case for odd cycles.
Brooks showed [6] that they are the only ones.

Theorem 8.10 (BROOKS’ THEOREM). Let G be a connected graph. Then χ(G)≤ ∆(G) unless
G is either a complete graph or an odd cycle.

In order to prove this theorem, we need the following preliminary results.

Proposition 8.11. Let G be a connected graph which is not a complete graph. Then there exists
three vertices u, v and w such that uv ∈ E(G), vw ∈ E(G) and uw /∈ E(G).

Proof. Since G is not complete, there exists two vertices u and u′ which are not linked by an
edge. Because G is connected, there is a path between u and u′. Let P be a shortest (u,u′)-path
and let v and w be respectively the second and third vertices on P. Then uv and vw are edges of
the paths and uw is not an edge for otherwise it would shortcut P.

Lemma 8.12. Let G be a 2-connected graph of minimum degree at least 3. If G is not a
complete graph, then there exists a vertex x having two non-adjacent neighbours v1 and v2 such
that G−{v1,v2} is connected.

8.2. CHROMATIC NUMBER AND MAXIMUM DEGREE 117

Proof. If G is 3-connected, then the results follows directly from Proposition 8.11.
So we may assume that G is not 3-connected. Hence it as a separator of size 2, say {x,y}.

Since G is 2-connected, then G− x is connected. Moreover G− x has at least one separating
vertex y and this has two end-blocks B1 and B2. (See Exercise 5.27). Now, since G is 2-
connected, for i = 1,2, the separating vertex yi in Bi is not a separating vertex of G and thus x is
adjacent to a vertex vi of Bi \{yi}. Hence by Exercise 5.27 4), G−{x,v1,v2} is connected. But
x has degree at least 3 in G, and so has a neighbour in V (G)\{v1,v2}. Therefore, G−{v1,v2}
is connected.

Proof of Theorem 8.10. If G is not regular, Corollary 8.9 yields the result. So we may assume
that G is regular. In addition, we may assume that ∆ = ∆(G)≥ 3, since G is complete if ∆≤ 1
and G is a cycle when ∆ = 2, in which cases the result holds.

We shall find an ordering of the vertices so that the greedy colouring relative to it yields the
desired bound.

Assume now that G is ∆-regular. If G has a cut-vertex x. Let C1,C2, . . . ,Cp be the connected
components of G− x. For 1≤ i≤ p let Gi be the graph induced by V (Ci)∪{x}. Each of these
graphs is not regular because x has degree less than ∆. So by Corollary 8.9, all the Gi, 1≤ i≤ p
have a proper ∆-colouring. Free to permute the colours, one can assume that the colourings
agree on x. Then the union of these colourings is a ∆-colouring of G.

Hence we may assume that G is 2-connected. In such a case, for G is not complete, by
Lemma 8.12 some vertex vn has two non-adjacent neighbours v1 and v2 such that G−{v1,v2}
is connected. Then indexing the vertices of a spanning tree of G−{v1,v2} rooted in vn in a
decreasing order, with {3, . . . ,n}, we obtain an ordering v1, . . . ,vn such that every vertex other
than vn has a higher-indexed neighbour. Now the greedy algorithm will assign colour 1 to both
v1 and v2. So when colouring vn at most ∆−1 colours will be assigned to its neighbours. Hence
the greedy colouring will use at most ∆ colours.

Note that the above proof is constructive and yields a polynomial-time algorithm for finding
a (∆(G)+1)-algorithm of a graph which is neither a complete graph nor an odd cycle.

Brooks’ Theorem states that for ∆(G)> 2, χ(G)= ∆(G)+1 if and only if G contains a clique
of size ∆(G)+ 1. It is natural to ask whether this extends further. E. g. if χ(G) ≥ ∆ + 1− k
does G contain a large clique? One cannot expect a clique of size ∆ + 1− k if k is large.
Indeed consider the graph H∆,p formed by adding all the edges between a (∆ + 1− 5p)-clique
and p disjoint 5-cycles. It is easy to see that H∆,p has maximum degree ∆, chromatic number
∆+1−2p and clique number ∆+1−3p. Reed [20] conjectured that if χ(G)≥ ∆+1− k then
G contains a clique of size at least ∆+1−2k.

Conjecture 8.13 (REED’S CONJECTURE). Let G be a graph.
If χ(G)≥ ∆(G)+1− k, then ω(G)≥ ∆(G)+1−2k. In other words,

χ(G)≤
⌈

∆(G)+1+ω(G)
2

⌉
.

118 CHAPTER 8. GRAPH COLOURING

Note that this value 2k is best possible. Indeed consider random graph R on n vertices with
edge probability (1−n−3/4). The expected number of cliques of size i is(

n
i

)(
1−n−3/4

)(i
2) ≤ 2i logn

(
1−n−3/4

) i2
4

≤ 2i logne−n−3/4 i2
4 .

For i > n3/4 logn, this is o(1) so (with high probability) ω(R) ≤ n3/4 logn. Now the expected

number of stable sets of size 3 is
(n

3

)
×
(

n−3/4
)3

= O(n3/4). Hence removing one vertex per

such stable set, we obtain a graph H with n−O(n3/4) vertices and stability number α(H) = 2.
Hence its chromatic number is at least n/2−O(n3/4). Let G be the graph obtained by connecting
all the vertices of H to a clique of size ∆−n. Then ∆(G) = ∆, χ(G) = ∆−n+χ(H)≥ ∆−n/2−
O(n3/4) and ω(G)≤ ∆−n+ω(G)≤ ∆−n+n3/4 logn.

As an evidence for Conjecture 8.13, Reed [20] showed that there is an ε > 0 such that χ(G)≤
εω(G)+(1−ε)(∆(G)+1). Johannson [14] settled Conjecture 8.13 for ω = 2 and ∆ sufficiently
large. In fact, he proved that there is a constant c such that if ω(G) = 2 then χ(G) ≤ c ∆(G)

log∆(G) .
Johannson’s proof uses the probabilistic method and needs a careful probabilistic analysis. The
interested reader is referred to Chapter 13 of [18]. However, one can easily improve the bound
of Brooks’ Theorem for triangle-free graphs.

Proposition 8.14. Let G be a triangle-free graph. Then χ(G)≤ 3
⌈

∆(G)+1
4

⌉
.

Proof. Set k =
⌈

∆(G)+1
4

⌉
. Let (V1,V2, . . . ,Vk) be the partition of V (G) in k sets such that the

number of internal edges (i.e. with two endvertices in a same part) is minimum. For all i, the
graph Gi induced by Vi has maximum degree at most 3. Indeed, suppose that a vertex x has
4 neighbours in the part it belongs to, say V1. Then there is another part, say V2, in which x
has at most 3 neighbours, otherwise x would have at least 4k ≥ ∆(G)+ 1 neighbours, which is
impossible. Thus the partition (V1−x,V2 +x, . . . ,Vk) has less internal edges than (V1,V2, . . . ,Vk)
which contradicts the minimality of this.

Hence ∆(Gi) ≤ 3 and ω(Gi) ≤ 2 as it is a subgraph of G. Hence by Brooks’ Theorem,
χ(Gi)≤ 3.

So colouring properly each Gi with the colour set {3i− 2,3i− 1,3i}, we obtain a proper
3k-colouring of G.

When k = 1 Conjecture 8.13 asserts that if χ(G) = ∆(G) then ω(G) ≥ ∆− 1. In fact,
Reed [21] showed that when ∆ is large if χ(G) = ∆(G) then ω(G) = ∆(G), thus settling a
conjecture of Beutelspacher and Hering [4]. Borodin and Kostochka [5] conjectured that it is
true for ∆≥ 9; counterexamples are known for each ∆≤ 8.

Conjecture 8.15 (Borodin and Kostochka [5]). Let G be a graph of maximum degree ∆≥ 9. If
χ(G) = ∆, then ω(G) = ∆.

8.3. COLOURING PLANAR GRAPHS 119

When k = 2, one cannot expect all (∆−1)-chromatic graphs to have a clique of size ∆−1.
Indeed H∆,1 has chromatic number ∆− 1 but clique number ∆− 2. However, Farzad, Molloy
and Reed [10] showed that for ∆ sufficiently large if χ(G) ≥ ∆− 1 then G contains either a
(∆−1)-clique or H∆,1. They also proved similar results for k = 3 and k = 4; in these cases, G
must contain one of five or thirty eight graphs respectively.

Let k∆ the maximum integer such that (k + 1)(k + 2) ≤ ∆. Thus, k∆ ≈
√

∆− 2. Molloy
and Reed [18] showed that k∆ is a threshold to Brooks-like theorems. Indeed if k < k∆ then,
if ∆ is large enough, if χ(G) ≥ ∆− k + 1 then G must contain a graph H that is close to a
(∆ + 1− k)-clique, in that H has small size (|H| ≤ ∆ + 1) and cannot be (∆− k)-coloured. As
a consequence, one can check polynomially if χ(G)≥ ∆− k or not. On the opposite, if k < k∆,
then there are arbitrarily large (∆ + k− 1)-critical graphs (i.e (∆ + 1− k)-chromatic graphs
such that every proper subgraph is (∆− k)-colourable) with maximum degree ∆. Furthermore,
Embden-Weinert, Hougardy and Kreuter [8], proved that for any constant ∆ and ∆−3≤ k < k∆,
determining whether a graph of maximum degree ∆ is (∆− k)-colourable is N P -complete.

8.3 Colouring planar graphs
A graph is embeddable on a surface Σ if its vertices can be mapped onto distincts points of Σ and
its edges onto simple curves of Σ joining the points onto which its endvertices are mapped, so
that two edge curves do not intersect except in their common extremity. A face of an embedding
G̃ of a graph G is a component of Σ\ G̃. We denote by F(G̃) the set of faces of G̃. A graph is
planar if it can be embedded in the plane.

Let G̃ be an embedding of a planar graph G. Its numbers of vertices, faces and edges are
related by Euler’s Formula:

|V (G̃)|+ |F(G̃)|− |E(G̃)|= 1+ comp(G)

where comp(G) is the number of connected components of G.

Proof. We prove of Euler’s Formula by induction on the number of edges of G.
If G has no edges, then every vertex is a connected component and the graph has a unique

face, the outer one.
Suppose now that G is a planar graph on at least one edge and that the result holds for planar

graphs with less edges. Let e be an edge of G. Then two cases may occur.
Assume first that e is a bridge (i.e. G \ e has one more component than G). Then e is

incident to a unique face in G. So G \ e has as many faces as G. By the induction hypothesis,
|V (G̃ \ e)|+ |F(G̃ \ e)|− |E(G̃ \ e)| = 1 + comp(G \ e). So |V (G̃)|+ |F(G̃)|− (|E(G̃)|− 1) =
1+ comp(G)+1.

Assume now that e is not a bridge. Then G \ e has the same number of components as
G. Then e is incident to two faces in G. Removing e transform these two faces into a single
one (their union). So G \ e has as many faces as G. By the induction hypothesis, |V (G̃ \
e)|+ |F(G̃ \ e)| − |E(G̃ \ e)| = 2− comp(G \ e). So |V (G̃)|+ (|F(G̃)|)− 1− (|E(G̃)| − 1) =
1+ comp(G).

120 CHAPTER 8. GRAPH COLOURING

Corollary 8.16. If G is a planar graph, then

|E(G)| ≤ 3|V (G)|−6.

Proof. Let G̃ be an embedding of G. Every face de G̃ contains at least three edges and ev-
ery edge is in at most two faces. Hence, considering the number N of edge-face incidences,
we have 2|E(G)| ≥ 3|F(G̃)|. Putting this inequality into Euler’s Formula we obtain |V (G)|+
2|E(G)|/3≥ |E(G)|+2 so 3|V (G)|−6≥ |E(G)|.

Corollary 8.17. Every planar graph has a vertex of degree at most 5.

Proof. Let G be a planar graph. By Corollary 8.16, ∑{d(v) : v ∈ G} = 2|E(G)| ≤ 6|V (G)|−
12. The minimum degree of G is less or equal to the the average degree which is equal to
6|V (G)|−12
|V (G)| < 6. Hence there is a vertex of degree less than 6.

Corollary 8.18. Every planar graph is 6-colourable.

Proof. Let G be a planar graph. Every subgraph of G is planar and so has minimum degree at
most 5 by Corollary 8.17. Hence G is 5-degenerate. Thus, by Proposition 8.7, χ(G)≤ 6.

Theorem 8.19. Every planar graph is 5-colourable.

Proof. By induction on the number of vertices of G, the result holding trivially if G has one
vertex. By Corollary 8.17, there is a vertex v of degree at most 5 in G By the induction hypoth-
esis, the graph G− v is 5-colourable. Let c be a proper 5-colouring of G− v. From c, we will
construct a proper 5-colouring of G.

Assume first, that one of the colours, say i, is assigned to no neighbours of v. Then one can
extend c by setting c(v) = i. (Note that this is the case if d(v)≤ 4.)

Hence we may assume that that v has five neighbours coloured differently. Let v1, v2, v3, v4
and v5 be these neighbours in counter-clockwise order around v. Free to permute the colours,
we may suppose that c(vi) = i for all 1≤ i≤ 5.

Let C1,3 be the component of v1 in the subgraph G induced by the vertices coloured 1 or
3. If v3 is not in C1,3, then interchanging the colours 1 and 3 in C1,3 and colouring v with 1,
we obtain a proper 5-colouring of G. If v3 ∈C1,3, then there exists a path P linking v1 to v3 in
C1. Together wiht vv1 anf vv3 it forms cycle C which separates v2 and v4. Thus the component
C2,4 of v2 in the subgraph of G induced by the vertices coloured 2 and 4 does not contain v4,
otherwise an edge of the path joining v2 to v4 inC2,4 would cross an edge of C. Hence on can
interchange the colours 2 and 4 in C2,4 and colour v with 2 to obtain a proper 5-colouring of
G.

Theorem 8.19 is not best possible: the celebrated Four Colour Theorem by Appel and
Haken [1, 2, 3] states that every planar graph is 4-colourable. A simpler proof was presented by
Robertson, Sanders, Seymour and Thomas [22, 23]. However it still uses complicated reduc-
tions to a huge number of configurations (more than six hundreds) which need to be solved by
computer assistance.

Theorem 8.20 (Appel and Haken [1, 2, 3]). Every planar graph is 4-colourable.

8.4. EDGE-COLOURING 121

Remark that the proof of Theorem 8.19 does not work for 4-colouring. Indded if we are in
the configuration depicted in Figure 8.2, for every pair of colours (i, j), a vertex coloured i and
a vertex coloured j are in the same component in the subgraph induced by the vertices coloured
i and j.

1

3 4

3

2

Figure 8.2: The probematic configuration. The curve from i to j represents a path whose vertices
are alternately coloured i and j.

It is N P -Complete (see [11]) to decide if the chromatic number of a planar graph is 3 or 4,
even if the maximum degree does not exceed 4.

8.4 Edge-colouring
An edge-colouring of G is a mapping f : E(G)→ S. The element of S are colours; the edges
of one colour form a colour class. If |S| = k then f is a k-edge-colouring. An edge-colouring
is proper if incident edges have different colours; that is, if each colour class is a matching. A
graph is k-edge-colourable if it has a proper k-edge-colouring. The chromatic index or edge-
chromatic number χ′(G) of a graph G is the least k such that G is k-edge-colourable.

Since edges sharing an endvertex need different colours, χ(G) ≥ ∆(G). Furthermore if
a subgraph H of G is odd then a matching contains at most |V (H)|−1

2 edges. Hence at least
2|E(H)|
|V (H)|−1 colours are needed to edge-colour H and thus G. It follows that

χ
′(G)≥max

{
∆(G),max

{
2|E(H)|
|V (H)|−1

| H odd subgraph of G
}}

. (8.1)

Observe that for any H,
2|E(H)|
|V (H)|−1

=
∑v∈V (H) dH(v)
|V (H)|−1

≤ |V (H)|×∆(H)
|V (H)|−1

≤ ∆(H) + 1 ≤

∆(G)+1.

122 CHAPTER 8. GRAPH COLOURING

As an edge is incident to at most 2∆(G)−2 other edges (∆−1 at each endvertex), colour-
ing the edges greedily we use at most 2∆(G)− 1 colours. However, one needs less colours.
Vizing [25] and Gupta [12] independently showed that χ′(G)≤ ∆(G)+1.

Theorem 8.21 (Vizing [25], Gupta [12]). If G is a graph, then χ′(G)≤ ∆(G)+1.

Proof. We prove the result by induction on |E(G)|. For |E(G)|= 0, it is trivial.
Suppose now that |E(G)| ≥ 1 and that the assertion holds for graphs with fewer edges than

G. Set ∆(G) = ∆.
Let xy0 be an edge of G. By induction hpothesis, G\ xy0 admits a (∆ + 1)-edge-colouring.

As y0 is incident to at most ∆− 1 edges in G \ xy0, there exists a colour c1 ∈ {1,2, . . . ,∆ + 1}
missing at y0, i.e. such that no edge incident to y0 is coloured c1. If c1 is also missing at x, then
colouring xy0 with c1, we obtain a (∆ + 1)-edge-colouring of G. So we may assume that there
is an edge xy1 coloured c1.

Because y1 is incident to at most ∆ edges, a colour c2 ∈ {1,2, . . . ,∆+1} is missing at y1. If
c2 is missing at x then recolouring xy1 with c2 and colouring xy0 with c1, we obtain a (∆ + 1)-
edge-colouring of G. So we may assume that there is an edge xy2 coloured c2.

And so on, we construct a sequence y1,y2, . . . of neighbours of x and a sequence of colours
c1,c2, . . . such that: xyi is coloured ci and ci+1 is missing at yi. Since the degree of x is bounded,
there exists a smallest l such that for an integer k < l,cl+1 = ck.

Now, for 0≤ i≤ k−1, let us recolour the edge xyi with ci+1.
There exists a colour c0 ∈ {1,2, . . . ,∆+1} missing at x. In particular, c0 6= ck. Let P be the

maximal path starting at yk−1 with edges alternatively coloured c0 and ck. Let us interchange
the colour c0 and ck on P + xyk−1. If P does not contain yk, we have a (∆ + 1)-edge-colouring
of G. If P contains (and thus ends in) yk, recolouring the edge xyi with ci+1 for k ≤ i ≤ l, we
obtain a (∆+1)-edge-colouring of G.

Hence χ′(G)∈ {∆(G),∆(G)+1}. A graph is said to be Class 1 if χ′(G) = ∆(G) and Class 2
if χ′(G) = ∆(G)+1. Holyer [13] showed that determining whether a graph is Class 1 or Class 2
is N P -complete. While we will see many graphs of Class 1 and many graphs of Class 2, it turns
out that it is much more likely that a graph is of Class one. Erdős and Wilson [9] proved the
following, where the set of graphs of order n is denoted by Gn and the set of graphs of order n
and of Class 1 is denoted by G1

n .

Theorem 8.22 (Erdős and Wilson [9]). Almost every graph is of Class 1, that is,

lim
n→∞

|G1
n |
|Gn|

= 1.

However there are classes of graphs for which we know if they are Class 1 or Class 2. For
example, a regular graph of odd order, say 2n+1, is Class 2 by Equation 8.1.

The following theorem of König [16] states that every bipartite graph is Class 1.

Theorem 8.23 (König [16]). Let G be a bipartite graph. Then χ′(G) = ∆(G).

8.4. EDGE-COLOURING 123

Proof. By induction of the number of edges, the result holding vacuously when |E(G)| = 0.
Assume now that |E(G)| ≥ 1. Set ∆ = ∆(G). Let xy be an edge of G. By the induction
hypothesis, G\ xy admits a proper ∆-edge-colouring.

In G\xy, the vertices x and y are each incident to at most ∆−1 edges. So there exists cx and
cy in {1,2, . . . ,∆} such that x (resp. y) is not incident to an edge coloured cx (resp. cy). If cx = cy
then assigning this colour to xy we obtain a ∆-edge-colouring of G. Hence we may assume that
cx 6= cy and that the vertex x is incident to an edge e coloured cy.

Extend this edge into a maximal path P whose edges are coloured cy and cx alternatively.
We claim that y is not on P. Indeed if it would be on P, since y is adajcent to no edge cy, it
would be an endvertex of P and P would terminate with an edge coloured cx. Then P∪xy would
be an odd cycle which is a contradicts Theorem 2.5. Hence one can invert the colours on P. By
maximality of P, the edge-colouring is still proper. Then assigning xy the colour cy, we obtain
a ∆-edge-colouring of G.

Planar graphs with sufficiently large maximum degree ∆ are Class 1. Sanders and Zhao [24]
showed that planar graphs with maximum degree ∆ ≥ 7 are Class 1. Vizing edge-colouring
conjecture [26] asserts that planar graphs of maximum degree 6 are also Class 1. This would be
best possible as for any ∆ ∈ {2,3,4,5}, there are some planar graphs with maximum degree ∆

which are Class 2 [26]. However, for ∆ ∈ {3,4,5} the complexity of deciding if a planar graph
with maximum degree ∆ is ∆-edge-colourable is still unknown.

Some planar cubic graphs are Class 2 as they have no perfect matching. An example is
given Figure 8.3. However, by Petersen Theorem, cubic graphs with no perfect matching are

Figure 8.3: Planar cubic graph without perfect matching

bridgeless.

Proposition 8.24. Every bridgeless cubic planar graph is 3-edge colourable.

124 CHAPTER 8. GRAPH COLOURING

Proof. Let G be a bridgeless cubic planar graph and G̃ be one of its embedding. The dual of
G̃ is the graph G∗ with vertex set F(G̃) such that two faces of G̃ are adjacent in G∗ if they are
incident to a common edge. It is easy to see that G∗ is planar. So, by Theorem 8.20, G∗ is
4-colourable, so one can colour the faces of G with {1,2,3,4} such that two faces sharing an
edge have different colours. For any 1≤ i < j ≤ 4, let Ei, j be the set of edges incident to a face
coloured i and one coloured j. Observe that since G has no bridge, every edge is incident to two
distinct faces. Then E1,2∪E3,4, E1,3∪E2,4 and E1,4∪E2,3 are the three matchings corresponding
to a proper 3-edge colouring of G.

8.5 Exercises
Exercise 8.1. Find the chromatic number of the following graphs :

Exercise 8.2. Let G be a k-regular bipartite graph. Show that for every proper 2-colouring of
G, there are as many vertices coloured 1 as vertices coloured 2.

Exercise 8.3. Show that a graph G = (V,E) is 2k-colourable if and only if E may be partitionned
into k sets E1, . . . ,Ek such that for every 1≤ i≤ k, (V,Ei) is a bipartite graph.

Exercise 8.4. Show that if a k-chromatic graph G admits a proper colouring for which every
colour is assigned to at least 2 vertices then G has a proper k-colouring with the same property.

Exercise 8.5. Let c be a partial proper colouring of a graph G with ∆(G)− k colours such that
for every non-coloured vertex at least k+1 colours appears at least twice on its neighbourhood.
Show that c can be extended to a proper (∆(G)− k)-colouring of G.

Exercise 8.6. Let G be a graph and G its complement.
1) Let v be a vertex of G.

a) Show that χ(G)≤ χ(G− v)+1.

b) Show that if dG(v) < χ(G− v), then χ(G) = χ(G− v).

c) Deduce that χ(G)+χ(G)≤ |V (G)|+1.

2) a) Show that χ(G)×χ(G)≥ |V (G)|.

8.5. EXERCISES 125

b) Deduce that χ(G)+χ(G)≥ 2
√
|V (G)|.

Exercise 8.7. Let (Gi), i≥ n, be the sequence of graphs defined as follows : G3 is the cycle on 5
vertices. Suppose now that Gk has nk vertices. Set mk = k(nk−1). Let W be a set of mk vertices
and for every subset U of W of cardinality nk, let GU be a copy of Gk such that W and all V (GU)
are pairwise disjoints. The graph Gk+1 is then obtained by adding for all U ⊂W of cardinality
nk a perfect matching between U and V (GU). Thus we have |V (Gk+1)|= nk+1 =

(mk
nk

)
nk +mk.

Show that for all k, Gk is triangle-free and χ(Gk) = k.

Exercise 8.8. A cograph is a graph with no subgraph isomorphic to P4 the path on 4 vertices.
Show that for any ordering of the vertices σ, the greedy algorithm produces an optimal proper
colouring. (Hint: Suppose that the greedy algorithm uses k colours according to the ordering
(v1 < · · ·< vn) and let i be the least integer such that there is a clique formed by k− i+1 vertices
assigned coloured from i to k. Show that i = 1.)

Exercise 8.9. Let G1 and G2 be two disjoint graphs, x1y1 ∈E(G1) and x2y2 ∈E(G2). The Hajós
sum G = (G1,x1y1)+ (G2,x2y2) is the graph obtained from G1∪G2 by identifying x1 and x2,
deleting x1y1 and x2y2, and adding y1y2.

y1

x2

y2

x1

(G1,x1y1)+(G2,x2y2)

y1
y2

x1G1
G2

Figure 8.4: Hajós sum

1) Show that χ(G)≥min{χ(G1),χ(G2)}.
2) Show that χ(G)≥max{χ(G1),χ(G2)}−1. Give an example for which χ(G)= max{χ(G1),χ(G2)}−
1.

Exercise 8.10. Let G1 = (V1,E1) and G2 = (V2,E2 two graphs such that V1∩V2 = /0.
The disjoint union of G1 and G2 is the graph G1 + G2, defined by V (G1 + G2) = V1 ∪V2 and
E(G1 +G2) = E1∪E2.
The join of G1 and G2 is the graph G1⊕G2 defined by V (G1⊕G2) =V1∪V2 and E(G1⊕G2) =
E1∪E2∪{v1v2 | v1 ∈V1 and v2 ∈V2}.
1) Show that χ(G1 +G2) = max{χ(G1),χ(G2)} and χ(G1⊕G2) = χ(G1)+χ(G2).
2) The class of cographs is defined inductively as follows:

• the graph with one vertex K1 is a cograph;

• the disjoint union of two cographs is a cograph;

• the join of two cographs is a cograph.

126 CHAPTER 8. GRAPH COLOURING

G1 G2 G1 +G2G1⊕G2

Figure 8.5: Two graphs, their join and their disjoint union

Prove that if G is a cograph then χ(G) = ω(G).

Exercise 8.11. Show that, in every k-chromatic graph, there are at least k vertices of degree at
least k−1.

Exercise 8.12. Show that χ′(K2n−1) = χ′(K2n) = 2n−1.

Exercise 8.13. Let G be an r-regular bipartite graph and E0 a set of r− 1 edges. Show that
G\E0 has a perfect matching.

Exercise 8.14. The cartesian product of two graphs G and H is the graph G×H defined by

V (G�H) = V (G)×V (H)
E(G�H) = {(a,x)(b,y) | a = b and xy ∈ E(H) or ab ∈ E(G) and x = y}.

(a) Show that χ′(G�K2) = ∆(G�K2).
(b) Deduce that if H is non-empty (it has at least one edge) and χ′(H)= ∆(H) then χ′(G�H)=

∆(G�H).

Bibliography

[1] K. Appel and W. Haken. Every planar map is four colourable. I. Discharging. Illinois J.
Math. 21, 429–490, 1977.

[2] K. Appel, W. Haken, and J. Koch. Every planar map is four colourable. II. Reducibility.
Illinois J. Math. 21:491–567, 1977.

[3] K. Appel and W. Haken. Every Planar Map is Four Colourable. Contemporary Mathe-
matics 98. American Mathematical Society, Providence, RI, 1989.

[4] A. Beutelspacher and P.-R. Hering. Minimal graphs for which the chromatic number
equals the maximal degree. Ars Combin. 18:201–216, 1984.

[5] O. V. Borodin and A. V. Kostochka. On an upper bound of a graph’s chromatic number,
depending on the graph’s degree and density. J. Combin. Theory Ser. B 23(2-3):247–250,
1977.

[6] R. L. Brooks, On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37:194–
197, 1941.

[7] B. Descartes. A three colour problem. Eureka 21, 1947.

[8] T. Emden-Weinert, S. Hougardy, and B. Kreuter. Uniquely colourable graphs and the
hardness of colouring graphs of large girth. Combin. Probab. Comput. 7(4):375–386,
1998.

[9] P. Erdős and R. J. Wilson. On the chromatic index of almost all graphs. J. Combin.
Theory Ser. B 23:255–257, 1977.

[10] B. Farzad, M. Molloy and B. Reed. (∆− k)-critical graphs. J. Combin. Theory Ser.
B 93:173–185, 2005.

[11] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and
Co., San Francisco, Calif., 1979.

[12] R. P. Gupta. The chromatic index and the degree of a graph. Not. Amer. Math.
Soc. 13:719, 1966.

127

128 BIBLIOGRAPHY

[13] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Computing 2:225–231, 1981.

[14] A. Johansson, Asymptotic choice number for triangle free graphs. DIMACS Technical
Report 91-5.

[15] J. Kelly and L. Kelly. Path and circuits in critical graphs. Amer. J. Math. 76:786–792,
1954.

[16] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengen-
lehre. Math. Ann. 77:453–465, 1916.

[17] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
In Proc. 25th ACM Symposium on Theory of Computing, pages 286-293, 1993.

[18] M. Molloy and B. Reed. Colouring graphs when the number of colours is nearly the
maximum degree. In Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing, pages 462–470 (electronic), New York, 2001. ACM.

[19] J. Mycielski, Sur le coloriage des graphes. Information Processing Letters 108(6):412-
417, 2008.

[20] B. Reed. ω, ∆, and χ. J. Graph Theory 27(4):177–212, 1998.

[21] B. Reed. A strengthening of Brooks’ theorem. J. Combin. Theory Ser. B 76(2):136–149,
1999.

[22] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas. A new proof of the four
colour theorem. Electron. Res. Announc. Amer. Math. Soc. 2:17–25, 1996.

[23] N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas. The four colour theorem. J.
Combin. Theory Ser. B. 70:2–44, 1997.

[24] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are class I. J. Com-
bin. Theory Ser. B 83(2):201–212, 2001.

[25] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret. Analyz.
3:25–30, 1964.

[26] V. G. Vizing. Critical graphs with given chromatic index. Metody Diskret. Analiz 5:9–17,
1965. [In Russian]

[27] A. A. Zykov. On some properties of linear complexes. Mat. Sbornik 24:313–319, 1949.
(In Russian).

Chapter 9

Linear programming

The nature of the programmes a computer scientist has to conceive often requires some knowl-
edge in a specific domain of application, for example corporate management, network proto-
cols, sound and video for multimedia streaming,. . . Linear programming is one of the necessary
knowledges to handle optimization problems. These problems come from varied domains as
production management, economics, transportation network planning, . . . For example, one can
mention the composition of train wagons, the electricity production, or the flight planning by
airplane companies.

Most of these optimization problems do not admit an optimal solution that can be computed
in a reasonable time, that is in polynomial time (See Chapter 3). However, we know how to ef-
ficiently solve some particular problems and to provide an optimal solution (or at least quantify
the difference between the provided solution and the optimal value) by using techniques from
linear programming.

In fact, in 1947, G.B. Dantzig conceived the Simplex Method to solve military planning
problems asked by the US Air Force that were written as a linear programme, that is a system
of linear equations. In this course, we introduce the basic concepts of linear programming. We
then present the Simplex Method, following the book of V. Chvátal [2]. If you want to read
more about linear programming, some good references are [6, 1].

The objective is to show the reader how to model a problem with a linear programme when
it is possible, to present him different methods used to solve it or at least provide a good ap-
proximation of the solution. To this end, we present the theory of duality which provide ways
of finding good bounds on specific solutions.

We also discuss the practical side of linear programming: there exist very efficient tools
to solve linear programmes, e.g. CPLEX [3] and GLPK [4]. We present the different steps
leading to the solution of a practical problem expressed as a linear programme.

9.1 Introduction

A linear programme is a problem consisting in maximizing or minimizing a linear function
while satisfying a finite set of linear constraints.

129

130 CHAPTER 9. LINEAR PROGRAMMING

Linear programmes can be written under the standard form:

Maximize ∑
n
j=1 c jx j

Subject to: ∑
n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n.

(9.1)

All constraints are inequalities (and not equations) and all variables are non-negative. The
variables x j are referred to as decision variables. The function that has to be maximized is
called the problem objective function.

Observe that a constraint of the form ∑
n
j=1 ai jx j ≥ bi may be rewritten as ∑

n
j=1(−ai j)x j ≤

−bi. Similarly, a minimization problem may be transformed into a maximization problem:
minimizing ∑

n
j=1 c jx j is equivalent to maximizing ∑

n
j=1(−c j)x j. Hence, every maximization

or minimization problem subject to linear constraints can be reformulated in the standard form
(See Exercices 9.1 and 9.2.).

A n-tuple (x1, . . . ,xn) satisfying the constraints of a linear programme is a feasible solution
of this problem. A solution that maximizes the objective function of the problem is called an
optimal solution. Beware that a linear programme does not necessarily admits a unique optimal
solution. Some problems have several optimal solutions while others have none. The later case
may occur for two opposite reasons: either there exist no feasible solutions, or, in a sense, there
are too many. The first case is illustrated by the following problem.

Maximize 3x1 − x2
Subject to: x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −10
x1,x2 ≥ 0

(9.2)

which has no feasible solution (See Exercise 9.3). Problems of this kind are referred to as
unfeasible. At the opposite, the problem

Maximize x1 − x2
Subject to: −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2
x1,x2 ≥ 0

(9.3)

has feasible solutions. But none of them is optimal (See Exercise 9.3). As a matter of fact, for
every number M, there exists a feasible solution x1,x2 such that x1− x2 > M. The problems
verifying this property are referred to as unbounded. Every linear programme satisfies exactly
one the following assertions: either it admits an optimal solution, or it is unfeasible, or it is
unbounded.
Geometric interpretation.

The set of points in IRn at which any single constraint holds with equality is a hyperplane in
IRn. Thus each constraint is satisfied by the points of a closed half-space of IRn, and the set of
feasible solutions is the intersection of all these half-spaces, a convex polyhedron P.

Because the objective function is linear, its level sets are hyperplanes. Thus, if the maximum
value of cx over P is z∗, the hyperplane cx = z∗ is a supporting hyperplane of P. Hence cx = z∗

contains an extreme point (a corner) of P. It follows that the objective function attains its
maximum at one of the extreme points of P.

9.2. THE SIMPLEX METHOD 131

9.2 The Simplex Method
The authors advise you, in a humanist élan, to skip this section if you are not ready to suffer. In
this section, we present the principle of the Simplex Method. We consider here only the most
general case and voluntarily omit here the degenerate cases to focus only on the basic principle.
A more complete presentation can be found for example in [2].

9.2.1 A first example
We illustrate the Simplex Method on the following example:

Maximize 5x1 + 4x2 + 3x3
Subject to:

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

x1,x2,x3 ≥ 0.

(9.4)

The first step of the Simplex Method is to introduce new variables called slack variables.
To justify this approach, let us look at the first constraint,

2x1 +3x2 + x3 ≤ 5. (9.5)

For all feasible solution x1,x2,x3, the value of the left member of (9.5) is at most the value
of the right member. But, there often is a gap between these two values. We note this gap x4. In
other words, we define x4 = 5−2x1−3x2− x3. With this notation, Equation (9.5) can now be
written as x4 ≥ 0. Similarly, we introduce the variables x5 and x6 for the two other constraints of
Problem (9.4). Finally, we use the classic notation z for the objective function 5x1 +4x2 +3x3.
To summarize, for all choices of x1,x2,x3 we define x4,x5,x6 and z by the formulas

x4 = 5 − 2x1 − 3x2 − x3
x5 = 11 − 4x1 − x2 − 2x3
x6 = 8 − 3x1 − 4x2 − 2x3
z = 5x1 + 4x2 + 3x3.

(9.6)

With these notations, the problem can be written as:

Maximize z subject to x1,x2,x3,x4,x5,x6 ≥ 0. (9.7)

The new variables that were introduced are referred as slack variables, when the initial
variables are usually called the decision variables. It is important to note that Equation (9.6)
define an equivalence between (9.4) and (9.7). More precisely:

• Any feasible solution (x1,x2,x3) of (9.4) can be uniquely extended by (9.6) into a feasible
solution (x1,x2,x3,x4,x5,x6) of (9.7).

132 CHAPTER 9. LINEAR PROGRAMMING

• Any feasible solution (x1,x2,x3,x4,x5,x6) of (9.7) can be reduced by a simple removal of
the slack variables into a feasible solution (x1,x2,x3) of (9.4).

• This relationship between the feasible solutions of (9.4) and the feasible solutions of (9.7)
allows to produce the optimal solution of (9.4) from the optimal solutions of (9.7) and vice
versa.

The Simplex strategy consists in finding the optimal solution (if it exists) by successive
improvements. If we have found a feasible solution (x1,x2,x3) of (9.7), then we try to find a
new solution (x̄1, x̄2, x̄3) which is better in the sense of the objective function:

5x̄1 +4x̄2 +3x̄3 ≥ 5x1 +4x2 +3x3.

By repeating this process, we obtain at the end an optimal solution.
To start, we first need a feasible solution. To find one in our example, it is enough to set

the decision variables x1,x2,x3 to zero and to evaluate the slack variables x4,x5,x6 using (9.6).
Hence, our initial solution,

x1 = 0,x2 = 0,x3 = 0,x4 = 5,x5 = 11,x6 = 8 (9.8)

gives the result z = 0.
We now have to look for a new feasible solution which gives a larger value for z. Finding

such a solution is not hard. For example, if we keep x2 = x3 = 0 and increase the value of x1,
then we obtain z = 5x1 ≥ 0. Hence, if we keep x2 = x3 = 0 and if we set x1 = 1, then we obtain
z = 5 (and x4 = 3,x5 = 7,x6 = 5). A better solution is to keep x2 = x3 = 0 and to set x1 = 2;
we then obtain z = 10 (and x4 = 1,x5 = 3,x6 = 2). However, if we keep x2 = x3 = 0 and if
we set x1 = 3, then z = 15 and x4 = x5 = x6 =−1, breaking the constraint xi ≥ 0 for all i. The
conclusion is that one can not increase x1 as much as one wants. The question then is: how much
can x1 be raised (when keeping x2 = x3 = 0) while satisfying the constraints (x4,x5,x6 ≥ 0)?

The condition x4 = 5−2x1−3x2−x3 ≥ 0 implies x1 ≤ 5
2 . Similarly, x5 ≥ 0 implies x1 ≤ 11

4
and x6 ≥ 0 implies x1 ≤ 8

3 . The first bound is the strongest one. Increasing x1 to this bound
gives the solution of the next step:

x1 =
5
2
,x2 = 0,x3 = 0,x4 = 0,x5 = 1,x6 =

1
2

(9.9)

which gives a result z = 25
2 improving the last value z = 0 of (9.8).

Now, we have to find a new feasible solution that is better than (9.9). However, this task
is not as simple as before. Why? As a matter of fact, we had at disposal the feasible solution
of (9.8), but also the system of linear equations (9.6) which led us to a better feasible solution.
Thus, we should build a new system of linear equations related to (9.9) in the same way as (9.6)
is related to (9.8).

Which properties should have this new system? Note first that (9.6) express the strictly
positive variables of (9.8) in function of the null variables. Similarly, the new system has to
express the strictly positive variables of (9.9) in function of the null variables of (9.9): x1,x5,x6
(and z) in function of x2,x3 and x4. In particular, the variable x1, whose value just increased

9.2. THE SIMPLEX METHOD 133

from zero to a strictly positive value, has to go to the left side of the new system. The variable
x4, which is now null, has to take the opposite move.

To build this new system, we start by putting x1 on the left side. Using the first equation of
(9.6), we write x1 in function of x2,x3,x4:

x1 =
5
2
− 3

2
x2−

1
2

x3−
1
2

x4 (9.10)

Then, we express x5,x6 and z in function of x2,x3,x4 by substituting the expression of x1
given by (9.10) in the corresponding lines of (9.6).

x5 = 11−4
(

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

)
− x2−2x3

= 1+5x2 +2x4,

x6 = 8−3
(

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

)
−4x2−2x3

=
1
2

+
1
2

x2−
1
2

x3 +
3
2

x4,

z = 5
(

5
2
− 3

2
x2−

1
2

x3−
1
2

x4

)
+4x2 +3x3

=
25
2
− 7

2
x2 +

1
2

x3−
5
2

x4.

So the new system is

x1 = 5
2 − 3

2 x2 − 1
2 x3 − 1

2 x4
x5 = 1 + 5 x2 + 2 x4
x6 = 1

2 + 1
2 x2 − 1

2 x3 + 3
2 x4

z = 25
2 − 7

2 x2 + 1
2 x3 − 5

2 x4.

(9.11)

As done at the first iteration, we now try to increase the value of z by increasing a right
variable of the new system, while keeping the other right variables at zero. Note that raising x2
or x4 would lower the value of z, against our objective. So we try to increase x3. How much?
The answer is given by (9.11) : with x2 = x4 = 0, the constraint x1 ≥ 0 implies x3 ≤ 5, x5 ≥ 0
impose no restriction and x6 ≥ 0 implies that x3 ≤ 1. To conclude x3 = 1 is the best we can do,
and the new solution is

x1 = 2,x2 = 0,x3 = 1,x4 = 0,x5 = 1,x6 = 0 (9.12)

and the value of z increases from 12.5 to 13. As stated, we try to obtain a better solution but
also a system of linear equations associated to (9.12). In this new system, the (strictly) positive
variables x2,x4,x6 have to appear on the right. To build this new system, we start by handling
the new left variable, x3. Thanks to the third equation of (9.11) we rewrite x3 and by substitution

134 CHAPTER 9. LINEAR PROGRAMMING

in the remaining equations of (9.11) we obtain:

x3 = 1 + x2 + 3x4 − 2x6
x1 = 2 − 2x2 − 2x4 + x6
x5 = 1 + 5x2 + 2x4
z = 13 − 3x2 − x4 − x6.

(9.13)

It is now time to do the third iteration. First, we have to find a variable of the right side
of (9.13) whose increase would result in an increase of the objective z. But there is no such
variable, as any increase of x2,x4 or x6 would lower z. We are stuck. In fact, this deadlock
indicates that the last solution is optimal. Why? The answer lies in the last line of (9.13):

z = 13 − 3x2 − x4 − x6. (9.14)

The last solution (9.12) gives a value z = 13; proving that this solution is optimal boils down
to prove that any feasible solution satisfies z≤ 13. As any feasible solution x1,x2, . . . ,x6 satisfies
the inequalities x2 ≥ 0,x4 ≥ 0,x6 ≥ 0, then z≤ 13 directly derives from (9.14).

9.2.2 The dictionaries
More generally, given a problem

Maximize ∑
n
j=1 c jx j

Subject to: ∑
n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n
(9.15)

we first introduce the slack variables xn+1,xn+2, . . . ,xn+m and we note the objective function z.
That is, we define

xn+i = bi− ∑
n
j=1 ai jx j for all 1≤ i≤ m

z = ∑
n
j=1 c jx j

(9.16)

In the framework of the Simplex Method, each feasible solution (x1,x2, . . . ,xn) of (9.15) is rep-
resented by n+m positive or null numbers x1,x2, . . . ,xn+m, with xn+1,xn+2, . . . ,xn+m defined by
(9.16). At each iteration, the Simplex Method goes from one feasible solution (x1,x2, . . . ,xn+m)
to an other feasible solution (x̄1, x̄2, . . . , x̄n+m), which is better in the sense that

n

∑
j=1

c jx̄ j >
n

∑
j=1

c jx j.

As we have seen in the example, it is convenient to associate a system of linear equations
to each feasible solution. As a matter of fact, it allows to find better solutions in an easy way.
The technique is to translate the choices of the values of the variables of the right side of the
system into the variables of the left side and in the objective function as well. These systems
have been named dictionaries by J.E. Strum (1972). Thus, every dictionary associated to (9.15)
is a system of equations whose variables xn+1,xn+2, . . . ,xn+m and z are expressed in function of
x1,x2, . . . ,xn. These n + m + 1 variables are closely linked and every dictionary express these
dependencies.

9.2. THE SIMPLEX METHOD 135

Property 9.1. Any feasible solution of the equations of a dictionary is also a feasible solution
of (9.16) and vice versa.

For example, for any choice of x1,x2, . . . ,x6 and of z, the three following assertions are
equivalent:

• (x1,x2, . . . ,x6,z) is a feasible solution of (9.6);

• (x1,x2, . . . ,x6,z) is a feasible solution of (9.11);

• (x1,x2, . . . ,x6,z) is a feasible solution of (9.13).

From this point of view, the three dictionaries (9.6), (9.11) and (9.13) contain the same
information on the dependencies between the seven variables. However, each dictionary present
this information in a specific way. (9.6) suggests that the values of the variables x1, x2 and x3
can be chosen at will while the values of x4, x5, x6 and z are fixed. In this dictionary, the decision
variables x1, x2, x3 act as independent variables while the slack variables x4, x5, x6 are related to
each other. In the dictionary (9.13), the independent variables are x2,x4,x6 and the related ones
are x3,x1,x5,z.

Property 9.2. The equations of a dictionary have to express m variables among x1,x2, . . . ,xn+m,z
in function of the n remaining others.

Properties 9.1 and 9.2 define what a dictionary is. In addition to these two properties, the
dictionaries (9.6),(9.11) and (9.13) have the following property.

Property 9.3. When putting the right variables to zero, one obtains a feasible solution by eval-
uating the left variables.

The dictionaries that have this last property are called feasible dictionaries. As a matter
of fact, any feasible dictionary describes a feasible solution. However, all feasible solutions
cannot be described by a feasible dictionary. For example, no dictionary describe the feasible
solution x1 = 1, x2 = 0, x3 = 1, x4 = 2, x5 = 5, x6 = 3 of (9.4). The feasible solutions that can
be described by dictionaries are referred as basic solutions. The Simplex Method explores only
basic solutions and ignores all other ones. But this is valid because if an optimal solution exists,
then there is an optimal and basic solution. Indeed, if a feasible solution cannot be improved
by the Simplex Method, then increasing any of the n right variables to a positive value never
increases the objective function. In such case, the objective function must be written as a linear
function of these variables in which all the coefficient are non-positive, and thus the objective
function is clearly maximum when all the right variables equal zero. For example, it was the
case in (9.14).

9.2.3 Finding an initial solution
In the previous examples, the initialization of the Simplex Method was not a problem. As a
matter of fact, we carefully chose problems with all bi non-negative. This way x1 = 0, x2 = 0,

136 CHAPTER 9. LINEAR PROGRAMMING

· · · , xn = 0 was a feasible solution and the dictionary was easily built. These problems are called
problems with a feasible origin.

What happens when confronted with a problem with an unfeasible origin? Two difficulties
arise. First, a feasible solution can be hard to find. Second, even if we find a feasible solution,
a feasible dictionary has then to be built. A way to solve these difficulties is to use another
problem called auxiliary problem:

Minimise x0
Subject to: ∑

n
j=1 ai jx j− x0 ≤ bi (i = 1,2, · · · ,m)

x j ≥ 0 (j = 0,1, · · · ,n).

A feasible solution of the auxiliary problem is easily available: it is enough to set x j = 0∀ j ∈
[1 . . .n] and to give to x0 a big enough value. It is now easy to see that the original problem has
a feasible solution if and only if the auxiliary problem has a feasible solution with x0 = 0. In
other words, the original problem has a feasible solution if the optimal value of the auxiliary
problem is null. Thus, the idea is to first solve the auxiliary problem. Let see the details on an
example.

Maximise x1 − x2 + x3
Subject to :

2x1 − x2 + 2x3 ≤ 4
2x1 − 3x2 + x3 ≤ −5
−x1 + x2 − 2x3 ≤ −1

x1,x2,x3 ≥ 0

Maximise −x0
Subject to:

2x1 − x2 + 2x3 − x0 ≤ 4
2x1 − 3x2 + x3 − x0 ≤ −5
−x1 + x2 − 2x3 − x0 ≤ −1

x1,x2,x3,x0 ≥ 0

We introduce the slack variables. We obtain the dictionary:

x4 = 4 − 2x1 + x2 − 2x3 + x0
x5 = −5 − 2x1 + 3x2 − x3 + x0
x6 = −1 + x1 − x2 + 2x3 + x0
w = − x0.

(9.17)

Note that this dictionary is not feasible. However it can be transformed into a feasible one by
operating a simple pivot , x0 entering the basis as x5 exits it:

x0 = 5 + 2x1 − 3x2 + x3 + x5
x4 = 9 − 2x2 − x3 + x5
x6 = 4 +3 x1 − 4x2 + 3x3 + x5
w = −5 − 2x1 + 3x2 − x3 − x5.

9.2. THE SIMPLEX METHOD 137

More generally, the auxiliary problem can be written as

Maximise −x0
Subject to: ∑

n
j=1 ai jx j− x0 ≤ bi (i = 1,2, · · · ,m)

x j ≥ 0 (j = 0,1,2, · · · ,n)

and the associated dictionary is

xn+i = bi− ∑
n
j=1 ai jx j + x0 (i = 1,2, · · · ,m)

w = − x0

This dictionary can be made feasible by pivoting x0 with the variable the ”most unfeasible”, that
is the exiting variable xn+k is the one with bk ≤ bi for all i. After the pivot, the variable x0 has
value −bk and each xn+i has value bi−bk. All these values are non negative. We are now able
to solve the auxiliary problem using the simplex method. Let us go back to our example.

After the first iteration with x2 entering and x6 exiting, we get:

x2 = 1 + 0.75x1 + 0.75x3 + 0.25x5 − 0.25x6
x0 = 2 − 0.25x1 − 1.25x3 + 0.25x5 + 0.75x6
x4 = 7 − 1.5x1 − 2.5x3 + 0.5x5 + 0.5x6
w = −2 + 0.25x1 + 1.25x3 − 0.25x5 − 0.75x6.

After the second iteration with x3 entering and x0 exiting:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6 − 0.8x0
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6 − 0.6x0
x4 = 3 − x1 − x6 + 2x0
w = − x0.

(9.18)

The last dictionary (9.18) is optimal. As the optimal value of the auxiliary problem is null,
this dictionary provides a feasible solution of the original problem: x1 = 0,x2 = 2.2,x3 = 1.6.
Moreover, (9.18) can be easily transformed into a feasible dictionary of the original problem.
To obtain the first three lines of the desired dictionary, it is enough to copy the first three lines
while removing the terms with x0:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6
x4 = 3 − x1 − x6

(9.19)

To obtain the last line, we express the original objective function

z = x1− x2 + x3 (9.20)

in function of the variables outside the basis x1,x5,x6. To do so, we replace the variables of
(9.20) by (9.19) and we get:

z = x1− (2.2+0.6x1 +0.4x5 +0.2x6)+(1.6−0.2x1 +0.2x5 +0.6x6) (9.21)
z =−0.6+0.2x1−0.2x5 +0.4x6

138 CHAPTER 9. LINEAR PROGRAMMING

The desired dictionary then is:

x3 = 1.6 − 0.2x1 + 0.2x5 + 0.6x6
x2 = 2.2 + 0.6x1 + 0.4x5 + 0.2x6
x4 = 3 − x1 − x6
z = −0.6 + 0.2x1 − 0.2x5 + 0.4x6

This strategy is known as the Simplex Method in two phases. During the first phase, we set
and solve the auxiliary problem. If the optimal value is null, we do the second phase consisting
in solving the original problem. Otherwise, the original problem is not feasible.

9.3 Duality of linear programming

Any maximization linear programme has a corresponding minimization problem called the dual
problem. Any feasible solution of the dual problem gives an upper bound on the optimal value
of the initial problem, which is called the primal. Reciprocally, any feasible solution of the
primal provides a lower bound on the optimal value of the dual problem. Actually, if one of
both problems admits an optimal solution, then the other problem does as well and the optimal
solutions match each other. This section is devoted to this result also known as the Duality
Theorem. Another interesting application of the dual problem is that, in some problems, the
variables of the dual have some useful interpretation.

9.3.1 Motivations: providing upper bounds on the optimal value

A way to quickly estimate the optimal value of a maximization linear programme simply con-
sists in computing a feasible solution whose value is sufficiently large. For instance, let us
consider the following problem formulated in Problem 9.4. The solution (0,0,1,0) gives us a
lower bound of 5 for the optimal value z∗. Even better, we get z∗ ≥ 22 by considering the so-
lution (3,0,2,0). Of course, doing so, we have no way to know how close to the optimal value
the computed lower bound is.

Problem 9.4.
Maximize 4x1 + x2 +5x3 +3x4

Subject to: x1− x2− x3 +3x4 ≤ 1
5x1 + x2 +3x3 +8x4 ≤ 55
−x1 +2x2 +3x3−5x4 ≤ 3

x1,x2,x3,x4 ≥ 0

The previous approach provides lower bounds on the optimal value. However, this intuitive
method is obviously less efficient than the Simplex Method and this approach provides no clue
about the optimality (or not) of the obtained solution. To do so, it is interesting to have upper
bounds on the optimal value. This is the main topic of this section.

9.3. DUALITY OF LINEAR PROGRAMMING 139

How to get an upper bound for the optimal value in the previous example? A possible
approach is to consider the constraints. For instance, multiplying the second constraint by 5

3 ,
we get that z∗ ≤ 275

3 . Indeed, for any x1,x2,x3,x4 ≥ 0:

4x1 + x2 +5x3 +3x4 ≤
25
3

x1 +
5
3

x2 +5x3 +
40
3

x4 = (5x1 + x2 +3x3 +8x4)×
5
3

≤ 55× 5
3

=
275
3

In particular, the above inequality is satisfied by any optimal solution. Therefore, z∗ ≤ 275
3 .

Let us try to improve this bound. For instance, we can add the second constraint to the third
one. This gives, for any x1,x2,x3,x4 ≥ 0:

4x1 + x2 +5x3 +3x4 ≤ 4x1 +3x2 +6x3−3x4

≤ (5x1 + x2 +3x3 +8x4)+(−x1 +2x2 +3x3−5x4)
≤ 55+3 = 58

Hence, z∗ ≤ 58.
More formally, we try to upper bound the optimal value by a linear combination

of the constraints. Precisely, for all i, let us multiply the ith constraint by yi ≥ 0 and then
sum the resulting constraints. In the previous two examples, we had (y1,y2,y3) = (0, 5

3 ,0) and
(y1,y2,y3) = (0,1,1). More generally, we obtain the following inequality:

y1(x1− x2− x3 +3x4)+ y2(5x1 + x2 +3x3 +8x4)+ y3(−x1 +2x2 +3x3−5x4)
= (y1−5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4
≤ y1 +55y2 +3y3

For this inequality to provide an upper bound of 4x1 + x2 + 5x3 + 3x4, we need to ensure that,
for all x1,x2,x3,x4 ≥ 0,

4x1 + x2 +5x3 +3x4

≤ (y1−5y2− y3)x1 +(−y1 + y2 +2y3)x2 +(−y1 +3y2 +3y3)x3 +(3y1 +8y2−5y3)x4.

That is, y1−5y2− y3 ≥ 4, −y1 + y2 +2y3 ≥ 1, −y1 +3y2 +3y3 ≥ 5, and 3y1 +8y2−5y3 ≥ 3.
Combining all inequalities, we obtain the following minimization linear programme:

Minimize y1 +55y2 +3y3
Subject to:

y1−5y2− y3 ≥ 4
−y1 + y2 +2y3 ≥ 1
−y1 +3y2 +3y3 ≥ 5
3y1 +8y2−5y3 ≥ 3

y1,y2,y3 ≥ 0

This problem is called the dual of the initial maximization problem.

140 CHAPTER 9. LINEAR PROGRAMMING

9.3.2 Dual problem
We generalize the example given in Subsection 9.3.1. Consider the following general maxi-
mization linear programme:

Problem 9.5.
Maximize ∑

n
j=1 c jx j

Subject to: ∑
n
j=1 ai jx j ≤ bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n

Problem 9.5 is called the primal. The matricial formulation of this problem is

Maximize cT x
Subject to: Ax≤ b

x≥ 0

where xT = [x1, . . . ,xn] and cT = [c1, . . . ,cn] are vectors in Rn, and bT = [b1, . . . ,bm] ∈ Rm,
and A = [ai j] is a matrix in Rm×n.

To find an upper bound on cT x, we aim at finding a vector yT = [y1, . . . ,ym] ≥ 0 such that,
for all feasible solutions x≥ 0 of the initial problem, cT x≤ yT Ax≤ yT b = bT y, that is:

Minimize bT y
Subject to: AT y≥ c

y≥ 0
In other words, the dual of Problem 9.5 is defined by:

Problem 9.6.
Minimize ∑

m
i=1 biyi

Subject to: ∑
m
i=1 ai jyi ≥ c j for all 1≤ j ≤ n

yi ≥ 0 for all 1≤ i≤ m

Notice that the dual of a maximization problem is a minimization problem. Moreover, there
is a one-to-one correspondence between the m constraints of the primal ∑ j=1...n ai jx j ≤ bi and
the m variables yi of the dual. Similarly, the n constraints ∑

m
i=1 ai jyi ≥ c j of the dual correspond

one-to-one to the n variables xi of the primal.
Problem 9.6, which is the dual of Problem 9.5, can be equivalently formulated under the

standard form as follows.

Maximize ∑
m
i=1(−bi)yi

Subject to: ∑
m
i=(−ai j)yi ≤−c j for all 1≤ j ≤ n

yi ≥ 0 for all 1≤ i≤ m
(9.22)

Then, the dual of Problem 9.22 has the following formulation which is equivalent to Prob-
lem 9.5.

Minimize ∑
n
j=1(−c j)x j

Subject to: ∑
n
j=1(−ai j)x j ≥−bi for all 1≤ i≤ m

x j ≥ 0 for all 1≤ j ≤ n
(9.23)

9.3. DUALITY OF LINEAR PROGRAMMING 141

We deduce the following lemma.

Lemma 9.7. If D is the dual of a problem P, then the dual of D is P. Informally, the dual of the
dual is the primal.

9.3.3 Duality Theorem
An important aspect of duality is that feasible solutions of the primal and the dual are related.

Lemma 9.8. Any feasible solution of Problem 9.6 yields an upper bound for Problem 9.5. In
other words, the value given by any feasible solution of the dual of a problem is an upper bound
for the primal problem.

Proof. Let (y1, . . . ,ym) be a feasible solution of the dual and (x1, . . . ,xn) be a feasible solution
of the primal. Then,

n

∑
j=1

c jx j ≤
n

∑
j=

(
m

∑
i=

ai jyi

)
x j ≤

m

∑
i=1

(
n

∑
j=1

ai jx j

)
yi ≤

m

∑
i=1

biyi.

Corollary 9.9. If (y1, . . . ,ym) is a feasible solution of the dual of a problem (Problem 9.6)
and (x1, . . . ,xn) is a feasible solution of the corresponding primal (Problem 9.5) such that
∑

n
j=1 c jx j = ∑

m
i=1 biyi, then both solutions are optimal.

Corollary 9.9 states that if we find two solutions for the dual and the primal achieving the
same value, then this is a certificate of the optimality of these solutions. In particular, in that
case (if they are feasible), both the primal and the dual problems have same optimal value.

For instance, we can easily verify that (0,14,0,5) is a feasible solution for Problem 9.4 with
value 29. On the other hand, (11,0,6) is a feasible solution for the dual with same value. Hence,
the optimal solutions for the primal and for the dual coincide and are equal to 29.

In general, it is not immediate that any linear programme may have such certificate of opti-
mality. In other words, for any feasible linear programme, can we find a solution of the primal
problem and a solution of the dual problem that achieve the same value (thus, this value would
be optimal)? One of the most important result of the linear programming is the duality theorem
that states that it is actually always the case: for any feasible linear programme, the primal and
the dual problems have the same optimal solution. This theorem has been proved by D. Gale,
H.W. Kuhn and A. W. Tucker [5] and comes from discussions between G.B. Dantzig and J. von
Neumann during Fall 1947.

Theorem 9.10 (DUALITY THEOREM). If the primal problem defined by Problem 9.5 admits an
optimal solution (x∗1, . . . ,x

∗
n), then the dual problem (Problem 9.6) admits an optimal solution

(y∗1, . . . ,y
∗
m), and

n

∑
j=1

c jx∗j =
m

∑
i=1

biy∗i .

142 CHAPTER 9. LINEAR PROGRAMMING

Proof. The proof consists in showing how a feasible solution (y∗1, . . . ,y
∗
m) of the dual can be

obtained thanks to the Simplex Method, so that z∗= ∑
m
i=1 biy∗i is the optimal value of the primal.

The result then follows from Lemma 9.8.
Let us assume that the primal problem has been solved by the Simplex Method. For this

purpose, the slack variables have been defined by

xn+i = bi−
n

∑
j=1

ai jx j for 1≤ i≤ m.

Moreover, the last line of the last dictionary computed during the Simplex Method gives the
optimal value z∗ of the primal in the following way: for any feasible solution (x1, . . . ,xn) of the
primal we have

z =
n

∑
j=1

c jx j = z∗+
n+m

∑
i=1

c̄ixi.

Recall that, for all i ≤ n + m, c̄i is non-positive, and that it is null if xi is one of the basis
variables. We set

y∗i =−c̄n+i for 1≤ i≤ m.

Then, by definition of the y∗i ’s and the xn+i’s for 1≤ i≤ m, we have

z =
n

∑
j=1

c jx j = z∗+
n

∑
i=1

c̄ixi−
m

∑
i=1

y∗i

(
bi−

n

∑
j=1

ai jx j

)

=

(
z∗−

m

∑
i=1

y∗i bi

)
+

n

∑
j=1

(
c̄ j +

m

∑
i=1

ai jy∗i

)
x j.

Since this equation must be true whatever be the affectation of the xi’s and since the c̄i’s are
non-positive, this leads to

z∗ =
m

∑
i=1

y∗i bi and

c j = c̄ j +
m

∑
i=1

ai jy∗i ≤
m

∑
i=1

ai jy∗i for all 1≤ j ≤ n.

Hence, (y∗1, . . . ,y
∗
m) defined as above is a feasible solution achieving the optimal value of the

primal. By Lemma 9.8, this is an optimal solution of the dual.

9.3.4 Relation between primal and dual
By the Duality Theorem and Lemma 9.7, a linear programme admits a solution if and only if its
dual admits a solution. Moreover, according to Lemma 9.8, if a linear programme is unbounded,

9.3. DUALITY OF LINEAR PROGRAMMING 143

then its dual is not feasible. Reciprocally, if a linear programme admits no feasible solution,
then its dual is unbounded. Finally, it is possible that both a linear programme and its dual have
no feasible solution as shown by the following example.

Maximize 2x1− x2
Subject to: x1− x2 ≤ 1

−x1 + x2 ≤ −2
x1,x2 ≥ 0

Besides the fact it provides a certificate of optimality, the Duality Theorem has also a prac-
tical interest in the application of the Simplex Method. Indeed, the time-complexity of the Sim-
plex Method mainly yields in the number of constraints of the considered linear programme.
Hence, when dealing with a linear programme with few variables and many constraints, it will
be more efficient to apply the Simplex Method on its dual.

Another interesting application of the Duality Theorem is that it is possible to compute an
optimal solution for the dual problem from an optimal solution of the primal. Doing so gives
an easy way to test the optimality of a solution. Indeed, if you have a feasible solution of some
linear programme, then a solution of the dual problem can be derived (as explained below).
Then the initial solution is optimal if and only if the solution obtained for the dual is feasible
and leads to the same value.

More formally, the following theorems can be proved

Theorem 9.11 (Complementary Slackness). Let (x1, . . . ,xn) be a feasible solution of Prob-
lem 9.5 and (y1, . . . ,ym) be a feasible solution of Problem 9.6. These are optimal solutions if
and only if

m

∑
i=1

ai jyi = c j, or x j = 0, or both for all 1≤ j ≤ n, and

n

∑
j=1

ai jx j = bi, or yi = 0, or both for all 1≤ i≤ m.

Proof. First, we note that since x and y are feasible (bi−∑
n
j=1 ai jx j)yi ≥ 0 and (∑m

i=1 ai jyi−
c j)x j ≥ 0. Summing these inequalities over i and j, we obtain

m

∑
i=1

(
bi−

n

∑
j=1

ai jx j

)
yi ≥ 0 (9.24)

n

∑
j=1

(
n

∑
i=1

ai jyi− c j

)
x j ≥ 0 (9.25)

Adding Inequalities 9.24 and 9.25 and using the strong duality theorem, we obtain

m

∑
i=1

biyi−
m

∑
i=1

n

∑
j=1

ai jx jyi +
n

∑
j=1

m

∑
i=1

ai jyix j−
n

∑
j=1

c jx j =
m

∑
i=1

biyi−
n

∑
j=1

c jx j = 0.

144 CHAPTER 9. LINEAR PROGRAMMING

Therefore, Inequalities 9.24 and 9.25 must be equalities. As the variables are positive, we
further get that

for all i,

(
bi−

n

∑
j=1

ai jx j

)
yi = 0

and for all j,

(
m

∑
i=1

ai jyi− c j

)
x j = 0.

A product is equal to zero if one of its two members is null and we obtain the desired result.

Theorem 9.12. A feasible solution (x1, . . . ,xn) of Problem 9.5 is optimal if and only if there is
a feasible solution (y1, . . . ,ym) of Problem 9.6 such that:

∑
m
i= ai jyi = c j i f x j > 0

yi = 0 i f ∑
m
j=1 ai jx j < bi

(9.26)

Note that, if Problem 9.5 admits a non-degenerated solution (x1, . . . ,xn), i.e., xi > 0 for any
i≤ n, then the system of equations in Theorem 9.12 admits a unique solution.

Optimality certificates - Examples. Let see how to apply this theorem on two examples.
Let us first examine the statement that

x∗1 = 2, x∗2 = 4, x∗3 = 0, x∗4 = 0, x∗5 = 7, x∗6 = 0

is an optimal solution of the problem

Maximize 18x1 − 7x2 + 12x3 + 5x4 + 8x6
Subject to: 2x1 − 6x2 + 2x3 + 7x4 + 3x5 + 8x6 ≤ 1

−3x1 − x2 + 4x3 − 3x4 + x5 + 2x6 ≤ −2
8x1 − 3x2 + 5x3 − 2x4 + 2x6 ≤ 4
4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1
5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1,x2, · · · ,x6 ≥ 0

In this case, (9.26) says:

2y∗1 − 3y∗2 + 8y∗3 + 4y∗4 + 5y∗5 = 18
−6y∗1 − y∗2 − 3y∗3 + 2y∗5 = −7

3y∗1 + y∗2 − y∗4 − 2y∗5 = 0
y∗2 = 0

y∗5 = 0

As the solution (1
3 ,0, 5

3 ,1,0) is a feasible solution of the dual problem (Problem 9.6), the pro-
posed solution is optimal.

9.3. DUALITY OF LINEAR PROGRAMMING 145

Secondly, is
x∗1 = 0, x∗2 = 2, x∗3 = 0, x∗4 = 7, x∗5 = 0

an optimal solution of the following problem?

Maximize 8x1 − 9x2 + 12x3 + 4x4 + 11x5
Subject to: 2x1 − 3x2 + 4x3 + x4 + 3x5 ≤ 1

x1 + 7x2 + 3x3 − 2x4 + x5 ≤ 1
5x1 + 4x2 − 6x3 + 2x4 + 3x5 ≤ 22

x1,x2, · · · ,x5 ≥ 0

Here (9.26) translates into:

−3y∗1 + 7y∗2 + 4y∗3 = −9
y∗1 − 2y∗2 + 2y∗3 = 4

y∗2 = 0

As the unique solution of the system (3.4,0,0.3) is not a feasible solution of Problem 9.6, the
proposed solution is not optimal.

9.3.5 Interpretation of dual variables
As said in the introduction of this section, one of the major interests of the dual programme is
that, in some problems, the variables of the dual problem have an interpretation.

A classical example is the economical interpretation of the dual variables of the following
problem. Consider the problem that consits in maximizing the benefit of a company building
some products. Each variable x j of the primal problem measures the amount of product j that is
built, and bi the amount of resource i (needed to build the products) that is available. Note that,
for any i≤ n, j ≤m, ai, j represents the number of units of resource i needed per unit of product
j. Finally, c j denotes the benefit (the price) of a unit of product j.

Hence, by checking the units of measure in the constraints ∑ai jyi ≥ c j, the variable yi must
represent a benefit per unit of resource i. Somehow, the variable yi measures the unitary value
of the resource i. This is illustrated by the following theorem the proof of which is omitted.

Theorem 9.13. If Problem 9.5 admits a non degenerated optimal solution with value z∗, then
there is ε > 0 such that, for any |ti| ≤ ε (i = 1, . . . ,m), the problem

Maximize ∑
n
j= c jx j

Subject to ∑
n
j=1 ai jx j ≤ bi + ti (i = 1, . . . ,m)

x j ≥ 0 (j = 1, . . . ,n)

admits an optimal solution with value z∗+ ∑
m
i=1 y∗i ti, where (y∗1, . . . ,y

∗
m) is the optimal solution

of the dual of Problem 9.5.

Theorem 9.13 shows how small variations in the amount of available resources can affect the
benefit of the company. For any unit of extra resource i, the benefit increases by y∗i . Sometimes,
y∗i is called the marginal cost of the resource i.

In many networks design problems, a clever interpretation of dual variables may help to
achieve more efficient linear programme or to understand the problem better.

146 CHAPTER 9. LINEAR PROGRAMMING

9.4 Exercices

9.4.1 General modelling
Exercise 9.1. Which problem(s) among P1, P2 and P3 are under the standard form?

P1 : Maximize 3x1 − 5x2
Subject to: 4x1 + 5x2 ≥ 3

6x1 − 6x2 = 7
x1 + 8x2 ≤ 20

x1,x2 ≥ 0

P2 : Minimize 3x1 + x2 + 4x3 + x4 + 5x5
Subject to: 9x1 + 2x2 + 6x3 + 5x4 + 3x5 ≤ 5

8x1 + 9x2 + 7x3 + 9x4 + 3x5 ≤ 2
x1,x2,x3,x4 ≥ 0

P3 : Maximize 8x1 − 4x2
Subject to: 3x1 + x2 ≤ 7

9x1 + 5x2 ≤ −2
x1,x2 ≥ 0

Exercise 9.2. Put under the standard form:

P4 : Minimize −8x1 + 9x2 + 2x3 − 6x4 − 5x5
Subject to: 6x1 + 6x2 − 10x3 + 2x4 − 8x5 ≥ 3

x1,x2,x3,x4,x5 ≥ 0

Exercise 9.3. Consider the following two problems corresponding to Problems 9.2 and 9.3 of
the course. Prove that the first one is unfeasible and that the second one is unbounded.

Maximize 3x1 − x2
Subject to: x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −10
x1,x2 ≥ 0

Maximize x1 − x2
Subject to: −2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2
x1,x2 ≥ 0

Exercise 9.4. Find necessary and sufficient conditions on the numbers s and t for the problem

P5 : Maximize x1 + x2
Subject to: sx1 + tx2 ≤ 1

x1,x2 ≥ 0

9.4. EXERCICES 147

a) to admit an optimal solution;

b) to be unfeasible;

c) to be unbounded.

Exercise 9.5. Prove or disprove: if the problem (9.1) is unbounded, then there exists an index
k such that the problem:

Maximize xk
Subject to: ∑

n
j=1 ai jx j ≤ bi for 1≤ i≤ m

x j ≥ 0 for 1≤ j ≤ n

is unbounded.

Exercise 9.6. The factory RadioIn builds to types of radios A and B. Every radio is produced
by the work of three specialists Pierre, Paul and Jacques. Pierre works at most 24 hours per
week. Paul works at most 45 hours per week. Jacques works at most 30 hours per week. The
resources necessary to build each type of radio and their selling prices as well are given in the
following table:

Radio A Radio B
Pierre 1h 2h
Paul 2h 1h
Jacques 1h 3h
Selling prices 15 euros 10 euros

We assume that the company has no problem to sell its production, whichever it is.
a) Model the problem of finding a weekly production plan maximizing the revenue of Ra-

dioIn as a linear programme. Write precisely what are the decision variables, the objective
function and the constraints.

b) Solve the linear programme using the geometric method and give the optimal production
plan.

Exercise 9.7. The following table shows the different possible schedule times for the drivers
of a bus company. The company wants that at least one driver is present at every hour of the
working day (from 9 to 17). The problem is to determine the schedule satisfying this condition
with minimum cost.

Time 9 – 11h 9 – 13h 11 – 16h 12 – 15h 13 – 16h 14– 17h 16 – 17h
Cost 18 30 38 14 22 16 9

Formulate an integer linear programme that solves the company decision problem.

Exercise 9.8 (Chebyshev approximation). Data : m measures of points (xi,yi) ∈ Rn+1, i =
1, ...,m.
Objective: Determine a linear approximation y = ax+b minimizing the largest error of approx-
imation. The decision variables of this problem are a ∈ Rn and b ∈ R. The problem may be

148 CHAPTER 9. LINEAR PROGRAMMING

formulated as:
minz = max

i=1,...,m
{|yi−axi−b|}.

It is unfortunately not under the form of a linear program. Let us try to do some transformations.

Questions:

1. We call Min-Max problem the problem of minimizing the maximum of a set of numbers:

minz = max{c1x, ...,ckx}.

How to write a Min-Max problem as an LP?

2. Can we express the following constraints

|x| ≤ b

or
|x| ≥ b

in a LP (that is without absolute values)? If yes, how?

3. Rewrite the problem of finding a Chebyshev linear approximation as an LP.

9.4.2 Simplex
Exercise 9.9. Solve with the Simplex Method the following problems:

a.
Maximize 3x1 + 3x2 + 4x3
Subject to:

x1 + x2 + 2x3 ≤ 4
2x1 + 3x3 ≤ 5
2x1 + x2 + 3x3 ≤ 7

x1,x2,x3 ≥ 0

9.4. EXERCICES 149

b.
Maximize 5x1 + 6x2 + 9x3 + 8x4
Subject to:

x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1,x2,x3,x4 ≥ 0

c.
Maximize 2x1 + x2
Subject to:

2x1 + 3x2 ≤ 3
x1 + 5x2 ≤ 1

2x1 + x2 ≤ 4
4x1 + x2 ≤ 5

x1,x2 ≥ 0

Exercise 9.10. Use the Simplex Method to describe all the optimal solutions of the following
linear programme:

Maximize 2x1 + 3x2 + 5x3 + 4x4
Subject to:

x1 + 2x2 + 3x3 + x4 ≤ 5
x1 + x2 + 2x3 + 3x4 ≤ 3

x1,x2,x3,x4 ≥ 0

Exercise 9.11. Solve the following problems using the Simplex Method in two phases.

a.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 4

x1,x2 ≥ 0

b.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 + x2 ≤ 2

x1,x2 ≥ 0

150 CHAPTER 9. LINEAR PROGRAMMING

c.
Maximise 3x1 + x2
Subject to:

x1 − x2 ≤ −1
−x1 − x2 ≤ −3
2x1 − x2 ≤ 2

x1,x2 ≥ 0

9.4.3 Duality
Exercise 9.12. Write the dual of the following linear programme.

Maximize 7x1 + x2
Subject to:

4x1 + 3x2 ≤ 3
x1 − 2x2 ≤ 4

−5x1 − 2x2 ≤ 3
x1,x2 ≥ 0

Exercise 9.13. Consider the following linear programme.

Minimize −2x1 − 3x2 − 2x3 − 3x4
Subject to:

−2x1 − x2 − 3x3 − 2x4 ≥ −8
3x1 + 2x2 + 2x3 + x4 ≤ 7

x1,x2,x3,x4 ≥ 0

(9.27)

a) Write the programme (9.27) under the standard form.

b) Write the dual (D) of programme (9.27).

c) Give a graphical solution of the dual programme (D).

d) Carry on the first iteration of the Simplex Method on the linear programme (9.27).

After three iterations, one find that the optimal solution of this programme is x1 = 0,
x2 = 2, x3 = 0 and x4 = 3.

e) Verify that the solution of (D) obtained at Question c) is optimal.

Exercise 9.14. We consider the following linear programme.

Maximize x1 − 3x2 + 3x3
Subject to :

2x1 − x2 + x3 ≤ 4
−4x1 + 3x2 ≤ 2

3x1 − 2x2 − x3 ≤ 5
x1,x2,x3 ≥ 0

If the solution x∗1 = 0, x∗2 = 0, x∗3 = 4 optimal?

9.4. EXERCICES 151

Exercise 9.15. Prove that the following linear programme is unbounded.

Maximize 3x1 − 4x2 + 3x3
Subject to :

−x1 + x2 + x3 ≤ −3
−2x1 − 3x2 + 4x3 ≤ −5
−3x1 + 2x2 − x3 ≤ −3

x1,x2,x3 ≥ 0

Exercise 9.16. We consider the following linear programme.

Maximize 7x1 + 6x2 + 5x3 − 2x4 + 3x5
Subject to:

x1 + 3x2 + 5x3 − 2x4 + 2x5 ≤ 4
4x1 + 2x2 − 2x3 + x4 + x5 ≤ 3
2x1 + 4x2 + 4x3 − 2x4 + 5x5 ≤ 5
3x1 + x2 + 2x3 − x4 − 2x5 ≤ 1

x1,x2,x3,x4,x5 ≥ 0.

Is the solution x∗1 = 0,x∗2 = 4
3 ,x∗3 = 2

3 ,x∗4 = 5
3 ,x∗5 = 0, optimal?

Exercise 9.17. 1. Because of the arrival of new models, a salesman wants to sell off quickly
its stock composed of eight phones, four hands-free kits and nineteen prepaid cards. Thanks
to a market study, he knows that he can propose an offer with a phone and two prepaid cards
and that this offer will bring in a profit of seven euros. Similarly, we can prepare a box with a
phone, a hands-free kit and three prepaid cards, yielding a profit of nine euros. He is assured to
be able to sell any quantity of these two offers within the availability of its stock. What quantity
of each offer should the salesman prepare to maximize its net profit?

2. A sales representative of a supermarket chain proposes to buy its stock (the products, not
the offers). What unit prices should he negociate for each product (phone, hands-free kits, and
prepaid cards)?

Exercise 9.18 (FARKAS’ LEMMA). The following two linear programmes are duals of each
other.

maximize 0x subject to Ax = 0 and x≥ b
minimize − zb subject to yA− z = 0 and z≥ 0

Farkas’ Lemma says that exactly one of the two linear systems:

Ax = 0, x≥ b and yA≥ 0, yAb > 0

has a solution. Deduce Farkas’ Lemma from the Duality Theorem (9.10).

152 CHAPTER 9. LINEAR PROGRAMMING

Exercise 9.19. The following two linear programmes are duals of each other.

minimize y0 subject to yA≥ c
maximize cx subject to Ax = 0 and x≥ 0

A variant of Farkas’ Lemma says that exactly one of the two linear systems:

yA≥ c and Ax = 0, x≥ 0, cx > 0

has a solution. Deduce this variant of Farkas’ Lemma from the Duality Theorem (9.10).

Exercise 9.20 (Application of duality to game theory- Minimax principle (*)). In this problem,
based on a lecture of Shuchi Chawla, we present an application of linear programming duality
in the theory of games. In particular, we will prove the Minimax Theorem using duality.

Let us first give some definition. A two-players zero-sum game is a protocol defined as
follows: two players choose strategies in turn; given two strategies x and y, we have a valuation
function f (x,y) which tells us what the payoff for Player one is. Since it is a zero sum game, the
payoff for the Player two is exactly − f (x,y). We can view such a game as a matrix of payoffs
for one of the players. As an example take the game of Rock-Paper-Scissors, where the payoff
is one for the winning party or 0 if there is a tie. The matrix of winnings for player one will
then be the following:

A =

 0 −1 1
1 0 −1
−1 1 0

Where Ai j corresponds to the payoff for player one if player one picks the i-th element and
player two the j-th element of the sequence (Rock, Paper, Scissors). We will henceforth refer
to player number two as the column player and player number one as the row player. If the row
player goes first, he obviously wants to minimize the possible gain of the column player.

What is the payoff of the row player? If the row player plays first, he knows that the column
player will choose the minimum of the line he will choose. So he has to choose the line with
the maximal minimum value. That is its payoff is

max
i

min
j

Ai j.

Similarly, what is the payoff of the column player if he plays first? If the column player plays
first, the column player knows that the row player will choose the maximum of the column that
will be chosen. So the column player has to choose the column with minimal maximum value.
Hence, the payoff of the row player in this case is

min
j

max
i

Ai j.

Compare the payoffs. It is clear that

max
i

min
j

Ai j ≤min
j

max
i

Ai j.

The minimax theorem states that if we allow the players to choose probability distributions
instead of a given column or row, then the payoff is the same no matter which player starts.
More formally:

9.4. EXERCICES 153

Theorem 9.14 (Minimax theorem). If x and y are probability vectors, then

max
y

(min
z

yT Ax) = min
x

(max
y

(yT Ax)).

Let us prove the theorem.

1. Formulate the problem of maximizing its payoff as a linear programme.

2. Formulate the second problem of minimzing its loss as a linear programme.

3. Prove that the second problem is a dual of the first problem.

4. Conclude.

Exercise 9.21. Prove the following proposition.

Proposition 9.15. The dual problem of the problem

Maximize cT x subject to Ax≤ a and Bx = b and x≥ 0

is the problem

Minimize aT y+bT z subject to AT y+BT z≥ c and y≥ 0,z≥ 0.

9.4.4 Modelling Combinatorial Problems via (integer) linear program-
ming

Lots of combinatorial problems may be formulated as linear programmes.

Exercise 9.22 (VERTEX COVER). A vertex cover in a graph G = (V,E) is a set K of vertices
such that each edge e of E is incident to at least one vertex of K. The VERTEX COVER problem
is to find a vertex cover of minimum cardinality in a given graph.

1. Express VERTEX COVER for the following graph as an integer linear programme:

F

A

E D

CB

2. Express VERTEX COVER for a general graph as a linear programme.

Exercise 9.23 (EDGE COVER). An edge cover of a graph G = (V,E) is a set of edges F ⊆ E
such that every vertex v ∈V is incident to at least one edge of F . The EDGE COVER problem is
to find an edge cover of minimum cardinality in a given graph.

Adapt the integer linear programme modelling VERTEX COVER to obtain an integer linear
programming formulation of EDGE COVER.

154 CHAPTER 9. LINEAR PROGRAMMING

Exercise 9.24. Consider the graph

A
|
B–D
| /
C

What does the following linear programme do?

Minimize xA + xB + xC + xD
Subject to:

xA + xB ≥ 1
xB + xD ≥ 1
xB + xC ≥ 1
xC + xD ≥ 1

xA ≥ 0,xB ≥ 0,xC ≥ 0,xD ≥ 0

Exercise 9.25 (Maximum cardinality matching problem (Polynomial < flows or augmenting
paths)). Let G = (V,E) be a graph. Recall that a matching M ⊆ E is a set of edges such that
every vertex of V is incident to at most one edge of M. The MAXIMUM MATCHING problem
is to find a matching M of maximum size. Express MAXIMUM MATCHING as a integer linear
programme.

Exercise 9.26 (Maximum clique (NP-complete)). Recall that a clique of a graph G = (V,E) is
a subset C of V , such that every two vertices in V are joined by an edge of E. The MAXIMUM

CLIQUE problem consist of finding the largest cardinality of a clique.
Express MAXIMUM CLIQUE as an integer linear programme.

Exercise 9.27 (Resource assignment). A university class has to go from Marseille to Paris using
buses. There are some strong inimities inside the group and two people that dislike each other
cannot share the same bus. What is the minimum number of buses needed to transport the whole
group? Write a LP that solve the problem. (We suppose that a bus does not have a limitation on
the number of places.)

Exercise 9.28 (French newspaper enigma). What is the maximum size of a set of integers
between 1 and 100 such that for any pair (a,b), the difference a-b is not a square ?

1. Model this problem as a graph problem.

2. Write a linear programme to solve it.

Exercise 9.29 (Maximum independent set (NP-hard)). An independent set of a graph G = (V, E)
is a subset I of V , such that every two nodes in V are not joined by an edge of E. The maximum
independent set problem consist of finding the largest cardinality of an independent set.

9.4. EXERCICES 155

Exercise 9.30 (Minimum Set Cover (NP-hard)). Input: A universal set U = {1, ...,n} and a
family S of subsets S1, . . . , Sm of U.
Optimization Problem: What is the smallest subset of subsets T ⊂ S such that ∪ti∈T ti = U?
Decision problem: Given an integer k, does there exists a subset of T of cardinality k, such that
∪ti∈T ti = U? This decision problem is NP-complete.
Question: Write the set cover problem as a linear programme.
Alternative question: (easier, give the linear programme) Explain what is doing each line of the
programme.

Exercise 9.31 (Example for the Maximum Set Packing). Suppose you are at a convention of
foreign ambassadors, each of which speaks English and other various languages.

- French ambassador: French, Russian

- US ambassador:

- Brazilian ambassador: Portuguese, Spanish

- Chinese ambassador: Chinese, Russian

- Senegalese ambassador: Wolof, French, Spanish

You want to make an announcement to a group of them, but because you do not trust them,
you do not want them to be able to speak among themselves without you being able to under-
stand them (you only speak English). To ensure this, you will choose a group such that no two
ambassadors speak the same language, other than English. On the other hand you also want to
give your announcement to as many ambassadors as possible.

Write a linear programme giving the maximum number of ambassadors at which you will
be able to give the message.

Exercise 9.32 (Maximum Set Packing (Dual of the set cover problem)). Given a finite set S and
a list of subsets of S.
Decision problem: Given an integer k, do there exist k pairwise disjoint sets (meaning, no two
of them intersect)?
Optimization problem: What is the maximum number of pairwise disjoint sets in the list?

9.4.5 Modelling Flow Networks and Shortest Paths.
Definition 9.16 (Elementary flow network). A flow network is a four-tuple N = (D,s, t,c)
where

- D = (V,A) is a directed graph with vertice set V and arc set A.

- c is a capacity function from A to R+∪∞. For an arc a ∈ A, c(a) represents its capacity,
that is the maximum amount of flow it can carry.

156 CHAPTER 9. LINEAR PROGRAMMING

- s and t are two distinct vertices: s is the source of the flow and t the sink.

A flow is a function f from A to R+ which respects the flow conservation constraints and
the capacity constraints.

Exercise 9.33 (Maximum flow (Polynomial < Ford-Fulkerson)). Write the linear program solv-
ing the maximum flow problem for a flow network.

Exercise 9.34 (Multicommodity flow). Consider a flow network N = (D,s, t,c). Consider a set
of demands given by the matrix D = (di j ∈ R; i, j ∈ V, i 6= j), where di j is the amount of flow
that has to be sent from node i to node j. The multicommodity flow problem is to determine
if all demands can be routed simultaneously on the network. This problem models a telecom
network and is one of the fundamental problem of the networking research field.

Write a linear program that solves the multicommodity flow problem.

Exercise 9.35 (s−t shortest path). Let D = (V,A, l) be a weighted digraph. l is a length function
from A to R+. For a ∈ A, l(a) is the length of arc a. Let s and t two distinguised vertices.

Write a linear program that finds the length of a shortest path between s and t.

Exercise 9.36 (How far are you from anybody in Facebook?). In graph theory, the distance
between two vertices in a graph is the number of edges in a shortest path connecting them. We
consider the graph of Facebook members. Two people are at distance one if they are friends.

The eccentricity ε of a vertex v is the greatest distance between v and any other vertex. It
can be thought of as how far a node is from the node most distant from it in the graph. The
diameter of a graph is the maximum eccentricity of any vertex in the graph. That is, it is the
greatest distance between any pair of vertices.

1. Write an LP to compute the eccentricity of a given vertex.

2. Write an LP which computes the diameter of the Facebook graph.

Exercise 9.37 (Minimum Cut Problem).

Definition 9.17 (Cut - Reminder). In a flow network N = (G,s, p,c) a cut is a bipartition
C = (Vs,Vp) of the vertices of G such that s ∈Vs and p ∈Vp. The capacity of the cut C, denoted
by δ(C), is the sum of the capacities of the out-arcs of Vs (i.e., the arcs (u,v) with u ∈ Vs and
v ∈Vp).

Write a linear program that solves the minimum cut problem.
Hint: Use variables to know in which partition is each vertex and additional variables to know
which edges are in the cut.

Bibliography

[1] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience, 1998.

[2] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York, 1983.

[3] ILOG CPLEX optimization software. http://www-01.ibm.com/software/
integration/optimization/cplex-optimization-studio/.

[4] GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.

[5] D. Gale, H. W. Kuhn, and A. W. Tucker. Linear Programming and the Theory of Games.
In T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, New York,
Wiley, 1951.

[6] M. Sakarovitch. Optimisation Combinatoire: Graphes et Programmation Linéaire. Her-
mann, Paris, 1984.

157

158 BIBLIOGRAPHY

Chapter 10

Polynomiality of Linear Programming

In previous sections, we have seen the simplex method for solving linear programmes which
appears to be very efficient in practice. While it is known that Gaussian elimination can be
implemented in polynomial time, the number of pivot rules used throughout the simplex method
may be exponential. More precisely, Klee and Minty gave an example of a linear programme
such that the simplex method goes through each of the 2n extreme points of the corresponding
polytope [1].

In this section, we survey two methods for solving linear programmes in polynomial time.
On the one hand, the Ellipsoid Method [2, 3] is not competitive with the simplex method in
practice but it has important theoretical side-effects. On the other hand, the Interior Point
Methods compete with the simplex method in practice.

First of all, we define the input size of a linear programme. Recall that an integer i ∈ Z can
be encoded using < i >= dlog2 (|i|+1)e+1 bits. For a rational number r = p/q ∈Q, the size
of r is < r >=< p > + < q >. Similarly, any rational matrix can be encoded using < A >=
∑

m
i=1 ∑

n
j=1 < ai, j > bits. Also, multiplying two integers a and b runs in time O(< a > + < b >).

In what follows, we consider the linear programme L defined by:

Maximize cT x
Subject to: Ax≤ b

x≥ 0
(10.1)

We restrict ourselves to the case when A ∈ Qm×n, b ∈ Qm and c ∈ Qn have rational coeffi-
cients. Therefore, the input size of L is < L >=< A > + < b > + < c >. Say differently, < L >
is a polynomial in n,m and < B > where B is the largest coefficient in A,b and c.

The two methods presented in this section are polynomial in < L >. It is a long standing
open problem to know whether linear programming is strongly polynomial, i.e., whether there
exists an algorithm that solves a linear programme and running in time polynomial in n and m.

The interest of the ellipsoid method comes from the fact that, in particular cases, it works
independently from the number m of constraints. More precisely, if we are given a separation
oracle that, given a vector x, answers that x satisfies Ax≤ b or returns an inequality not satisfied
by x, then the ellipsoid method works in time polynomial in n and < B >.

159

160 CHAPTER 10. POLYNOMIALITY OF LINEAR PROGRAMMING

10.1 Ellipsoid Method

The ellipsoid method has been proposed in the 70s by Shor, Judin and Nemirovski for solving
some nonlinear optimization problems. In 1979, Khachyian showed how to use it for solving
linear programmes.

10.1.1 Optimization versus faisibility

We first recall (or state) some definitions and results of linear algebra.
A convex set C ⊆ Rn is such that ∀x,y ∈ C and ∀0 ≤ λ ≤ 1, λx + (1− λ)y ∈ C. An half

space H is a (convex) set {x ∈ Rn : cT x ≤ δ} with c ∈ Rn, δ ∈ R. A closed convex set is
the intersection of a family of half spaces. A polyhedron K is a closed convex set that is the
intersection of a finite family of half spaces, i.e., K = {x ∈ Rn : Ax≤ b}, A ∈ Rm×n, b ∈ Rm.
A polytope is the convex hull of a finite set X ⊆ Rn, i.e., {x ∈ Rn : ∑λixi, ∑i λi ≤ 1,xi ∈ X}.

Theorem 10.1. A set is polytope if and only if it is a bounded polyhedron.

Given A ∈Rm×n and b ∈Rm, the system of inequalities Ax≤ b is feasible if there is x ∈Rn

that satisfies it, i.e., if the polyhedron {x ∈ Rn : Ax≤ b} is not empty. We say that the system
is bounded if there is R ∈ R such that the set of the solutions of the system is included in a ball
of radius ≤ R in Rn.

The ellispoid method aims at deciding whether a polytope is not empty and, if possible, at
finding some vector in it. We first show that it is sufficient to solve linear programmes. In other
words, the next theorem shows that solving a linear programme can be reduced to the feasibility
of a system of linear inequalities.

Theorem 10.2. If it can be decided in polynomial time whether a system of linear inequalities
is feasible then linear programmes can be solved in polynomial time.

Proof. Consider the linear programme L described in 10.1. By the strong duality theorem
(Theorem 9.10), L admits an optimal solution if and only if the system {x ≥ 0, y ≥ 0, Ax ≤
b,ATy≥ c,cx≥ bTy} is feasible and bounded, i.e., it is a non empty polytope.

Therefore, from now on, we focus on the feasibility of the bounded system

Ax≤ b
A ∈Qm×n,b ∈Qm (10.2)

10.1.2 The method

In this section, we describe the Ellipsoid Method. Given a polytope K and V ∈R, this method
either returns a vector x ∈K or states that K has volume less than V .

10.1. ELLIPSOID METHOD 161

Definitions and notations

A matrix A ∈ Rm×n is positive definite if and only if xT Ax > 0 for any x ∈ Rn \{0}, or equiv-
alently, A = QT diag(λ1, · · · ,λn)Q where Q ∈ Rn×n is an orthogonal matrix and λi > 0 for
any i ≤ n. Another equivalent definition is that A is positive definite if A = BT B where B is
triangular with strictly positive diagonal elements.

The unit ball B(0,1) is {x ∈ Rn : ||x|| ≤ 1} with volume Vn.
An ellipsoid, denoted by ε(A,b), is the image of B(0,1) under a linear map t : Rn → Rn

such that t(x) = Ax+b where A ∈ Rn×n is an invertible matrix and b ∈ Rn. That is, ε(A,b) =
{x ∈ Rn : ||A−1x−A−1b|| ≤ 1}. Alternatively, the ellipsoid ε(A,b) can be defined as {x ∈
Rn : (x−b)T M(x−b)≤ 1} where M = (A−1)T A−1 is positive definite.

Proposition 10.3. The volume vol(ε(A,b)) of ε(A,b) is |det(A)|.Vn.

The ellipsoid method.

Let K = {x ∈ Rn : Ax ≤ b} be a polytope with A ∈ Rm×n, b ∈ Rm, and let V ∈ R. Assume
we are given M0 ∈Rn×n and c0 ∈Rn such that K ⊆ ε0(M0,c0). The ellipsoid method proceeds
as follows.

Algorithm 10.1 (Ellipsoid Method).

1. Let k = 0. Note that K ⊆ εk(Mk,ck);

2. If vol(εk(Mk,ck)) < V then stop;

3. Otherwise, if ck ∈K then return ck;

4. Else let aT
i x≤ bi be an inequality defining K , i.e., ai is a row of A, such that aT

i ck > bi;

Let εk+1(Mk+1,ck+1) be an ellipsoid with volume ≤ e−
1

2(n+1) .vol(εk(Mk,ck)) such that

εk(Mk,ck)∩{x ∈ Rn : aT
i x≤ aT

i ck} ⊆ εk+1(Mk+1,ck+1);

5. k← k +1 and go to step 2.

Theorem 10.4. The ellipsoid method computes a point in K or asserts that vol(K) < V in at
most 2.n. ln vol(ε0(M0,c0))

V iterations.

Proof. After k iterations, vol(εk+1(Mk+1,ck+1)/vol(ε0(M0,c0)) ≤ e−
k

2(n+1) . Since we stop as
soon as vol(εk+1(Mk+1,ck+1) < V , there are at most 2.n. ln vol(ε0(M0,c0))

V iterations.

162 CHAPTER 10. POLYNOMIALITY OF LINEAR PROGRAMMING

Discussion about the complexity and separation oracle.

Let K be the rational polytope defined in equation 10.2. Let B be the largest absolute value of
the coefficients of A and b. We now show that the ellipsoid method can be implemented in time
polynomial in < K >, i.e., in n,m and B.

Here, we first discuss the main steps of the proof, the technical results needed for this pur-
pose are postponed in next subsection.

• First, a lower bound V on the volume of K must be computed. Theorem 10.5 defines
such a V in the case K is full dimensional.

Otherwise, there is a first difficulty. Theorem 10.5 shows that there is ε > 0, such that K
is empty if and only if K ′ = {x∈Rn : Ax≤ b+U} is empty, where < ε > is polynomial
in n,B and U ∈ Rm is the vector with all coordinates equal to ε. Moreover, K ′ is full
dimensional (see Exercise 10.3).

Therefore, the ellipsoid method actually applies on the polytope K ′. If K ′ is empty, then
K is empty as well. Otherwise, the ellipsoid method returns x′ ∈ K ′ and the solution x′
is rounded to a solution x ∈K . We do not detail this latter operation in this note.

• Then, an initial ellipsoid ε0(M0,c0) containing K is required. Theorem 10.6 describes
how to define it in such a way that < ε0(M0,c0) > is polynomial in n and B.

• The crucial step of the ellipsoid method is step 4. Theorem 10.8 proves that the desired
ellipsoid εk+1(Mk+1,ck+1) always exists. Moreover, it can be computed from εk(Mk,ck)
and the vector ai, with a number of operations that is polynomial in < εk(Mk,ck) > and
< ai >.

Another technicality appears here. Indeed, following Theorem 10.8, some square-roots
are needed when defining εk+1(Mk+1,ck+1). Therefore, its encoding might be not polyno-
mial in < εk(Mk,ck) > and < ai >. It is actually possible to ensure that εk+1(Mk+1,ck+1)
satisfies the desired properties and can be encoded polynomially in < εk(Mk,ck) > and
< ai >. We do not give more details in this note.

Since, by the previous item, < ε0(M0,c0) > is polynomial in n and B, therefore, for any
k > 0, < εk(Mk,ck) > and the computation of the ellipsoid are polynomial in n and B.

• Now, using previous item and Proposition 10.3, step 2 is clearly polynomial in n and B.

• Finally, let us consider the following question. Given a system K = {x ∈Qn : Ax≤ b}
with A ∈ Qm×n, b ∈ Qm and a vector y ∈ Qn, decide if y ∈ K or returns an index i ≤ m
such that aT

i ck > bi. Clearly, this can be decided in time polynomial in m,n and B (the
largest absolute value of the coefficients) by simply checking the inequalities one by one.

The above discussion proves that the ellipsoid method runs in time polynomial in m,n and
B. Moreover, note that, m appears in the complexity only when solving the question of the last
item (step 3). The main interest of the ellipsoid method is that if we are given an oracle for
answering this question independently of m, then the ellipsoid method runs in time polynomial

10.1. ELLIPSOID METHOD 163

in n and B (independently of m). Even more, it is not necessary to explicitly know all constraints
(see Exercise 10.4).

10.1.3 Complexity of the ellipsoid method

In this section, we formally state (and prove some of) the Theorems used in the analysis of the
ellipsoid method (see discussion above).

In the following, for any x ∈ Rn, x(i) denotes the ith coordinate of x.

Initialization: finding the lower bound

The next theorem allows to find a lower bound for the volume of the considered polytope, if it
is not empty.

Theorem 10.5. Let K = {x ∈ Rn : Ax ≤ b} be a polytope and let B be the largest absolute
value of the coefficients of A and b.

• if K is full dimensional, its volume is lower bounded by 1/(nB)3n2
;

• let ε = 1/((n + 1).(nB)n) and let K ′ = {x ∈ Rn : Ax ≤ b + U} where U is the vector
with all components equal to ε. Then, K ′ is full dimensional and is not empty if and only
if K is not empty

Proof. TBD

Initialization: finding the initial ellipsoid

The next theorem allows to define the initial ellipsoid ε0(A0,a0).

Theorem 10.6. Let K = {x ∈ Rn : Ax ≤ b} be a polytope and let B be the largest absolute
value of the coefficients of A and b. Then K is contained into the ball B(0,nnBn).

Proof. The vertices of a convex set are the points of it that are not a linear combination of any
other vectors in this convex set. Equivalently, a vertex of K is determined as the unique solution
v of a linear system A′x = b′ where A′x≤ b′ is a subsystem of Ax≤ b and A′ is nonsingular.

By the Cramer’s formula, the ith coefficient of such a solution v is vi = det(A′i)/det(A′)
where A′i is the matrix obtained from A′ by replacing its ith column by the vector b. The
Hadamard inequality states that |det(M)| ≤ Πn

i=1||mi|| for any M ∈ Rn×n with columns mi,
i≤ n. Therefore, |det(A)|, |det(A′)|, |det(A′i)| and |vi| are all upper bounded by nn/2Bn.

Hence, any vertex of K lies in {x ∈ Rn : ||x|| ≤ nn/2Bn}. To conclude it is sufficient to
recall that a polytope equals the convex hull of its vertices.

164 CHAPTER 10. POLYNOMIALITY OF LINEAR PROGRAMMING

Computing the next ellipsoid containing K (step 4)

Lemma 10.7. The half-unit ball B1/2 = {x ∈ Rn : ||x|| ≤ 1,x(1) ≥ 0} is contained in the

ellipsoid E = ε(A,b) with volume at most Vn.e
− 1

2(n+1) where A = diag(n
n+1 ,

√
n2

n2−1 , · · · ,
√

n2

n2−1)
and b = (1/(n+1),0, · · · ,0).

Proof. First, E = {x ∈ Rn : ||A−1x−A−1b||2 = (n+1
n)2(x(1)− 1

n+1)2 + n2−1
n2 ∑

n
i=2 x(i)2 ≤ 1}.

Let y ∈ B1/2, we show that y ∈ E and then B1/2 ⊆ E.

(n+1
n)2(y(1)− 1

n+1)2 + n2−1
n2 ∑

n
i=2 y(i)2

= 2n+2
n2 y(1)(y(1)−1)+ 1

n2 + n2−1
n2 ∑

n
i=2 y(i)2

≤ 1
n2 + n2−1

n2 ≤ 1

Moreover, the volume of E is |det(A)|.Vn and det(A) = n
n+1(n2

n2−1)(n−1)/2. Using the fact that

1+ x≤ ex, we obtain that det(A)≤ e−1/(n+1)e(n−1)/(2(n2−1)) = e−
1

2(n+1) .

Theorem 10.8. The half-ellipsoid ε(A,a)∩{x ∈Rn : cT x≤ cT a} is contained in the ellipsoid
ε(A′,a′) where

a′ = a− 1
n+1

b and A′ =
n2

n2−1
(A− 2

n+1
bbT) where b = Ac/

√
cTAc

Moreover, the ratio vol(ε(A′,a′))/vol(ε(A,a))≤ e−1/(2(n+1)).

Proof. This follows from the fact that the half-ellipsoid is the image of the half-unit ball under a
linear transformation and from Lemma 10.7. Also, the ratio of the volumes of the two ellipsoids
is invariant under the linear transformation.

Note that the square root in the definition of ε(A′,a′) implies that this ellipsoid may not be
computed exactly. Nevertheless, it can be modified so that the intermediate results are rounded
using a number of bits that is polynomial in < K >. A suitable choice of the rounding constants
ensures that the obtained rational ellipsoid still contains K .

10.2 Interior Points method
The interior point method actually gather a family of methods. The approach consists in walking
through the interior of the set of feasible solutions (while the simplex method walks along the
boundary of this the polytope from vertex to vertex, and the ellipsoid method encircles this
polytope).

Among the family of interior points method, Karamakar proposed an algorithm and proved
it performs polynomially to solve linear programmes.

It is important to know that the interior points method typically outperforms the simplex
method on very large problems.

10.3. EXERCISES 165

10.3 Exercises
Exercise 10.1. Prove Theorem 10.1

Exercise 10.2. Prove Theorem 10.3

Exercise 10.3. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron and ε > 0. Let U ∈ Rm be the
vector with all coordinates equal to ε. Shows that {x ∈ Rn : Ax≤ b+U} is full dimensional.

Exercise 10.4. Minimum cost arborescence. Let D be a n-node directed graph with each arc
a ∈ A(D) has weight ca and let r ∈V (D). Consider the following problem:

Minimize ∑a∈A(D) caxa

Subject to: ∑a∈δ−(S) xa ≥ 1 ∀S⊆V (D)\{r}
xa ≥ 0 ∀a ∈ A(D)

Give an algorithm that decide whether x ∈ Rn is a feasible solution or returns a certificate
S⊆V (D)\{r} that x is not feasible, in time polyomial in n. Conclusion?

166 CHAPTER 10. POLYNOMIALITY OF LINEAR PROGRAMMING

Bibliography

[1] V. Klee and G.J. Minty. How Good is the Simplex Algorithm? In O. Shisha, editor,
Inequalities, III, pages 159-175. Academic Press, New York, NY, 1972.

[2] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii
Nauk SSSR 244, pages 1093-1096, 1979. (English translation: Soviet. Math Dokl. 20,
191-194)

[3] M. Grötschel, L. Lovász and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1(2): 169-197 (1981)

[4] V. Chvatal. Linear Programming. W.H. Freeman & Company, 1983

[5] J. Matousek and B. Gärdner. Understanding and Using Linear Programming. Springer,
2007

167

168 BIBLIOGRAPHY

Chapter 11

Fractional Relaxation

Lots of combinatorial problems are very close to linear programmes. Indeed they can be for-
mulated as a linear programme with the extra requirement that some of the variable be integers
(and not real). Such programmes are called integer linear programmes.

For example, consider MAXIMUM MATCHING, which is the problem of finding the largest
matching in a graph. Recall that a matching in a graph is a set of pairwise non-adjacent edges.
The size of a largest matching in a graph G is denoted by µ(G). With any matching M of
a graph G, we may associate its (0,1)-valued indicator vector x (that is xe = 1 if e ∈ M and
xe = 0 otherwise). Since no matching has more than one edge incident with any vertex, every
such vector x satisfies the constraint ∑e3v xe ≤ 1, for all v ∈V . Thus an instance of MAXIMUM

MATCHING may be formulated as the following integer linear programme.

Maximize ∑e∈E xe subject to :

∑e3v xe ≤ 1 for all v ∈V
xe ∈ IN for all e ∈ E

(11.1)

For every edge e, the constraint in any of its endvertices implies that xe ≤ 1. So the condition
xe ∈ IN is equivalent to the condition xe ∈ {0,1}.

As a second example, consider VERTEX COVER, the problem of finding a minimum vertex
cover in a graph. Recall that a vertex cover in a graph G = (V,E) is a set of vertices S⊂V such
that every edge has at least one endvertex in S. A vertex cover of minimum cardinality is said to
be minimum. The cardinality of a minimum vertex cover is denoted by ν(G). Letting y be the
indicator vector of a vertex cover (i.e. yv = 1 if it is in the vertex cover and yv = 0 otherwise),
an instance of VERTEX COVER has following Integer Linear Programming formulation.

Minimize ∑v∈V yv subject to :

yu + yv ≥ 1 for all uv ∈ E
yv ∈ IN for all v ∈V

(11.2)

Again the condition y integral is equivalent to the condition y (0,1)-valued. Indeed if yv > 1 for
some v, then setting yv to 1, we obtain a solution with smaller weight, so an optimal solution is

169

170 CHAPTER 11. FRACTIONAL RELAXATION

necessarily (0,1)-valued.
VERTEX COVER is known to be NP- hard (see [10]) and, like many NP- hard problems

(see e.g. Exercise 11.1 and 11.2), it may be formulated as integer linear programme. There-
fore, solving integer linear programmes is NP- hard in general. However, writing a problem
as an integer linear programme is often very useful. First, one can always relax the integrality
conditions to obtain a linear programme, called fractional relaxation of problem.

For instance, the fractional relaxation of (11.1) is the following linear programme.

Maximize ∑e∈E xe subject to :

∑e3v xe ≤ 1 for all v ∈V
xe ≥ 0 for all e ∈ E

(11.3)

Since a feasible solution of an integer linear programme is always a feasible solution of its
fractional relaxation, the optimal solution of this linear programme is at least as good as that of
the integer linear programme. That is, in a maximization problem, the relaxed programme has a
value greater than or equal to that of the original programme, while in a minimization problem
the relaxed programme has a value smaller than or equal to that of the original programme.
For instance, a feasible solution to (11.3), is called a fractional matching, and the maximum
value of a fractional matching of G is called the fractional matching number and is denoted
µ f (G). Then µ f (G)≥ µ(G). For many graphs G, we have µ f (G) > µ(G). For example, for any
odd cycle C2k+1. Setting xe = 1/2 for all edge e, we obtain that µ f (G) ≥ (2k + 1)/2 (in fact,
µ f (G) = (2k +1)/2, see Exercise 11.3) while µ(G) = k.

The problem FRACTIONAL MATCHING, which consists in finding a fractional maximal
of value µ f (G) can be formulated as the linear programme (fractional-matching) which has a
polynomial number of constraints. Therefore, it can be solved in polynomial time.

Similarly, the fractional relaxation of (11.2) is

Minimize ∑v∈V yv subject to :

yu + yv ≥ 1 for all uv ∈ E
yv ≥ 0 for all v ∈V

(11.4)

A feasible solution to (11.4), is called a fractional vertex cover, and the minimum value of
a fractional cover of G is called the fractional vertex cover number and is denoted ν f (G). Then
ν f (G) ≤ ν(G). For many graphs G, we have ν f (G) < ν(G). For example, for any odd cycle
C2k+1. Setting yv = 1/2 for all vertex v, we obtain that ν f (G)≤ (2k+1)/2 while ν(G) = k+1.
The problem FRACTIONAL VERTEX COVER, which consists in finding a fractional vertex cover
of value ν f (G) can be solved in polynomial time, because of its linear programming formulation
(fractional-cover).

Observe that the two linear programmes (11.3) and (11.4) are dual to each other. Thus by
the Duality Theorem, µ f (G) = ν f (G), and so

µ(G)≤ µ f (G) = ν f (G)≤ ν(G).

171

Hence, fractional relaxation and the Duality Theorem prove the (simple) fact that in a graph
the maximum size of a matching is smaller than the minimum size of a vertex cover. More
generally, it may be used to prove some relation between two parameters which may seem
unrelated at first glance, and may lead to nice and elegant proofs. See Subsection 11.1.3.

But fractional relaxation is also very useful in an algorithmic prospect. Indeed sometimes
the fractional problem has the same optimal value as the original one, and so solving the former
via linear programming yields a polynomial-time algorithm to solve the later. This is the case
for MAXIMUM MATCHING in bipartite graphs.

Proposition 11.1. If G is bipartite, then (11.3) has an integral optimal solution, which is thus
an optimal solution to (11.1). So µ(G) = µ f (G).

Proof. Let x be an optimal solution to (11.3). Then µ f (G) = ∑e∈E xe.
If x is integral, then we are done. If not, we describe a procedure that yields another optimal

solution with strictly more integer coordinates than x. We then reach an integral optimal solution
by finitely many repetitions of this procedure.

Let H be the subgraph of G induced by the set of edges {e | xe /∈ {0,1}}.
Suppose first that H contains a cycle C = (v1,v . . . ,vk,v1). Since G and so H is bipartite, C

must be even.
Let ε = min

e∈E(C)
min{xe,1− xe}. Define x′ and x′′ as follows:

x′e =

xe− ε, if e = vivi+1, 1≤ i≤ k−1 and i is odd,
xe + ε, if e = vivi+1, 1≤ i≤ k and i is even,
xe, if e /∈ E(C).

and

x′′e =

xe + ε, if e = vivi+1, 1≤ i≤ k−1 and i is odd,
xe− ε, if e = vivi+1, 1≤ i≤ k−1 and i is even,
xe, if e /∈ E(Q).

where the indices must be considered modulo k. These are two admissible solutions to (11.3).
Moreover,

∑
e∈E

xe =
1
2

(
∑
e∈E

x′e + ∑
e∈E

x′′e

)
.

Thus x′ and x′′ are also optimal solutions and, by the choice of ε, one of these two solutions has
more integer coordinates than x.

Hence, we may assume that H has no cycle. Consider a longest path P = (v1,v2 . . . ,vk) in
H. Observe if e is an edge e incident to v1 (resp. vk) and different from v1v2, (resp. vk−1vk, then
xe = 0, for otherwise H would contain either a cycle or a longer path.

Defining ε = min
e∈E(P)

min{xe,1− xe} and x′ and x′′ similarly as above, we obtain two admisi-

ble solutions to (11.3). Observe that if P is odd, then the value of x′′e is greater than the one of
x, which contradicts the optimality of x. If P is even, both x′ and x′′ are also optimal solutions
and, by the choice of ε, one of these two solutions has more integer coordinates than x.

172 CHAPTER 11. FRACTIONAL RELAXATION

Remark 11.2. Observe that the proof of Proposition 11.1 easily translates into a polynomial-
time algorithm for transforming an optimal solution to (11.3) into an integral optimal solution
to it which is necessarily an optimal solution to (11.1). Hence, one can solve MAX MATCHING

in bipartite graphs in polynomial time by computing an optimal solution to (11.3) and then
modifying it into an optimal solution to (11.1).

One can show the following analogue for VERTEX COVER in bipartite graphs. (Exer-
cise 11.4).

Proposition 11.3. If G is bipartite, then (11.4) has an integral optimal solution, which is thus
an optimal solution to (11.2). So ν(G) = ν f (G).

Propositions 11.1 and 11.3, together with the Duality Theorem, now imply the following
fundamental min–max theorem, due independently to König [18] and Egerváry [8].

Theorem 11.4 (KÖNIG–EGERVÁRY THEOREM).
In any bipartite graph G, the number of edges in a maximum matching is equal to the number
of vertices in a minimum vertex cover. In other words, µ(G) = ν(G).

In fact, Propositions 11.1 and 11.3 are particular cases of a more general paradigm, called
total unimodularity, which gives a sufficient condition for a linear programme to have an inte-
gral solution. This is discussed in Section 11.1. There are other examples for which the optimal
values of the problem and its relaxation are equal. One of them is given in Subsection 11.2.1.
For all these problems, solving the fractional relaxation gives a polynomial-time algorithm to
solve the problem.

But very often the optimal value of the problem does not equal the optimal value of its relax-
ation. Moreover, for many problems like VERTEX COVER, we cannot expect any polynomial-
time algorithm (unless P = N P) because they are N P -hard. However, sometimes the optimal
values of the probelm and its fractional relaxation are close to each other. In that case, solving
the fractional relaxation gives an approximation of the optimal value of the problem. Moreover,
one can very often derive an approximate solution of the problem from an optimal solution of
the relaxation. The most common technique rounds fractional solutions to integer solutions.
Some examples of deterministic and randomized roundings are given in Sections 11.2 and 11.3,
respectively.

Finally, for some problems, the optimal value of the fractional relaxation is a very bad
estimate for the integer linear programme. This is in particular the case for graph colouring, as
shown in Section 11.4.

11.1 Total Unimodularity
We have seen that the objective objective function of a linear programme attains its optimum
at one of the extreme points of the associated convex polyhedron. A polyhedron is said to be
integral, if all its extreme points are integral. If the polyhedron Ax ≤ b,x ≥ 0 is integral, then
every integer linear programme associated to it has the same optimal value as its fractional

11.1. TOTAL UNIMODULARITY 173

relaxation. Moreover, since the Simplex Algorithm goes from extreme point to extreme point,
in such a case it returns an integral solution.

Some integral polyhedra have been characterized by Hoffman and Kruskal [13]. A matrix
A is totally unimodular if the determinant of each of its square submatrices is equal to 0, +1,
or −1. Using Cramér’s rule, it is easy linear algebra to show the following.

Theorem 11.5 (Hoffman and Kruskal [13]). The polyhedron defined by Ax≤ b,x≥ 0 is integral
for every integral vector b if and only if A is a totally unimodular matrix.

In particular, if A is totally unimodular and b is an integral vector, then the linear pro-
gramme

Maximize cTx subject to :

Ax ≤ b
x ≥ 0

has an integral optimal solution (if it has one).

Remark 11.6. This characterization requires b to vary. For a given vector b it may be true that
{x | Ax≤ b,x≥ 0} is an integral polyhedron even if A is not totally unimodular.

Many totally unimodular matrices have been known for a long time.

Theorem 11.7 (Poincaré [22]). Let A be a (0,−1,+1)-valued matrix, where each column has
at most one +1 and at most one −1. Then A is totally unimodular.

Proof. Let B be a k by k submatrix of A. If k = 1, then det(B) is either 0, +1 or −1. So we
may suppose that k ≥ 2 and proceed by induction on k. If B has a column having at most one
non-zero, then expanding the determinant along this column, we have that det(B) is equal to 0,
+1, or −1, by our induction hypothesis. On the other hand, if every column of B has both a +1
and a −1, then the sum of the rows of B is 0 and so det(B) = 0.

Seymour [23] gave a characterization of totally unimodular matrices, from which a polynomial-
time algorithm to recognize such matrices follows.

In the following two subsections, we show how celebrated min-max theorems follows from
total unimodularity. We then give another application of total unimodularity.

11.1.1 Matchings and vertex covers in bipartite graphs
We now show how Propositions 11.1 and 11.3 follows total unimodularity.

Let G = (V,E) be a graph. The incidence matrix A of G is the matrix whose rows are
indexed by V and the columns by E, and whose entries are defined by

av,e =
{

1 if v is incident to e
0 otherwise

Hence, the matricial form of (11.3) and (11.4) are, respectively,

Maximize 1T x subject to Ax≤ 1 and x≥ 0. (11.5)

174 CHAPTER 11. FRACTIONAL RELAXATION

and
Minimize 1T y subject to AT y≥ 1 and y≥ 0. (11.6)

where A is the incidence matrix of G.

Proposition 11.8. The incidence matrix of a bipartite graph is totally unimodular

Proof. Left as Exercise 11.5.

Proposition11.8 and Theorem 11.5 imply that (11.5) and (11.6) have integral optimal solu-
tions. This is Propositions 11.1 and 11.3.

11.1.2 Flows via linear programming
The Maximum Flow Problem (7.3) can be formulated as a linear programme. Indeed writing
fuv instead of f (u,v) and cuv instead of c(u,v), the problem becomes

Maximize ∑
v∈N+(s)

fsv

Subject to:
fuv ≤ cuv for all uv ∈ E

∑
u∈N−(v)

fuv− ∑
w∈N+(v)

fvw = 0 for all v ∈V \{s, t}

fuv ≥ 0 for all uv ∈ E

Let D = (V,E) be a digraph. The incidence matrix A of G is the matrix whose rows are
indexed by V and the columns by E, and whose entries are defined by

av,e =

+1 if v is the head of e
−1 if v is the tail of e

0 otherwise

Let A′ be the matrix obtained from A by removing the rows corresponding to s and t, I be
the |E| by |E| identity matrix, d be the indicator vector of set of arcs leaving s, and c = (ce)e∈E .
Then a possible matricial formulation of the Maximum Flow Problem is

Maximize dT f subject to If≤ c and A′f = 0 and f≥ 0. (11.7)

Similarly to Theorem 11.7, one can show that the matrix M :=
[

I
A’

]
is unimodular (Ex-

ercise 11.6). Thus Theorem 11.5 implies that, if all capacities are integers, then the maximum
value of a flow is an integer and that there exists an integral maximum flow. Moreover, as al-
ready obeserved, the Simplex Algorithm returns an integral flow. Such a flow is also returned
by Ford–Fulkerson Algorithm (See Remark 7.12).

The total unimodularity also implies Ford–Fulkerson Theorem (7.7). The maximum value
of an (s, t)-flow equals the minimum capacity of an (s, t)-cut..

11.1. TOTAL UNIMODULARITY 175

Alternative proof of Theorem 7.7. By Exercise 9.15, the dual problem of (11.7) is

Minimize cT y subject to y+A′T z≥ d and y≥ 0,z≥ 0. (11.8)

Because the matrix [I,A′T] is totally unimodular, by Theorem 11.5, the minimum of (11.8)
is attained by integral vectors ỹ and z̃.

Now define Vs = {v ∈ V \ {s, t} | z̃v < 0} ∪ {s} and Vt = V \Vs. Then C = (Vs,Vt) is an
(s, t)-cut. We shall prove that C is a cut with capacity less or equal to the maximum flow value
vmax. By the Duality Theorem (9.10), vmax = cT ỹ, and trivially δ(C)≥ fmax, we need to prove
that δ(C) ≤ cT ỹ. But δ(C) = ∑e∈C c(e) and cT ỹ = ∑e∈E c(e)ỹe. Since the ỹe are non-negative,
it is sufficient to prove that ỹ(e)≥ 1 for all e ∈C.

Let uv be an arc of C. Recall that ỹ +A′T z̃≥ d. If u 6= s, then ỹe + z̃u− z̃v ≥ 0,with z̃t = 0.
But by definition of Vs, z̃v ≥ 0 and z̃u < 0, and so z̃u ≤−1, since z̃ is integral. Hence, ỹe ≥ 1. If
u = s, then ỹe− z̃v ≥ 1, which again implies ỹe ≥ 1.

11.1.3 Covering a strong digraph with directed cycles
Gallai–Milgram Theorem (6.14) states that every digraph D can be covered by at most α(D)
directed paths. A natural question is to ask if a digraph could be covered by few directed cycles.
In general, the answer is no as there are digraphs in which some vertices are in no cycles. But in
every strong digraph, any vertex is contained in a directed cycle. In 1964, Gallai [9] conjectured
an analogue of Gallai–Milgram Theorem for covering strong digraphs with directed cycles. This
was proved in 2004 by Bessy and Thomassé [3].

Theorem 11.9 (Bessy and Thomassé [3]). The vertex set of any non-trivial strong digraph D
can be covered by α(D) directed cycles.

They established it by proving a stronger result, namely a min–max theorem relating a cyclic
analogue of the stability number to the minimum index of a cycle covering. Here, we present a
closely related min–max theorem established by Bondy, Charbit and Sebö.

Let D =(V,E) be a digraph. By a cyclic order of D we mean a cyclic order O =(v1,v2, . . . ,vn,v1)
of its vertex set V . Given such an order O, each directed cycle of D can be thought of as winding
around O a certain number of times. In order to make this notion precise, we define the length
of an arc (vi,v j) of D (with respect to O) to be j− i if i < j and n + j− i if i > j. Informally,
the length of an arc is just the length of the segment of O ‘jumped’ by the arc. If C is a directed
cycle of D, the sum of the lengths of its arcs is a certain multiple of n. This multiple is called
the index of C (with respect to O), and denoted i(C). By extension, the index of a family C of
directed cycles, denoted i(C), is the sum of the indices of its constituent cycles.

A weighting of the vertices of a digraph D is a function w : V → IN. We refer to w(v) as
the weight of vertex v. By extension, the weight w(H) of a subgraph H of D is the sum of
the weights of its vertices. If D is equipped with a cyclic order O, and if w(C) ≤ i(C) for
every directed cycle C of D, we say that the weighting w is index-bounded (with respect to O).
Observe that for any cycle covering C of D and any index-bounded weighting w,

i(C)≥ ∑
C∈C

w(C)≥ w(D). (11.9)

176 CHAPTER 11. FRACTIONAL RELAXATION

Theorem 11.10. Let D be a digraph each of whose vertices lies in a directed cycle, and let O
be a cyclic order of D. Then:

min i(C) = max w(D) (11.10)

where the minimum is taken over all cycle coverings C of D and the maximum over all index-
bounded weightings w of D.

In order to deduce Theorem 11.9 from Theorem 11.10, it suffices to apply it to a coherent
cyclic order O of D. A cyclic order is coherent if every arc lies in a directed cycle of index one.
Bessy and Thomassé [3] showed that every strong digraph admits a coherent cyclic order. A
fast algorithm for finding coherent cyclic orders can be found in [14].

We then observe that:

• for every family C of directed cycles of D, we have |C | ≤ i(C),

• because each vertex lies in a directed cycle and O is coherent, each vertex lies in a simple
cycle, so an index-bounded weighting of D is necessarily (0,1)-valued,

• because each arc lies in a simple cycle, in an index-bounded weighting w no arc can join
two vertices of weight one, so the support of w is a stable set, and w(D)≤ α(D).

Proof of Theorem 11.10. Let D be a digraph, with vertex set V = {v1, . . . , vn} and arc set E =
{a1, . . . , am}. It suffices to show that equality holds in (11.9) for some cycle covering C and
some index-bounded weighting w.

An arc (vi,v j) is called a forward arc of D if i < j, and a reverse arc if j < i. Consider the
matrix

Q :=
[

M
N

]
where M = (mi j) is the incidence matrix of D and N = (ni j) is the n×m matrix defined by:

ni j =
{

1 if vi is the tail of a j
0 otherwise

Let us show that Q is totally unimodular also. Consider the matrix Q̃ obtained from Q by
subtracting each row of N from the corresponding row of M. Each column of Q̃ contains one 1
and one−1, the remaining entries being 0. Thus, by Theorem 11.7, Q̃ is totally unimodular. Be-
cause Q̃ was derived from Q by elementary row operations, the matrix Q is totally unimodular
too.

We now define vectors b = (b1, . . . ,b2n) and c = (c1, . . . ,cm) as follows.

bi :=
{

0 if 1≤ i≤ n
1 otherwise

c j :=
{

1 if a j is a reverse arc
0 otherwise

Before proceeding with the proof, let us make two observations:

11.1. TOTAL UNIMODULARITY 177

• If x := fC is the circulation associated with a directed cycle C, then cx = i(C), the index
of C.

• If Nx≥ 1, where x := ∑{γC fC : C ∈ C} is a linear combination of circulations associated
with a family C of directed cycles of D, then C is a covering of D.

Consider the linear programme:

Minimize cT x
subject to Qx ≥ b

x ≥ 0
(11.11)

The system of constraints Qx ≥ b is equivalent to the two systems Mx ≥ 0 and Nx ≥ 1.
Because the rows of M sum to 0, the rows of Mx sum to 0, which implies that Mx = 0. Thus
every feasible solution to (11.11) is a non-negative circulation in D. Recall that a circulation of
D is a mapping f : E(D)→ IR, such that for every vertex v ∑u∈N−(v) f (uv) = ∑u∈N+(v) f (vu).
Hence, a nonnegative linear combination ∑γC fC of circulations associated with directed cycles
of D (Exercise 11.8). Moreover, because Nx≥ 1, the cycles of positive weight in this sum form
a covering of D. Conversely, every cycle covering of D yields a feasible solution to (11.11). The
linear programme (11.11) is feasible because, by assumption, D has at least one cycle covering,
and it is bounded because c is non-negative. Thus (11.11) has an optimal solution. Indeed,
by Theorem 11.5, the problem (11.11) has an integral optimal solution, because Q is totally
unimodular and the constraints are integral. This solution corresponds to a cycle covering C of
minimum index, the optimal value being its index i(C).

We now study the dual of (11.11):

Maximize bT y
subject to QT y ≤ c

y ≥ 0
(11.12)

Let us write y := (z1, . . . ,zn,w1, . . . ,wn). Then (11.12) is the problem of maximizing ∑
n
i=1 wi

subject to the constraints:

zi− zk +wi ≤
{

1 if a j := (vi,vk) is a reverse arc
0 if a j is a forward arc

Consider an integral optimal solution to (11.12). If we sum the above constraints over the
arc set of a directed cycle C of D, we obtain the inequality

∑
vi∈V (C)

wi ≤ i(C)

In other words, the function w defined by w(vi) := wi, 1≤ i≤ n, is an index-bounded weighting,
and the optimal value is the weight w(D) of D. By the Duality Theorem (Theorem 9.10), we
have i(C) = w(D).

178 CHAPTER 11. FRACTIONAL RELAXATION

11.2 Deterministic rounding
Unfortunately, most of linear programmes do not have a totally unimodular constraint matrix.
However, the fractional relaxation may still be of interest. It sometimes leads to polynomial-
time algorithms to solve the problem either optimally or approximately. The general idea is to
first compute a solution of the fractional relaxation and then derive from this solution a solution
to the original problem which is either optimal or near optimal.

11.2.1 Minimum cut
Recall that an (s, t)-cut in a graph is a bipartition (Vs,Vt) with s ∈Vs and t ∈Vt . It is completely
determined by the indicator vector p of Vt . Hence a formulation of the minimum (s, t)-cut in a
graph G = (V,E) is the following.

Minimize ∑uv∈E cuv|pu− pv| subject to :

ps = 0
pt = 1
pv ∈ {0,1} ∀v ∈V (G)

(11.13)

It does not immediately appear to be an integer linear programme, but it indeed is for it is
equivalent to the following.

Minimize ∑uv∈E cuvquv subject to :

quv− pu + pv ≥ 0 ∀uv ∈ E
quv− pv + pu ≥ 0 ∀uv ∈ E

ps = 0
pt = 1
pv ∈ {0,1} ∀v ∈V

quv ∈ {0,1} ∀uv ∈ E

(11.14)

One can check that the matrix corresponding to (11.14) is not totally unimodular (Exer-
cise 11.10). However, solving the fractional relaxation of this problem, (where the constraint
pv ∈ {0,1} is replaced by 0≤ pv ≤ 1), gives us the value of a minimum cut and, almost imme-
diately, an optimal solution.

Proposition 11.11. Let p be an optimal solution of the fractional relaxation of (11.13). Then
for all 0≤ x < 1, the (0,1)-valued vector px defined by px

u = 0 if pu ≤ x and px
u = 1 otherwise,

is an optimal an optimal solution of (11.13) and its fractional relaxation.

Proof. We prove it by induction on the number k of values other than 0 and 1 taken the pv’s, the
result holding trivially if k = 0. Suppose now that k ≥ 1. Let 0 = p0 < p1 < p2 < · · · < pk <
pk+1 = 1 be the values taken by the pv’s.

Assume that p1 ≤ x. Let P (resp. L, R) be the set of vertices v such that pv = p1 (resp.
pv = 0, pv > p1).

11.2. DETERMINISTIC ROUNDING 179

∑{cvu | u ∈ P,v ∈ L,uv ∈ E}= ∑{cvu | u ∈ P,v ∈ R,uv ∈ E} (11.15)

for otherwise one of p′ and p′′ defined by

p′v =
{

pv if v ∈V \P
0 if v ∈ P and p′′v =

{
pv if v ∈V \P
p2 if v ∈ P

would contradict that p is an optimal solution. Furthermore, because of (11.15), p′ (and also p′′)
is an optimal solution which takes one value less than p. Hence by induction, px is an optimal
solution of (11.13) and its fractional relaxation.

A symmetrical argument yields the result if pk > x.

11.2.2 Vertex cover: 2-approximation and kernel.

If a graph is non- bipartite, then its incidence matrix is not totally unimodular (Exercise 11.5).
We have also seen that for the odd cycles the fractional vertex cover number is strictly less than
the vertex cover number. Moreover finding an optimal vertex cover is NP-hard, so we cannot
hope to have a polynomial-time algorithm to find one. However we shall now see that there
is a 2-approximate algorithm by solving FRACTIONAL VERTEX COVER and then deriving a
solution to VERTEX COVER.

Theorem 11.12. FRACTIONAL VERTEX COVER has an optimal solution which is half-integral,
that is (0,1/2,1)-valued.

Proof. Let y be an optimal solution of FRACTIONAL VERTEX COVER with the largest number
of coordinates in {0,1/2,1}.

Suppose that y does not have all its coordinates in {0,1/2,1}. Set ε = min{yv, |yv− 1
2 |,1−

yv | v ∈V and yv /∈ {0,1/2,1}}.
Consider y′ and y′′ defined as follows:

y′v =

yv− ε, if 0 < yv < 1

2 ,
yv + ε, if 1

2 < yv < 1,
yv, otherwise.

and y′′v =

yv + ε, if 0 < yv < 1

2 ,
yv− ε, if 1

2 < yv < 1,
yv, otherwise.

These are two admissible solutions to FRACTIONAL VERTEX COVER. Moreover, ∑v∈V yv =
1
2 (∑v∈V y′v +∑v∈V y′′v). Thus y′ and y′′ are also optimal solutions and, by the choice of ε, one of
these two solutions has more coordinates in {0,1/2,1} than y, a contradiction.

Remark 11.13. Observe that the proof of Theorem 11.12 easily translates into a polynomial-
time algorithm for transforming an optimal solution to FRACTIONAL VERTEX COVER into an
half-integral optimal solution to it.

Corollary 11.14. There is an algorithm which returns a 2-approximate solution to VERTEX

COVER in polynomial time.

180 CHAPTER 11. FRACTIONAL RELAXATION

Proof. The algorithm is very simple. We first solve FRACTIONAL VERTEX COVER and derive
an half-integral optimal solution y f to it. Define y by yv = 1 if and only if y f

v ∈ {1/2;1}. Clearly,
y is an admissible solution of VERTEX COVER. Moreover, by definition

∑
v∈V

yv ≤ 2 ∑
v∈V

y f
v = 2 ·ν f (G)≤ 2 ·ν(G).

No better constant-factor approximation algorithm than the above one is known. The mini-
mum vertex cover problem is APX-complete, that is, it cannot be approximated arbitrarily well
unless P = N P . Using techniques from the PCP theorem, Dinur and Safra [6] proved that
VERTEX COVER cannot be approximated within a factor of 1.3606 for any sufficiently large
vertex degree unless P = N P . Moreover, if the unique games conjecture is true, then VERTEX

COVER cannot be approximated within any constant factor better than 2 as shown by Khot and
Regev [16].

Analysing in more details relations between the solutions of FRACTIONAL VERTEX COVER

and those of VERTEX COVER, we can find a kernelization of the following parameterized ver-
sion of the vertex cover problem.

Problem 11.15 (PARAMETERIZED VERTEX COVER).
Instance: a graph G and an integer k.
Parameter: k.
Question: does G have a vertex cover of cardinality at most k ? In other words, ν(G)≤ k?

In the area of parameterized algorithms, one of the major issue is to determine if a problem is
FPT (for Fixed-Parameter Tractable), that is if it can be solved by an algorithm in time f (k)P(n)
with f an arbitrary function in k and P a polynomial in n, the number of vertices of G. One of
the possible ways to do so, is to prove that there exists a g(k)-kernelization for some function
g(k), that is a polynomial-time algorithm that transforms any instance (G,k) of the problem into
an equivalent instance (G′,k′) such that |G′| ≤ g(k) and k′ ≤ k. Once we know that a problem
admits a kernelization, a second issue is to find the minimum function g for which it has a
g(k)-kernelization.

In the remaining of this subsection, we shall prove that PARAMETERIZED VERTEX COVER

has a 2k-kernelization.
Let y f be a half-integral optimal solution to FRACTIONAL VERTEX COVER. For t ∈

{0,1/2,1}, set Vt = {v ∈V | y f
v = t}, Gt = G〈Vt〉.

Theorem 11.16 (Nemhauser and Trotter [21]). Let y f be a half-integral optimal solution to
FRACTIONAL VERTEX COVER. Then there exists a minimum cover S of G such that:

(a) V0∩S = /0;

(b) V1 ⊆ S.

Proof. We present here a proof due to Khuller [17]. Let us first show that (a) implies(b).
Suppose that there exists v ∈V1 \S.

11.3. RANDOMIZED ROUNDING 181

• If v has no neighbour in V0, then one can decrease the weight y f
v at v to obtain a fractional

vertex cover of G with smaller weight, a contradiction to the minimality of y f .

• If v has a neighbour w in V0, then by (a) w is not in S so vw is not covered by S, a
contradiction.

Let us now prove (a).
Let S be a minimum vertex cover which has the fewest vertices in V0. Suppose for a contradic-
tion that S∩V0 6= /0. Observe that V0 is a stable set because y f is a fractional vertex cover. Also
there is no edges between V0 \ S and V1 \ S. Suppose moreover that |V0 ∩ S| < |V1 \ S|. Then
we can increase y f

v of some tiny ε for all v ∈V0∩S and decrease yv of ε for all v ∈V1 \S. This
results in a fractional vertex cover of G with weight less than the one of y f , a contradiction.

Hence we have |V0∩S| ≥ |V1 \S|. Thus (S \V0)∪V1 is a vertex cover of G with at most as
many vertices as S and no vertex in V0.

Corollary 11.17. PARAMETERIZED VERTEX COVER has a 2k-kernelization.

Proof. The kernelization algorithm is the following.

Algorithm 11.1.

1. Find an optimal solution y f to FRACTIONAL VERTEX COVER.

2. If the weight of y f is greater than k, then return a ‘No’-instance.

3. If |V1|= k and V1/2 = /0, return a ‘Yes’-instance.

4. Otherwise return (G1/2,k−|V1|).

This algorithm clearly runs in polynomial time. In addition, by Theorem 11.16, G has a
vertex cover of cardinality at most k if and only if G1/2 has a vertex cover of cardinality at most
k−|V1|.

The trivial instances returned at Steps 2 or 3 being trivially of size at most 2k, it remains to
prove that the graph G1/2 has order at most 2k. But because of Step 2,

k ≥ ν
f (G)≥ ∑

v∈V
y f

v =
1
2
|V1/2|+ |V1|

so |V1/2| ≤ 2(k−|V1|).

11.3 Randomized rounding

11.3.1 Maximum satisfiability
There is a natural optimization version of the Boolean Satisfiability Problem (SAT) (Prob-
lem 3.5). Given a Boolean formula F in conjunctive normal form and a non-negative weight wi

182 CHAPTER 11. FRACTIONAL RELAXATION

associated with each clause Ci, the objective is to find a Boolean assignment to the variables that
maximizes the total weight of the satisfied clauses. This problem, called MAX SAT, is clearly
NP-hard.

Johnson [15] demonstrated a simple 1
2 -approximation algorithm. It is based on the following

simple random assignment: set each variable uniformly at random to true or f alse, indepen-
dently from the other variables. Let |Ci| denote the number of literals in clause Ci. It is easy to
check that

p1(Ci) = Pr(Ci is satisfied) = 1−2−|Ci|.

Hence, the expected weight of clauses satisfied by this random assignment is

E(W) = ∑
Ci

wi(1−2−|Ci|)≤ 1
2 ∑

Ci

wi.

The probabilistic method specifies that there must exist a truth assignment whose weight is at
least this expected value. In fact, the method of conditional probabilities (See Chapter 15 of
[1]) can be applied to find such assignment deterministically in polynomial time. In the method
of conditional probabilities, the value for thr ith variable is determined in the ith iteration: given
the values of x1, . . . ,xi−1 calculate the expected weight of clauses satisfied by the probabilistic
assignment, given the current assignment to x1, . . . ,xi−1 and the assignment xi = 1. Then cal-
culate the expected weight given the assignment to x1, . . . ,xi−1 and xi = 0. The variable xi is
assigned the value that maximizes the conditional expectation. Since each conditional expecta-
tion can be calculated in polynomial time, the overall algorithm takes polynomial time, and as
asserted above, the produced assignment has weight at least E(W).

Observe that the above algorithm is also a (1− 2−k)-approximation algorithm when each
clause contains at least k literals. In particular, if k ≥ 2, the performance guarantee is at least 3

4 .
A general 3

4 -approximation algorithm was proposed by Yannakakis [24]. This algorithm trans-
forms a MAX SAT instance into an equivalent instance (in terms of approximability) which
does not contain any clauses with only one literal. In conjunction with Johnson’s algorithm,
this leads to the performance guarantee of 3/4. The algorithm uses maximum flow calcula-
tion in an elegant way to transform instance in which all clauses have two literals. However,
the transformation becomes more complicated when general clauses are introduced. We now
describe a simpler algorithm due to Goemans and Williamson with the same approximation
ratio [11].

The idea is to consider two different randomized procedures for constructing the Boolean
assignment, and observe that they have complementary strengths in terms of their approxima-
tion guarantees. The first one is Johnson’s algorithm and thus works well when each clause has
‘many’ literals. The second one will be good if each clause has ‘few’ literals. Thus, we could
run both and take the better solution; in particular, we could choose one of the two schemes
uniformly at random, and the expectation of the value of the resulting solution will be the arith-
metic mean of the expected values of the solutions of the two procedures.

Let us now present and analyze the second procedure. It starts with an integer linear pro-
gramming formulation. For each clause Ci, let P(i) denote the set of unnegated variables ap-
pearing in it, and N(i) be the set of negated variables in it. For each variable j, let x j = 1 if

11.3. RANDOMIZED ROUNDING 183

this variable is set to true, and x j = 0 if the variable is set to f alse. Letting zi ∈ {0,1} be the
indicator for clause Ci getting satisfied, we obtain the following formulation.

Maximize ∑i wizi subject to :

zi ≤ ∑ j∈P(i) x j +∑ j∈N(i)(1− x j) for all variable i
(11.16)

We first solve fractional relaxation of (11.16) obtained by relaxing each x j and zi to be a
real in [0,1] and consider a optimal solution (x f ,z f) of it. We interpret each x f

j as a probability.
Thus, our randomized rounding process will be, independently for each j, to set x j = 1 (i.e.,
make variable j true) with probability x f

j and x j = 0 (make variable j f alse) with probability

1− x f
j . One intuitive justication for this is that if x f

j were ‘high’, i.e., close to 1, it may be taken
as an indication by the linear programme that it is better to set variable j to true; similarly for
the case where x j is close to 0.

Let us lower-bound the probability of clause Ci getting satisfied. Without loss of generality,
we can assume that all variables appear unnegated in Ci. Thus, we have

z f
i = min{ ∑

j∈P(i)
x f

j ,1}.

It is not hard to check that Pr(Ci is satisfied) = 1−∏ j∈P(i)(1− x f
j) is minimized when each x f

j

equals z f
i /|Ci|. Thus

p2(Ci) = Pr(Ci is satisfied)≥ 1−

(
1−

z f
i
|Ci|

)|Ci|

.

For a fixed value of z f
i , the term 1− (1− z f

i /|Ci|)|Ci| decreases monotonically as |Ci| increases.
This is the sense in which this scheme is complementary to Johnson’s.

So, as mentioned above, suppose we choose one of the two schemes uniformly at random,
in order to balance their strengths. Then,

Pr(Ci is satisfied) =
1
2
(p1(Ci)+ p2(Ci))

≥ 1− 1
2

(
2−|Ci|+(1− z f

i /|Ci|)|Ci|
)

≥ 3
4z f

i

because z f
i ∈ [0,1]. Indeed for any fixed positive integer k, f (k,x) = 1

2

(
2−k +(1− x/k)k)− 3x

4
has a non-positive derivative for x ∈ [0,1]. Thus, it suffices to show that f (k,1) ≥ 0 for all
positive integer k. We have f (1,1) = f (2,1) = 0. For k ≥ 3, 2−k ≤ 1/8 and (1−1/k)k ≤ 1/e.
So f (k,1)≥ 0 for k ≥ 3.

Thus the expected value of of the produced assignment is at least 3/4 of the optimal value
of the fractional relaxation of (11.16), and so at least at least 3/4 of the optimal value of (11.16)
itself.

The method of conditional probabilities may also be used to derandomized the second pro-
cedure and thus to get a deterministic 3

4 -approximation algorithm for MAX SAT.

184 CHAPTER 11. FRACTIONAL RELAXATION

11.3.2 Multiway cut
Let (G, p) be an edge-weigthed graph and let s1, . . . ,sk be k vertices called terminals s1, . . . ,sk.
An (s1, . . . ,sk)-cut is a partition Π = (V1, . . . ,Vk) of V such that si ∈ Vi for all 1 ≤ i ≤ k. This
notion generalizes the one of (s, t)-cut defined in Section 7.3 and Subsection 11.2.1.

Let Π = (V1, . . . ,Vk) be a partition of G. An edge e is Π-transversal if its endvertices are in
different parts. In other words, e = uv, u ∈Vi, v ∈Vj and i 6= j. The set of transversal edges of
Π is denoted E(Π). The weight of a cut Π is the sum of the weights of the Π-transversal edges:
w(Π) = ∑

e∈E(Π)
w(e).

The MULTIWAY CUT problem is the following:

Problem 11.18 (Multiway Cut).
Instance: an edge-weighted graph (G,w) and k vertices s1, . . . ,sk.
Find: an (s1, . . . ,sk)-cut of minimum weight.

For k = 2, it is the problem of finding a minimum-weight (s, t)-cut which can be solved in
polynomial time as we saw in Chapter 7 and in Subsection 11.2.1.

For k ≥ 3, the problem is N P -hard [5]. But, it can be approximated in polynomial time.
As shown by Dalhaus et al. [5], one can obtain a 2− 2

k -approximated solution for MULTIWAY

CUT by running k times the algorithm for finding a minimum-weight (s, t)-cut. Indeed, for all
i, consider the graph Gi obtained from G by identifying the s j, j 6= i in one vertex ti and find a
minimum-weight (si, ti)-cut Ci in Gi. Then each Ci separates si from all other s j in G. Hence the
union of the k− 1 cuts Ci with smallest weight is an (s1, . . . ,sk)-cut with weight at most 2− 2

k
times the minimum weight of an (s1, . . . ,sk)-cut. See Exercise 11.13.

A 3/2-approximation algorithm

For 1 ≤ i ≤ k, we denote by ei the vector, all coordinates of which are 0 except the ith which
is 1. Then MULTIWAY CUT may be formulated as follows.

Minimize ∑uv∈E(G) w(uv)d(uv) subject to :

d(uv) = 1
2 ∑

k
i=1 |xi

u− xi
v|

xv ∈ {ei | 1≤ i≤ k} for all v ∈V \{v1, . . . ,vk}
xsi = ei for 1≤ i≤ k

(11.17)

Indeed a feasible solution x of (11.17) corresponds to the (s1, . . . ,sk)-cut (V1, . . . ,Vk) defined by
Vi = {v | xv = ei}.

This is an integer linear programme, because Equation (?) can be replaced by following
linear inequalities.

d(uv) =
1
2 ∑xi

uv

xi
uv ≥ xi

u− xi
v for all 1≤ i≤ k

xi
uv ≥ xi

v− xi
u for all 1≤ i≤ k

11.3. RANDOMIZED ROUNDING 185

Let ∆k be the set of vectors of Rk whose coordinates are non-negative and sum to 1. Because
a solution x is a vector of vectors of IRk, for convenience we denote by x(i) the ith coordinate
of a vector x ∈ IRk. With this notation, ∆k = {x | ∑

k
i=1 x(i) = 1 and x(i) ≥ 0,∀1 ≤ i ≤ k}. One

can relax (11.17) into the following linear programme.

Minimize ∑uv∈E(G) w(uv)d(uv) subject to :

d(uv) = 1
2 ∑

k
i=1 |xi

u− xi
v|

xv ∈ ∆k for all v ∈V \{v1, . . . ,vk}
xsi = ei for 1≤ i≤ k

(11.18)

For any solution x of ∆
V (G)
k , we denote by S(G,w)(x) or simply S(x) the value ∑uv∈E(G) w(uv)d(uv).

The idea of the approximation algorithm is to first find an optimal solution x of (11.18), and
then to derive from this solution an (s1, . . . ,sk)-cut whose weight is at most (3/2− 1/k)S(x),
and so at most (3/2−1/k) times the minimum weight of an (s1, . . . ,sk)-cut.

In order to derive a multiway cut from the solution, we first transform the edge-weighted
graph (G,w) and the solution x into an edge-weighted graph (G∗,w∗) and an admissible solution
(G∗,w∗) to its associated (11.18) such that

(i) S(G,w)(x) = S(G∗,w∗)(x∗), and

(ii) for all edge uv ∈ E(G∗), the vectors x∗u and x∗v differ in at most 2 coordinates.

It is easy to see that such (G∗,w∗) and x∗ can be obtained by running the following algo-
rithm.

Algorithm 11.2.

1. (G∗,w∗) := (G,w) and x := x∗.

2. While there is an edge uv such that x∗u and x∗v differ in m > 2 coordinates, do

– Subdivide the edge uv, that is replace the edge uv by two edges uw and wv (where w
is a new vertex) with weight w∗(uw) = w∗(vw) = w∗(uv).

– Choose a vector x∗w which differs to x∗u in exactly two coordinates and which differ to
x∗v in fewer than m coordinates.

Let us make few observations that can be easily proved.

Observation 11.19. 1) G∗ is a subdivision of G and each time we subdivide an edge uv into
(u,w,v), we have d(uv) = d(uw)+d(wv).

2) If Π∗ = (V ∗1 , . . . ,V ∗k) is an (s1, . . . ,sk)-cut in G∗, then the (s1, . . . ,sk)-cut Π = (V1, . . . ,Vk)
in G, defined by Vi = V ∗i ∩V (G) for all 1 ≤ i ≤ k has weight no greater than the one of Π∗:
w∗(Π∗)≤ w(Π).

186 CHAPTER 11. FRACTIONAL RELAXATION

We now describe a polynomial-time (3/2−1/k)-approximation algorithm for MULTIWAY

CUT due to Calinescu et al. [4]. It first find an optimal solution of (11.18) and then deduce an
admissible solution of the Multiway Cut Problem.

Let us introduce some notation. For all 1 ≤ i ≤ k, let Ei be the set of edges uv of G∗ such
that x∗u and x∗v differ in the ith coordinate and let W ∗i = ∑e∈Ei w∗(e)d(e). Finally, for ρ ∈ [0,1]
and 1≤ i≤ 1, let B(si,ρ) be the set of vertices of G∗ such that the ith coordinate of x∗v is at least
ρ. Observe that if ρ > 1/2, then for i 6= j we have B(si,ρ)∩B(s j,ρ) = /0.

Algorithm 11.3 (Multiway Cut Approximation).

1. Find an optimal solution x to (11.18).

2. Run Algorithm 11.2 to obtain (G∗,w∗) and x∗.

3. Renumber so that W ∗k = max{W ∗i | 1≤ i≤ k}.

4. Choose ρ at random in [0,1] and choose uniformly at random a permutation σ among the
two (1,2, . . . ,k−1,k) and (k−1,k−2, . . . ,1,k).

5. For i = 1 to k−1, V ∗
σ(i) := B(si,ρ)\

S
j<iV

∗
σ(j).

6. V ∗k := V (G∗)\
S

j<iV
∗
σ(j).

7. Return the cut Π = (Vi, . . . ,Vk), where Vi = V ∗i ∩V (G).

This algorithm is randomized but it can be derandomized.
We shall now show that Algorithm 11.3 returns a (3

2−
1
k)-approximated solution to the Mul-

tiway Cut Problem, that is E(w(Π))≤ (3
2−

1
k)w(Πopt) with Πopt a minimum-weight (s1, . . . ,sk)-

cut.
Since S(G∗,w∗)(x∗) = S(G,w)(x)≤ w(Πopt) and w∗(Π∗)≤ w(Π), it is sufficient to prove

E(w∗(Π∗))≤
(

3
2
− 1

k

)
S(G∗,w∗)(x∗) (11.19)

Lemma 11.20. Let e be an edge of G∗.

(i) If e ∈ E(G∗)\Ek, then Pr(e is Π∗-transerval)≤ 3
2d(e).

(ii) If e ∈ Ek, then Pr(e is Π∗-transerval)≤ d(e).

Proof. (i) Let e = uv and let i and j be the two coordinates in which x∗u and x∗v differ.
Without loss of generality, we may assume that x∗u(i) < x∗v(i). Since x∗u and x∗v differ in

exactly two coordinates and the sum of the coordinates of each of these vectors equals 1, we
have x∗v(i)− x∗u(i) = x∗u(j)− x∗v(j). In particular, x∗u(j) > x∗v(j).

Let us define B = [x∗v(j),x∗u(j)] and A = [x∗u(i),x
∗
v(i)] if x∗v(i) < x∗v(j) and A = [x∗u(i),x

∗
v(j)]

otherwise.

11.4. GRAPH COLOURING 187

Claim 11.20.1. If ρ /∈ A∪B, then u and v are in the same part.

Proof.

Clearly, Pr(ρ ∈ A∪B) = |A|+ |B| ≤ 2d(e). This would be sufficient to show E(w∗(Π∗))≤
2S(G∗,w∗)(x∗), but we want to prove that the solution is (3/2−1/k)-approximate.

Claim 11.20.2. If ρ ∈ A and σ(j) < σ(i), then u and v are in the same part.

Proof.

But Pr(ρ ∈ A and σ(j) < σ(i)) = Pr(ρ ∈ A)×Pr(σ(j) < σ(i)) = d(e)/2 because the two
events ‘ρ ∈ A’ and ‘σ(j) < σ(i)’ are independent. Thus Pr(e ∈ E(Π∗)) ≤ Pr(ρ ∈ A∪B)−
Pr(ρ ∈ A and σ(j) < σ(i))≤ 3

2d(e).

Finally,

E(w∗(Π∗)) = ∑
e∈E(G∗)

w∗(e)Pr(e ∈ E(Π∗)) ≤ ∑
e∈Ek

w∗(e)d(e)+
3
2 ∑

e∈E(G∗)\Ek

w∗(e)d(e)

≤
(

3
2
− 1

k

)
∑

e∈E(G∗)
w∗(e)d(e) = S(G∗,w∗)(x∗).

The last inequality holds because W ∗k = max{W ∗i | 1≤ i≤ k} ≥ 1
k ∑e∈E w∗(e)d(e).

11.4 Graph colouring
Let G = (V,E) be a graph. We denote by S(G), or simply S , the set of stable sets of G and
S(G,v), or simply S(v), the set of all those stable sets which include vertex v. Finding the
chromatic number χ(G) of a graph G may then be formulated as an integer linear programme:

Minimize ∑
S∈S

xS

Subject to:
∑

S∈S(v)
≥ 1 for all v ∈V (G)

xS ∈ {0,1} for all S ∈ S

(11.20)

The fractional chromatic number of G, denoted χ f (G), is the optimal value of the fractional
relaxation of (11.20). By the Duality Theorem, the fractional chromatic number is equal to the
optimal solution of

Maximize ∑
v∈V (G)

yv

Subject to:
∑
v∈S

yv ≤ 1 for all S ∈ S(G)

yv ≥ 0 for all v ∈V

(11.21)

188 CHAPTER 11. FRACTIONAL RELAXATION

The feasible points of this dual linear programme are often called fractional cliques, the
reason being that every integral feasible point (i.e., (0,1)-vector) identifies a clique of the graph
considered. This maximization problem is henceforth called the fractional clique problem.
Despite this pleasing result, it is still NP-hard to compute the fractional chromatic number of a
graph: the number of constraints can be exponential in the size of the graph. In fact, it is even
difficult to approximate the fractional chromatic number of graphs with n vertices to within a
factor of n1/7−ε for any positive ε [2].

The fractional chromatic number may be a bad estimate for the chromatic number as the
gap between those two numbers may be arbitrarily large. An interesting example of graphs for
which there is a large gap between the chromatic number and the fractional chromatic number
is provided by the family of Kneser graphs, which we now define.

For any two positive integers k and n with k≤ n, the Kneser graph KGn,k is the graph whose
vertices are identified with the k-subsets of {1, · · · ,n} and such that two vertices are adjacent
if and only if the corresponding sets are disjoint. KGn,1 is the complete graph Kn, which has
chromatic and KG5,2 is the Petersen graph, for which χ(K5,2) = 3. The graph KG2k−1,k has
no edges, and so chromatic number 1, whereas KG2k,k consists of a perfect matching, and
hence χ(KG2k,k) = 2 for all k ≥ 1. Note that KG(n,k) is vertex-transitive. Hence its fractional
chromatic number is |V (KG(n,k)|/α(KG(n,k)) = n/k. See Exercise 11.14.

Proposition 11.21. For all k ≥ 1 and n ≥ 2k, the fractional chromatic number of the Kneser
graph KGn,k is n

k .

Theorem 11.22 (Lovász [19]). For all k ≥ 1 and n ≥ 2k− 1, the chromatic number of the
Kneser graph KGn,k is χ(KGn,k) = n−2k +2.

The proof of this theorem is one of the first graph theoretic results obtained by topological
means. We refer the reader interested in such methods to the excellent monograph by Ma-
toušek [20]. The short proof that we present next is due to Greene [12]. It uses one of the many
versions of the Borsuk-Ulam Theorem, known as the Generalized Lyusternik Shnirel’man The-
orem.

Theorem 11.23 (Greene [12]). For any cover A1,A2, . . . ,An+1 of the n-dimensional sphere Sn

by n+1 sets, each Ai open or closed, there is at least one set Ai containing a pair of antipodal
points (i.e. {x,−x} ∈ Ai).

Proof of Theorem 11.22. Set d := n− 2k + 1. Let X ⊂ Sd be an n-point set such that no hy-
perplane passing through the center of Sd contains more than d points of X . This condition is
easily met by a set in a suitably general position, since we deal with points in IRd+1 and require
that no d +1 of them lie on a common hyperplane passing through the origin.

Let us suppose that the vertex set of KGn,k is the set
(X

k

)
of the k-subsets of X (in other

words, we identify the elements of {1, . . . ,n} with the points of X).
Consider a d-colouring c of KGn,k. We shall prove that c is not proper. For x ∈ Sd , let H(x)

be the open hemisphere H(x) centered at x, that is, H(x) = {y ∈ Sd | 〈x,y〉> 0}. We define sets
A1, . . . ,Ad ⊆ Sd as follows. A point x ∈ Sd is in Ai if and only if there is at least one vertex
F ∈

(X
k

)
of colour i contained in H(x). Finally, we set Ad+1 = Sd \ (A1 ∪ ·· · ∪Ad). Then, Ai

11.5. EXERCISES 189

is an open set for each i ∈ {1, · · · ,d}, while Ad+1 is closed. By Theorem 11.23, there exists
i ∈ {1, . . . ,d +1} and x ∈ Sd such that both x and −x belong to Ai.

Suppose first that i = d + 1. Then H(x) contains at most k− 1 points of X , and so does
H(−x). Therefore, the complement Sd \ (H(x)∪H(−x)), which is an “equator”, (that is, the
intersection of Sd with a hyperplane through the origin), contains at least n− 2k + 2 = d + 1
points of X . This contradicts the choice of X .

Hence i ≤ d. So we obtain two disjoint k-tuples coloured i, one in the open hemisphere
H(x) and one in the opposite open hemisphere H(−x). Consequently, c is not proper.

11.5 Exercises
Exercise 11.1. Formulate the Travelling Salesman Problem as an integer linear programme.

Exercise 11.2. Formulate the Hamiltonian Cycle Problem as an integer linear programme.

Exercise 11.3. Show that µ f (C2k+1) = k +1/2.

Exercise 11.4. Show that if G is bipartite, then (11.4) has an integral optimal solution.

Exercise 11.5. Let G be a graph and let A be its incidence matrix. Prove that A is totally
unimodular if and only if G is bipartite.

Exercise 11.6. Prove that the matrix [I,A′T] of (11.8) is totally unimodular.

Exercise 11.7. Recall that a stable set in a graph is a set of pairwise non-adjacent vertices, and
that an edge cover of a graph G is a set of edges F ⊆ E(G) such that every vertex v ∈ V (G) is
incident to at least one edge of F .

Let G be a graph.
1) Formulate the problems of finding a maximum stable set and finding a minimum edge cover
in G as integer linear programmes.
2) Show that the fractional relaxation of these programmes are dual.
3) Deduce the König–Rado Theorem: In any bipartite graph without isolated vertices, the
number of vertices in a maximum stable set is equal to the number of edges in a minimum edge
cover.

Exercise 11.8. Let D be a digraph.
1) Show that a non-negative circulation in D is a non-negative linear combination of circulation
associated with directed cycles.
2) Show that a non-negative integral circulation in D is a non-negative integral linear combina-
tion of circulation associated with directed cycles.

Exercise 11.9 (Hoffman’s circulation theorem). Let D = (V,E) be a directed digraph and let d
and c be two weight function on the arcs of D such that d(e)≤ c(e) for each arc e. Consider the
problem of finding a circulation f such that d(a)≤ f (a)≤ c(a) for every arc e.
1) Model this problem as a linear programmme involving the incidence matrix A of D.

190 CHAPTER 11. FRACTIONAL RELAXATION

2) Deduce from the total unimodularity of A Hoffman’s circulation theorem: There exists a
circulation f such that d(e)≤ f (e)≤ c(e) for every arc e if and only if for every subset U of V ,

∑
e∈E(V\U,U)

d(e)≤ ∑
e∈E(U,V\U)

c(e).

Recall that E(A,B) denotes the set of arcs with tail in A and head in B.

Exercise 11.10. Show that the matrix corresponding to (11.14) is not totally unimodular.

Exercise 11.11. Show that the fractional relaxation and a simple rounding yields a 2-approximate
algorithm toMAXIMUM MATCHING.

Exercise 11.12. Show that every integer feasible solution x to the linear programme (11.5)
satisfies the inequality

∑
e∈E(X)

xe ≤
1
2

(|X |−1)

for any odd subset X of V of cardinality three or more.
([7] showed that, by adding these inequalities to the set of constraints in (11.5), one obtains a
linear programme every optimal solution of which is (0,1)-valued.)

Exercise 11.13. Let s1, . . . ,sk be k vertices of an edge-weighted graph (G,w). For all i, con-
sider the graph Gi obtained from G by identifying the s j, j 6= i in one vertex ti and let Ci be a
minimum-weight (si, ti)-cut in Gi. Assume moreover that w(Ck)≥ w(Ci), for all i.

Show that
Sk−1

i=1 Ci is an (s1, . . . ,sk)-cut with weight at most 2− 2
k times the minimum weight

of an (s1, . . . ,sk)-cut.

Exercise 11.14.
1) Show that for every graph G, χ f (G)≥ |V (G)|

α(G)
.

2) Show that if G is vertex-transitive, then χ f (G) =
|V (G)|
α(G)

.

3) Decuce that χ f (KGn,k) = n
k .

Bibliography

[1] N. Alon and J. Spencer. The Probabilistic Method. Second edition. Wiley-Interscience
Series in Discrete Mathematics and Optimization, Wiley, New York, 2000.

[2] S. Arora and C. Lund. Hardness of approximations. In Dorit Hochbaum, editor, Approx-
imation Algorithms for NP-hard Problems. PWS Publishing, Boston, 1996.

[3] S. Bessy and S. Thomassé. Three min-max theorems concerning cyclic orders of strong
digraphs. In Integer Programming and Combinatorial Optimization, 132–138. Lecture
Notes in Comput. Sci., Vol. 3064, Springer, Berlin, 2004.

[4] G. Calinescu, H. Karloff et Y. Rabani. An improved approximation algorithm for multi-
way cut. Journal of Computer and System Sciences 60:564–574, 2000.

[5] E. Dahlhaus, D.S. Johnson, C. H. Papadimitriou, P. D. Seymour et M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. Comput. 23:864–894, 1994.

[6] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Annals
of Mathematics 162 (1): 439–485, 2005.

[7] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur.
Standards Sect. B 69B:125–130, 1965.

[8] E. Egerváry. On combinatorial properties of matrices. Mat. Lapok. 38:16–28, Hungarian
with German summary, 1931

[9] T. Gallai. Problem 15. In Theory of Graphs and its Applications (M. Fiedler, ed.), 161.
Czech. Acad. Sci. Publ., 1964.

[10] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and
Co., San Francisco, Calif., 1979.

[11] M. X. Goemans and D. P. Williamson. New 3/4-approximation algorithms for the maxi-
mum satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656–666, 1994.

[12] J. E. Greene. A new short proof of Kneser’s conjecture. Amer. Math. Monthly,
109(10):918–920, 2002.

191

192 BIBLIOGRAPHY

[13] A. J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra. In
Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Princeton
University Press, pp. 223–246, 1956.

[14] S. Iwata and T. Matsuda. Finding coherent cyclic orders in strong digraphs. Combina-
torica 28(1):83–88, 2008.

[15] D. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System
Sci. 9:256–278, 1974.

[16] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2−ε. Journal
of Computer and System Sciences 74(3): 335–349.

[17] S. Khuller. The Vertex Cover problem. ACM SIGACT News 33(2):31–33, 2002.

[18] D. König. Graphs and matrices. Mat. Fiz. Lapok 38:116–119, in Hungarian, 1931.

[19] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory
Ser. A, 25(3):319–324, 1978.

[20] J. Matoušek. Using the Borsuk-Ulam theorem. Universitext. Springer-Verlag, Berlin,
2003. Lectures on topological methods in combinatorics and geometry, Written in coop-
eration with Anders Björner and Günter M. Ziegler.

[21] G. L. Nemhauser and L. E. Trotter. Vertex packings: Structural properties and algorithms.
Math. Program. 8:232–248, 1975.

[22] H. Poincaré. Second complément à l’analysis situs. Proceedings of the London Mathe-
matical Society 32:277–308, 1900.

[23] P. D. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory
Series B 28:305–359, 1980.

[24] M. Yannakakis. On the approximation of maximum satisfiability. Journal of Algo-
rithms 17:475–502, 1994.

Chapter 12

Lagrangian Relaxation

In the first part of the course, we have succeeded to find efficient algorithms to solve several
important problems such as SHORTHEST PATHS, NETWORK FLOWS... But, as we have seen,
most of practical graph or network problems are NP-complete and hard to solve. In such a case,
it may be interesting to solve a simplified problem to obtain approximations or bounds on the
initial hardest problem. Consider the following optimization problem where f : Rn → R and
S⊆ Rn:

min f (x)
subject to x ∈ S

A relaxation of the above problem has the following form:

min fR(x)
subject to x ∈ SR

where fR : Rn → R is such that fR(x) ≤ f (x) for any x ∈ S and S ⊆ SR. It is clear that the
optimal solution f ∗R of the relaxation is a lower bound of the optimal solution of the initial
problem. In previous section, the considered problems are such that S = X ∩ {0,1}n where
X ⊆ Rn (or X ⊆Qn) and the fractional relaxation corresponds to consider fR = f and SR = X .

A large number of these problems have an underlying network structure. The idea of the
Lagrangian Relaxation is to try to use the underlying network structure of these problems in
order to use these efficient algorithms. The Lagrangian Relaxation is a method of decompo-
sition: the constraints S = S1 ∪ S2 of the problems are separated into two groups, namely the
”easy” constraints S1 and the ”hard” constraints S2. The hard constraints are then removed, i.e.,
SR = S1 and transferred into the objective function, i.e., fR depends on f and S2.

Since SR is a set of ”easy” constraints, it will be possible to solve the relaxation problem.
Moreover, the interest of the Lagrangian relaxation is that, in some cases, the optimal solution
of the relaxed problem actually gives the optimal solution of the initial problem.

Note that this chapter is mostly inspired by [1] (Chapter 16).
We first illustrate the method on a classical example.

193

194 CHAPTER 12. LAGRANGIAN RELAXATION

12.1 Constrained Shortest Paths.

Consider the network of Figure 12.1(a). Each edge i j has two attributes: ci j the classical cost of
the Shortest path problem and ti j the time necessary to take the edge. The TIME CONSTRAINED

SHORTEST PATH PROBLEM consists in finding the path of minimum cost between the source
vertex (1 in the example) and the sink vertex (6 here), but restricted to the paths that require no
more than T units of time to traverse.

Figure 12.1:

This type of constrained shortest path application arises frequently in practice since in many
contexts a company (e.g. a package delivery firm) wants to provide its services at the lowest
possible cost and yet ensure a certain level of service to its customers (as embodied in the time
restriction). In general, the constrained shortest path problem from node 1 to node n in the
digraph D = (V = {1, · · · ,n},A) can be stated as the following integer programming problem

min ∑i j∈A ci jxi j
subject to

∑ j;i j∈A xi j−∑ j: ji∈A xi j =

+1 if i = 1
−1 if i = n
0 otherwise

∑i j∈A ti jxi j ≤ T
x ∈ {0,1} ∀i j ∈ A

(12.1)

The above problem 12.1 can clearly be decomposed into a classical (and easily solvable)
shortest path problem plus an extra ”time” constraint. The idea of the Lagrangian Relaxation is
to include this extra constraint as a penalty in the objective function.

12.1. CONSTRAINED SHORTEST PATHS. 195

More precisely, let µ > 0 and consider the following new problem:

min ∑i j∈A ci jxi j−µ(T −∑i j∈A ti jxi j)
subject to

∑ j;i j∈A xi j−∑ j: ji∈A xi j =

+1 if i = 1
−1 if i = n
0 otherwise

x ∈ {0,1} ∀i j ∈ A

(12.2)

The new problem 12.2 is equivalent to find a shortest path from node 1 to node n in Dµ, i.e.,
the digraph D where each arc i j ∈ A has the modified cost ci j +µ · ti j.

min ∑i j∈A(ci j +µ · ti j)xi j
subject to

∑ j;i j∈A xi j−∑ j: ji∈A xi j =

+1 if i = 1
−1 if i = n
0 otherwise

x ∈ {0,1} ∀i j ∈ A

Therefore, µ > 0 being fixed, Problem 12.2 can be easily solved. Let v∗µ be the optimal
solution of Problem 12.2 and let P∗µ be a path that achieves this solution. Now, let us informally
describe how we can obtain the optimal solution v∗ of Problem 12.1.

First, note that any feasible solution of Problem 12.1 is a path P from node 1 to n such
that ∑i j∈A(P) ti j ≤ T . Therefore, because µ > 0, any feasible solution P has a cost cµ(P) in
Problem 12.2 that is not larger than its cost c(P) in Problem 12.1. In particular,

v∗µ ≤ cµ(P∗)≤ c(P∗) = v∗

for any µ > 0, where P∗ is a feasible solution of 12.1 achieving the optimal value v∗. That
is, the optimal solution of Problem 12.2 provides a lower bound on the optimal solution of
Problem 12.1.

Let us consider an example for T = 10.
First, let us set µ = 0. P∗0 is the path (1,2,4,6) with cost v∗0 = 3. However, this path is not

feasible in the initial problem. Therefore, the relaxation with µ = 0 only provides that 3≤ v∗.
For µ = 1, we get P∗1 = (1,2,5,6) and v∗1 = 20−µ ·T = 10. Again, this path is not feasible

in the initial problem. However, we got a better lower bound: 10≤ v∗.
For µ = 2, two paths achieve the optimal value v∗2 = 15 ≤ v∗. However, on of them, P∗2 =

(1,3,2,5,6) is such that ∑i j∈A(P∗2) ti j = T . Therefore, P∗2 is a feasible solution of Problem 12.1.
Moreover, 15 = c(P∗2)≥ v∗ ≥ c2(P∗2) = 15. Hence, we solved Problem 12.1.

On this example, we have shown that choosing the ”good” value of µ allows to obtain the
optimal solution of the initial problem. In the sequels, we show how to choose a value of µ that
will provide a ”good” lower bound for the initial problem and we show that, in some cases, it
actually leads to the optimal solution.

196 CHAPTER 12. LAGRANGIAN RELAXATION

12.2 The Lagrangian Relaxation Technique
In this section, we formally define the Lagrangian dual problem of an optimization problem
and show that the solution of the Lagrangian dual provides a lower (resp., upper) bound of the
initial minimization (resp., maximazation) problem. Moreover, in the case of (convex) linear
programmes, the optimal solution of the Lagrangian dual coincides with the optimal solution of
the initial problem. Also, the bound obtained thanks to the Lagrangian relaxation is at least as
good as the one obtained from fractional relaxation.

12.2.1 Lagrangian dual
Consider the following optimization problem:

min cT x
subject to

Ax = b
x ∈ X

(12.3)

The Lagrangian relaxation procedure uses the idea of relaxing the explicit linear constraints
by bringing them into the objective function with associated vector µ called the Lagrange mul-
tiplier. We refer to the resulting problem

min cT x+µT (Ax−b)
subject to

x ∈ X
(12.4)

as a Lagrangian relaxation or Lagrangian subproblem or the original problem 12.3, and we
refer to the function

L(µ) = min{cT x+µT (Ax−b) : x ∈ X},
as the Lagrangian function.

Lemma 12.1 (Lagrangian Bounding Principle). For Lagrangian multiplier µ, the value L(µ)
of the Lagrangian function is a lower bound on the optimal objective function value z∗ of the
original optimization problem 12.3.

Proof. Since Ax = b for every feasible solution x of 12.3, for any Lagrangian multiplier µ,
z∗ = min{cT x : Ax = b,x ∈ X}= min{cT x+µT (Ax−b) : Ax = b,x ∈ X}. Since removing the
constraints Ax = b from the second formulation cannot lead to an increase in the value of the
objective function (the value might decrease), z∗ ≥min{cT x+µT (Ax−b) : x∈ X}= L(µ).

To obtain the sharpest possible lower bound, we would need to solve the following opti-
mization problem

L∗ = max
µ

L(µ) (12.5)

which we refer to as the Lagrangian Dual problem associated with the original optimization
Problem 12.3. The Lagrangian bounding principle has the following immediate implication.

12.2. THE LAGRANGIAN RELAXATION TECHNIQUE 197

12.2.2 Bounds and optimality certificates
Property 12.2 (Weak Duality). The optimal solution L∗ of the Lagrangian dual problem 12.5
is a lower bound on the optimal solution z∗ of Problem 12.3, i.e., L∗ ≤ z∗.

Proof. For any Lagrangian multiplier µ and for any feasible solution x of Problem 12.3, we
have

L(µ)≤ L∗ ≤ cT x.

Corollary 12.3 (Optimality Test). Let µ be a Lagrangian multiplier.
If x is a feasible solution of Problem 12.3 satisfying L(µ) = cT x. Then

• L(µ) is the optimal solution of the Lagrangian dual problem, i.e., L∗ = L(µ), and

• x achieves the optimal solution of the primal Problem 12.3.

In particular, if L(µ) is achieved by a vector x that is a feasible solution of Problem 12.3.
Then, L(µ) is the optimal solution of the Lagrangian dual and x achieves the optimal solution
of the primal Problem 12.3.

As indicated by the previous property, the bounding principle immediately implies one ad-
vantage of the Lagrangian relaxation approach. Indeed, in next section, we describe a method
to compute the optimal solution L∗ of the Lagrangian dual. Hence, the method can give us a
certificate for guaranteeing that a given solution to the primal Problem 12.3 is optimal.

Even if L(µ) < cT x, having the lower bound permits us to state a bound on how far a given
solution is from optimality: If (cT x−L(µ))/L(µ)≤ 0.05, for example, we know that the objec-
tive function value of the feasible solution x is no more than 5% from optimality. This type of
bound is very useful in practice. It permits us to assess the degree of sub-optimality of given so-
lutions and it permits us to terminate our search for an optimal solution when we have a solution
that we know is close enough to optimality (in objective function value) for our purposes.

Inequality constraints

In Problem 12.3, the ”hard” constraints are all equalities. In practice, problems are described
using inequalities. Consider the following optimization problem:

min cT x
subject to

Ax≤ b
x ∈ X

(12.6)

In that case, we consider only Lagrangian multipliers with positive coefficients. The La-
grangian dual Problem is

L∗ = max
µ≥0

L(µ) (12.7)

198 CHAPTER 12. LAGRANGIAN RELAXATION

In this setting, the Bounding principle and the weak duality property are still valid. However,
a vector x may not be an optimal solution of the primal problem even if x is feasible for the
primal problem and if x achieves the optimal solution of the Lagrangian dual L∗ = L(µ) for
some µ≥ 0. The Optimality test may however be adapted in the following way:

Property 12.4. If L(µ) is achieved by a vector x such that

• x is a feasible solution of Problem 12.6, and moreover

• x satisfies the complementary slackness condition µT (Ax−b) = 0,

then, L(µ) is the optimal solution of the Lagrangian dual 12.7 and x achieves the optimal solu-
tion of the primal Problem 12.6.

12.2.3 Linear Programming
All results presented above do not depend on the kind of considered optimization problem.
More precisely, previously, the set X defining the ”easy” constraints is arbitrary. We know
focus on the linear programming case. More precisely, let us consider the following problem:

min cT x
subject to

Ax = b A ∈ Rm1×n

Dx≥ q D ∈ Rm2×n

x ∈ Rn x≥ 0

(12.8)

Recall that the corresponding dual problem is (see Section 9.3.2):

max (bT qT)y
subject to

(AT DT)y≥ c
y ∈ Rm1+m2 y≥ 0

(12.9)

For any vector µ, we set the Lagrangian function as

L(µ) = min{cT x+µT (Ax−b) : Dx≥ q,x≥ 0}. (12.10)

Theorem 12.5. Let (P) be any linear programme such as Problem 12.8. The optimal value
L∗ = maxµ L(µ) of the Lagrangian dual of (P) coincides with the optimal value z∗ of (P).

Proof. Let x∗ be a vector achieving the optimal solution z∗ of Problem 12.8 and let y∗ =
(

π∗

γ∗
)

be
an optimal solution of the dual 12.9 where π∗ ∈Rm1 is associated to constraints A and γ∗ ∈Rm2

is associated to constraints D.
Since y∗ is a feasible solution for 12.9, we have that AT π∗+ DT γ∗− c ≥ 0. Moreover, by

the complementary slackness conditions (Theorem 9.11):

• (AT π∗+DT γ∗− c)x∗ = 0

12.2. THE LAGRANGIAN RELAXATION TECHNIQUE 199

• y∗(
(A

D
)
x∗−

(b
q

)
) = γ∗(Dx∗−q) = 0

Let us set µ = −π∗, we have L(−π∗) = min{cT x− (π∗)T (Ax−b) : Dx ≥ q,x ≥ 0}. That
is, any vector achieves L(−π∗) if and only if it achieves the optimal solution of the following
linear programme:

min{(cT − (π∗)T A)x : Dx≥ q,x≥ 0} (12.11)

Moreover, the corresponding dual problem is

max{qT y : DT y≤ c−AT
π
∗,y≥ 0}. (12.12)

Therefore, the complementary slackness conditions implies that if there is a vector x′ feasible
for Problem 12.11 and a vector y′ feasible for Problem 12.12 such that

• y′(Dx′−q) = 0, and

• (DT y′− c+AT π∗)x′ = 0

then x′ achieves the optimal solution of Problem 12.11.
Since we have seen that, setting x′ = x∗ and y′ = γ′ satisfies the complementary slackness

conditions, this implies that x∗ achieves the optimal solution of Problem 12.11.
Thus, L(−π∗) = cT x∗+µT (Ax∗−b) = cT x∗ = z∗. The result follows Corollary 12.3.

Theorem 12.6. Let X be a finite set in Rn and let H (X) its convex hull. Then, the Lagrangian
dual of min{cT x : Ax = b, x ∈ X} has the same optimal solution as min{cT x : Ax = b, x ∈
H (X)}.

Proof. Let L(µ) = min{cT x+µ(Ax−b) : x∈ X}. It is equivalent to L(µ) = min{cT x+µ(Ax−
b) : x ∈ H (X)} because the solutions of the second formulation are reached at some vertices
of the polytope H (X) and that any vertex of H (X) belongs to X .

Therefore, the solution of the Lagrangian dual of the initial problem equals the solution of
the Lagrangian dual of min{cT x : Ax = b, x ∈H (X)}.

The convex hull of a finite number of points can be defined as the intersection of a finite
family of half-spaces, i.e., by a finite number of inequalities. Therefore, applying previous
theorem to min{cT x : Ax = b, x ∈ H (X)}, we get that its optimal solution and the one of its
Lagrangian dual coincide.

Theorem 12.7. Let (ILP) be an integer linear programme. Then the bound achieved by a
Lagrangian relaxation of (ILP) is at least as good as the result of its fractional relaxation.

Proof. Consider the integer linear programme (ILP) = min{cT x : Ax = b, x ∈ X ∩Zn} where
X is convex since it is defined by linear inequalities. By previous theorem, its Lagrangian
relaxation has the same solution as (LR) = min{cT x : Ax = b, x ∈H (X ∩Zn)}.

Since the convex hull H = H (X ∩Zn) of X ∩Zn is such that H ⊆ X , we get that the solution
of (LR) is not better than the one of (LP) = min{cT x : Ax = b, x∈X}, the fractional relaxation
of (ILP). That is, (LP)≤ (LR)≤ (ILP).

200 CHAPTER 12. LAGRANGIAN RELAXATION

12.2.4 Solving the Lagrangian dual
In this section, we describe a method to approximate the solution of the Lagrangian dual

L∗ = max
µ

L(µ) (12.13)

of the following Lagrangian function relaxes the constraints Ax = b:

L(µ) = min{cT x+µT (Ax−b) : x ∈ X},

Recall that the principle of the Lagrangian relaxation is to include the ”hard” constraints
into the objective function. In other words, optimizing a linear function over X is assumed to be
”easy”. Therefore, µ being fixed, we can compute the value of L(µ) and a corresponding vector
x ∈ X .

Note that the Lagrangian function is the lower envelope of the set of the hyperplanes cT x+
µT (Ax−b) for x ∈ X . Therefore, L(µ) is a concave function. Say differently, it is equivalent to
solve the following linear programme:

max w
subject to

w≤ cT x+µT (Ax−b) x ∈ X , µ ∈ Rn

Since generally the number of constraints of such a programme is exponential, we use a
gradient descent method to compute a value as close as desired to the optimal solution of the
Lagrangian dual.

More precisely, given a concave function f : Rn→ R, a vector g is a subgradient of f at x
if, for any y ∈ Rn, f (y)≤ f (x)+pT (y−x). The function f is differentiable in x if and only if
f admits a unique subgradient in x.

if L(µ) was differentiable we would use the gradient descent method to converge toward the
optimal value. However, in our case, L(µ) is not differentiable everywhere since it is a piecewise
linear function. So the following subgradient method is commonly used. The method computes
a sequence of (µk)k∈N such that L(µk) converges to the optimal solution.

More precisely,

Algorithm 12.1 (Subgradient method).

Initially, let µ0 ∈ Rn, k = 0;

1. Given µk ∈ Rn, compute L(µk) and a vector xk ∈ X where it is achieved;

2. Choose a subgradient gk = Axk−b of the function L at µk;

3. If gk = 0, then stop, the optimal solution is L(µk)

4. Compute µk+1 = µk +θT
k .gk where θk is the stepsize at this step.

5. Increment k and go to step 2.

12.3. APPLICATIONS 201

In practice, the heuristic to decide the stepsize is θk = UB−L(µk)
||Axk−b||2 where UB is an upper bound

on the optimal solution we want to compute.
In the case when, in the initial programme, the constraints that we relax were Ax≤ b, then

the method must be slightly modified such that µk ≥ 0 for any k ≥ 0. For this purpose, at step
4., the ith coefficient of µk+1 is taken as the maximum between 0 and the ith coefficient of
µk +θT

k .gk.
In all cases, the number of steps depends on the desired accuracy of the result.

12.3 Applications

202 CHAPTER 12. LAGRANGIAN RELAXATION

Bibliography

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

203

204 BIBLIOGRAPHY

Chapter 13

Primal-Dual Algorithms

The primal-dual methodology is a very general tool to derive algorithms for a large set of prob-
lems. It leads to algorithms providing exact solutions for a variety of polynomial problems
and good approximate solutions for NP-complete problems. Most of the famous algorithms of
combinatorial optimization can be interpreted as primal-dual algorithms, including Dijkstra’s
shortest path algorithm, Ford and Fulkerson’s network flow algorithm, Edmonds’ non bipartite
matching algorithm and Kuhn’s assignment algorithm.

In this chapter, we examine a specific combinatorial optimization problem, the hitting set
problem. We build step by step a primal-dual method to solve this problem. While doing so, we
have the stupefaction and pleasure to rediscover several classical algorithms such as Dijsktra’s
mentioned algorithm and Kruskal’s method to obtain a spanning tree which appear as a simple
and elegant application of the primal-dual methodology. This chapter was strongly inspired
by [1, 2].

13.1 The Principle of Primal-Dual Algorithms in Few Words
The principle of Primal-Dual algorithms follows from Theorem 13.1. The theorem states that,
if x is a feasible solution of the Primal and y is a solution of the Dual, there are optimal solution
if and only if they satisfy both

1. the Primal Complementary Slackness (PCS), i.e., either x j = 0 or ∑
m
i=1 ai jyi = c j.

2. the Dual Complementary Slackness (DCS), i.e., either yi = 0 or ∑
n
j=1 ai jx j = bi.

The algorithm starts with a feasible solution of the Dual, y. Note that usually, it is a lot
easier to find a feasible solution the Dual than to find an optimal solution of the Primal. We then
take x = 0. In this way, the PCS is satisfied. Note that x may not be a feasible solution of the
primal and that the DCS may not be satisfied.

We want now to increase the value of the xi’s so that x becomes feasible. The PCS tells us
that to do so, we need to have tight dual constraints to do so. The idea is then to raise the value
of the yi’s either simultaneously or one by one. Whenever a dual constraint becomes tight, we

205

206 CHAPTER 13. PRIMAL-DUAL ALGORITHMS

freeze the values of the corresponding y’s. We can then raise the value of the corresponding x.
We repeat the process till all the yi’s are frozen.

Theorem 13.1 (Complementary Slackness). Let (x1, . . . ,xn) be a feasible solution of Prob-
lem 9.5 and (y1, . . . ,ym) be a feasible solution of Problem 9.6. These are optimal solutions if
and only if

m

∑
i=1

ai jyi = c j, or x j = 0, or both for all 1≤ j ≤ n, and

n

∑
j=1

ai jx j = bi, or yi = 0, or both for all 1≤ i≤ m.

13.2 A First Example: Primal-Dual Algorithm for Vertex Cover
1. Start with x = 0 and y = 0. 2. Pick any edge e for which ye is not frozen yet. 3. Raise the
value of ye until some vertex constraint v goes tight. 4. Freeze all ye’s for edges incident to v.
Raise xv to 1. 5. Repeat until all ye’s are frozen.

Let us see an example of how this algorithm works on an instance of the vertex cover prob-
lem. We consider the following weighted graph: We start by assigning ye = 0 for edges e ∈ E

F

3

4

421

2

C

BA

DE

(step (a)). At each step, an edge is picked for which ye is not frozen yet. The value of ye is raised
until the constraint of one vertex incident to e goes tight. All the edges incident to that vertex
are then frozen and the value of xv is raised to 1 (that is the vertex v is chosen in the solution of
the primal problem). When all the ye’s are frozen, the algorithm terminates. In steps (a)-(d), the

(b)

3

4

421

2

0

0

0

00 3

4

421

2

0

0 00

3

4

421

2

0

0

0

0

00

3

3

1 1

13

3

4

421

2

0 0

0

0

0

00

(a)

(c) (d)

13.2. PRIMAL-DUAL ALGORITHM FOR VERTEX COVER 207

chosen edges were respectively AD, AB, BC, CF and the tight vertices D, A, B and C. In this
case, the value of the primal is 11 (the sum of the weights of the tight vertices) and the value of
the dual is 6 (the sum of the values of the chosen edges). We have Valp(x)≤Vald(y) and so we
get the 2-approximation for our instance of vertex cover.

Let us now prove that the algorithm always give a 2-approximation on any instance.

Lemma 13.2. When the algorithms ends, x is a feasible solution for the primal and y is a
feasible solution for the dual.

Proof. That y is a feasible solution is obvious since at every step we make sure that y is a
feasible solution, so it is feasible at the last step when the algorithm ends. To see that x is a
feasible solution we proceed by contradiction. Let us suppose it is not a feasible solution. Then
there is a constraint xu + xv ≥ 1 which is violated. That means both xu and xv are zero and thus
it must be possible to raise the value of the edge between them since neither of them has a tight
bound. This is a contradiction with the fact that all ye’s are frozen.

Lemma 13.3. x and y satisfy PCS.

Proof. By construction of the algorithm. At every step, we make sure that x and y satisfy
PCS.

Definition 13.4. Let x and y be feasible solutions to the primal and the dual respectively. Then
we say that x and y α−approximate DCS if ∀ j,(y j 6= 0)→ (∑i Ai jxi ≤ αb j)

Lemma 13.5. x and y satisfy 2-approximate DCS.

Proof. This follows from the fact that xv is either 0 or 1 for any v so xu + xv ≤ 2 for any
e = (u,v).

The next lemma shows us why we would want an α−approximation for DCS.

Lemma 13.6. Suppose x and y satisfy PCS are feasible for Primal and Dual respectively and
α−approximate DCS then ValP(x)≤ αValD(y).

Proof. To prove this, we only need to write out the sums. We have ValP(x) = ∑i cixi. Now
since we know that x and y satisfy PCS, we have that ∑i cixi = ∑i(∑ j Ai jy j)xi. By reordering
the summation we get ∑i(∑ j Ai jxi)y j ≤ ∑ j αb jy j = α∑ j b jy j = αVAlD(y) where the ≤ follows
from the α-approximate DCS.

The last two lemmas then directly yield the desired result which is that our algorithm is a
2-approximation for Vertex Cover.

208 CHAPTER 13. PRIMAL-DUAL ALGORITHMS

13.3 The Journey of the Hitting Set Problem
The hitting set problem is defined as follows: Given subsets T1, . . . ,Tp of a ground set E and
given a nonnegative cost ce for every element e ∈ E, find a minimum-cost subset A ⊆ E such
that A∩Ti 6= for every i = 1, . . . , p (i.e., A “hits” every Ti).

This problem can be seen as a generalisation of several well-known combinatorial problems.
The undirected s− t shortest path problem with nonnegative lengths can be formulated as a
hitting set problem by noticing that any s− t path must intersect every s− t cut δ(S), where
δ(S) = e = (i, j) ∈ E : i ∈ S, j /∈ S. So we can let E be the edge set of the undirected graph
G = (V,E); ce be the length of the edge e; and T1, . . . ,Tp be the collection of all s− t cuts, i.e.
Ti = δ(Si) where Si rens over all sets containing s but not t. Observe that the feasible solutions
consist of subgraphs in which s and t and connected; only minimal solutions (i.e., solutions for
which no edge can be removed without destroying feasability) will correspond to s− t paths.
We leave to the interested reader the task to show that the minimum spanning tree problem, the
vertex cover problem and the minimum-cost arborescence problem can be similarly expressed
hitting set problems (Exercise 13.1).
Cost of the Solution. The cost of the solution is c(A) = ∑e∈A ce. As e was added to A only
if the corresponding dual constraint was tight, we can rewrite the cost as ∑e∈A ∑i:e∈Ti yi. By
exchanging the two summations, we obtain

c(A) =
p

∑
i=1
|A∩Ti|yi.

Since y is a dual feasible solution, its value ∑
p
i=1 yi is a lower bound on the optimum value zOPT

of the hitting set problem. If we can guarantee that

|A∩Ti| ≤ α whenever yi > 0

then this would immediately imply that c(A)≤ αzOPT , i.e., the algorithm is an α-approximation
algorithm. In particular, if α can be guaranteed to be 1, then the solution given by the algorithm
must certainly be optimal. Note that we can obtain here an α-approximation algorithm of the
hitting set problem by choosing α to be the largest cardinality of any set Ti: α = maxp

i=1 |Ti|.
Implementation and Efficiency Issues.

13.4 Exercises
Exercise 13.1. Express the following problems as a hitting set problem.

1. Minimum spanning tree problem.

2. The Vertex cover problem is the problem of finding a minimum (cardinality or cost) set of
vertices in an undirected graph such that every edge has at least one endpoint in the set.

3. Minimum-cost arborescence problem. We are given a directed graph G = (V,E) with non-
negative arc costs and a special root vertex r. The minimum-cost arborescence problem
is to find a spanning tree directed out of r of minimum cost.

Bibliography

[1] Goemans, M.X. and Williamson, D.P. The primal-dual method for approximation algo-
rithms and its application to network design problems In Approximation algorithms for
NP-hard problems, pages 144-191, 1997.

[2] Shuchi Chawla Primal-Dual Algorithms Lecture notes, http://pages.cs.wisc.edu/-
˜shuchi/courses/787-F07/scribe-notes/lecture15.pdf, 2007.

209

210 BIBLIOGRAPHY

Part III

Lecture Notes (2nd term)

211

Chapter 14

Radio channel assignment and (weighted)
colouring

14.1 Modelling the channel assignment problem
We may think of the radio channel assignment problem as the final stage in the design of a
cellular radio communications system. The general idea of such a system is that many low-
powered transmitters (base stations) each serve the customers in their local cell, and thus the
same radio channel can be used simultaneously in many different cells, as long as these cells
are sufficiently well separated. Since the radio spectrum is a finite resource which is heavily in
demand, we want to assign the channels to the transmitters carefully in order to take maximum
advantage of this re-use possibility.

Suppose then that transmitters are located at various sites in a geographical region, perhaps a
city, with power levels set. Engineers often aim to spread the transmitters out to form roughly a
part of a triangular lattice, since it gives the best “coverage”, that is, it minimises the maximum
distance to a transmitter. Sometimes the transmitters may be spread out very differently, for
example along a major road. The service region is divided into cells around each transmitter. A
cell around transmitter v may be seen as the potential receiver sites which are closer to v than to
any other transmitter, at least in the case when each transmitter as the same power. When such
transmitters are spread out like part of the triangular lattice, the cells are hexagonal.

For each cell, there is an estimate of the (peak period) expected demand. Using these de-
mand estimates and some (simple) queuing model, an appropriate number p(v) of channels is
chosen for each transmitter v. (Note that we are considering a static model : there is interest
also in dynamic models, where the demand levels change over the time, and the focus is on the
method for re-assigning channels.) The aim is to find an assignment of p(v) channels to each
transmitter v, such that the corresponding interference is acceptable, and the span of channel
used is minimised.

So, when will interference be acceptable. Typically a “protection ratio” θ is set, depending
on engineering considerations involving the selectivity of the equipment used and the width of
the channel. We say that the interference arising from some channel assignment is acceptable if
the signal-to-interference ratio is at least θ at each potential receiver site.

213

214 CHAPTER 14. RADIO CHANNEL ASSIGNMENT AND (WEIGHTED) COLOURING

We assume that the power received does not depend on the frequency used (which is real-
istic since the range of frequencies involved is usually small). Another simplifying assumption
that seems reasonable from the physics of interference is that only the difference between two
channels matters. Typically the smaller the difference the greater the interference. But this is
not always the case as there may for example be “intermodulation products”, in particular at
transmitters on the same site.

Consider a pair of transmitters u and v, and suppose that they transmit on channels differing
by c. If there is a potential receiver in the cell around u such that the ratio of the received
power from u to that from v is less than the protection ratio θ, then we make c a “forbidden
distance” for u and v; similarly with u and v interchanged. Hence for each pair (u,v) of distinct
transmitters, we have a set Tuv of forbidden differences |i− j| for channels i at u and channels
j at v. Similarly, for each vertex v, we have a set Tvv of forbidden differences between two
channels at v.

We form the corresponding interference or constraint graph G. It has a vertex for each
transmitter and distinct vertices u and v are adjacent if Tuv is non-empty. In particular, at each
vertex v, there is a loop of length l(vv) = Tvv. It is often convenient to think of the problem
as being specified by the graph G with a set Te for each e of G, where always 0 ∈ Te. In the
case, when the interference increases with the proximity between two transmitters then Te is of
the form {0, . . . , l(e)−1}. Hence we may consider that each edge is associated a non-negative
integer length l(e) for each edge e.

An assignment is a mapping φ : V →P ({1, . . . , t}) such that |φ(v)|= p(v) for each v∈V (G).
It is feasible if the following conditions hold:

• (i) for any two distinct adjacent vertices u and v and each i ∈ φ(u) and each j ∈ φ(v) we
have |i− j| ≥ l(uv).

• (ii) for each v∈V (G) and any two distincts integers i and j in φ(v), we have |i− j| ≥ l(vv).

The span of the problem, span(G, l, p), is the least integer t such that there is a feasible
assignment. (Some authors call t−1 the span.)

We want to determine or approximate the span, and find corresponding assignments.

Examples

1. If G is a triangle with each edge of length 3 and the demand of each vertex is 1, then the
span is 7.

2. If G is a 4-cycle with each edge length 3 and the demand of each vertex is 1, then the span
is 4.

3. Let G be the 5-cycle plus the loops on all the vertices, such that every edge has length 1
except the loops which have length 2. If each vertex has demand 2, then the span is 5.

14.2. GENERAL RESULTS 215

14.2 General results
In this section we give various results, some introductory, about the span in the channel as-
signment problem. We restrict our attention here to the case of unit demands. In this case,
the co-site constraints (=loops) are irrelevant and we can see an assignment as a mapping
φ : V →{1, . . . , t} which is feasible if |φ(u)−φ(v)| ≥ l(uv) for every edge uv. For convenience,
we denote span(G, l,1) by span(G, l) where 1 the appropriate all 1’s function.

Note that a general channel assignment problem can always be transformed into a unit de-
mand problem by blowing up each vertex v into a clique of p(v) vertices with edge lengths
equal to l(vv).

14.2.1 All equal edge lengths
Observe that span(G,1) equals the chromatic number χ(G). Note also that, with any positive
edge lengths, the least number of integers required is just χ(G), but it is the span that is of
interest to us.

When the edge lengths are all the same, we are almost back to colouring. Let k denote the
appropriate all k’s function.

Proposition 14.1. If each edge length is k then

span(G,k) = k(χ(G)−1)+1.

Proof. Observe that the span is at most the right hand side, since we could always first properly
colour G with χ(G) colours and then assign a channel to each colour, using channels 1,k +
1, . . . ,k(χ(G)−1)+1.

Now let us show that the span is at least the right hand side. Let t be the span, and consider a
feasible assignment φ using channels 0,1, . . . , t−1 which uses as few as possible channels which
are not multiples of k. Then in fact φ must use only multiples of k, for otherwise the least channel
not a multiple of k could be pushed down to the nearest multiple of k, giving a contradiction.
But now if we let c(v) = φ(v)/k we obtain a proper colouring of G. So χ(G) ≤ (t− 1)/k + 1,
which is the desired inequality.

14.2.2 Lower bound for the span
It follows from Proposition 14.1 that if G is the complete graph Kn and all edge lengths are
at least k then span(G, l) ≥ k(n− 1)+ 1. This result can be extended as follows. A path P is
hamiltonian in G if its goes through all the vertices, i.e. V (P) = V (G).

Proposition 14.2. If G is complete, then

span(G, l)≥ hp(G, l)+1,

where hp(G, l) is the minimum length of a hamiltonian path.

216 CHAPTER 14. RADIO CHANNEL ASSIGNMENT AND (WEIGHTED) COLOURING

Proof. Given a feasible assignment φ, list the vertices as v1, . . . ,vn so that φ(v1)≤ φ(v2)≤ ·· · ≤
φ(vn). P = v1v2 . . .vn is a hamiltonian path in G and

φ(vn)−φ(v1) =
n−1

∑
i=1

φ(vi+1)−φ(vi)≥
n−1

∑
i=1

l(vivi+1),

which is the length of P. Since span(G, l) = φ(vn)−φ(v1)+1, we get the result.

This last result has the drawback that it is NP-hard to calculate hp(G, l), but there are good
lower bounds which may be efficiently calculated, for example the minimum length of a span-
ning tree. Observe that Proposition 14.2 is tight if the edge lengths satisfy the triangle inequality,
but we should not expect this to hold for minimum channel separations.

14.2.3 Sequential assignment methods
Suppose that we want to colour the vertices of a graph with colours 1,2, . . . and we have a
given ordering on the vertices. Let us consider two variants of the greedy colouring algorithm.
In the ”one-pass” method, we run through the vertices in order and always assign the smallest
available colour. In the ”many-passes” method, we run through the vertices assigning colour 1
whenever possible, then repeat with colour 2 and so on. Both methods yield exactly the same
colouring, and show that χ(G)≤ ∆(G)+1 colours.

Let us now consider the channel assignment problem (G, l). Define the weighted degree
of a vertex v by d(G,l)(v) = ∑uv∈E l(uv) and define the maximum weighted degree by ∆(G, l) =
maxv∈V (G) d(G,l)(v).

Example: Let G be the 4-cycle C4, with vertices v1,v2,v3,v4 and edge lengths l(v1v2) = 1 and
l(v2v3) = l(v3v4) = l(v4v1) = 2. Note that ∆(G, l) = 4. The one-pass method assigns channels
1,2,4,6 to the vertices v1, v2, v3, v4 respectively, with span 6. The many-passes method assigns
channel 1 to vertices v1 and v3, channel 2 to none of the vertices, and channel 3 to vertices
v2 and v4, with span 3. In fact the many passes method always uses at most the channels
1, . . . ,∆(G, l)+1.

Theorem 14.3 (McDiarmid [7]).

span(G, l)≤ ∆(G, l)+1.

Proof. In order to show that the many-passes method needs a span of at most the above size,
suppose that it is about to assign channel c to vertex v. Let A be the set of neighbours u of
v to which it has already been assigned a channel φ(u). For each channel j ∈ {1, . . . ,c− 1},
there must be a vertex u ∈ A with φ(u) ≤ j and φ(u) + l(uv) ≥ j + 1. Hence the intervals
{φ(u), . . . ,φ(u)+ l(uv)−1} for u ∈ A cover {1, . . . ,c−1}. Thus

c−1≤ ∑
u∈A

l(uv)≤ d(G,l)(v)≤ ∆(G, l).

This completes the proof.

14.3. COMPUTING THE SPAN 217

14.3 Computing the span
We noted earlier that the special case when all lengths are 1 is essentially the graph colouring
problem. Since graph colouring is NP-hard – see for example [3]–, we cannot expect an easy
ride. In fact, the general problem seems to be harder than graph colouring.

14.3.1 Bipartite graphs and odd cycles
Let G be a graph and l an edge-length. Let L(G, l) = max{l(xy) + 1 | xy ∈ E(G)}. For any
(G, l), clearly span(G, l)≥ L(G, l).

This inequality is tight for bipartite graphs.

Proposition 14.4. If G is a bipartite graph, then span(G, l) = L(G, l), for any l.

Proof. If we set φ(x) = 1 for x in one part of the bipartition and φ(x) = L(G, l) for x in the other
part, then we obtain a feasible assignment with span L(G, l).

This proposition implies that the channel assignment problem for bipartite graphs is easy.
After bipartite graphs the next thing to consider is odd cycles. Here again it is easy to determine
the span.

Proposition 14.5. If G is an odd cycle then span(G, l)= max{L(G, l),M(G, l)}, where M(G, l)=
min{l(uv)+ l(vw)+1 | uv,vw ∈ E(G)}.

Proof. Since G is an odd cycle, in any feasible assignment φ there exist edges uv and vw of G
such that φ(u) ≤ φ(v) ≤ φ(w). Then |φ(w)−φ(u)| ≥ l(uv)+ l(vw) and so the span of (G, l) is
at least M(G, l). Hence it is at least max{L(G, l),M(G, l)}.

On the other hand, let us choose two edges uv and vw in G with l(uv)+ l(vw) = M(G, l)−1.
Form an even cycle G′ by deleting v and adding the edge uw. Consider the length function l′ on
E(G′) which satisfies l′(uw) = l(uv)+ l(vw) and agrees with l elsewhere. Since G′ is bipartite,
(G′, l′) admits an optimal feasible assignment φ with span L(G′, l′) = max{L(G, l),M(G, l)}.
Furthermore, |φ(u)−φ(w)| ≥ l(uw)≥ l(uv)+ l(vw). Hence one can choose φ(v) between φ(u)
and φ(w) so that φ is a feasible assignment of (G, l).

Let us call a graph 1-nearly bipartite if by deleting at most one vertex we may obtain a
bipartite graph. It is of course easy to recognise if a graph is 1-nearly bipartite, by simply
deleting each vertex in turn. It is also easy to determine the chromatic number of a 1-nearly
bipartite graph G, as it is at most 3. However, it is NP-hard to determine span(G, l), even if we
restrict the edge lengths to be 1 or 2, see [8].

14.3.2 A general exponential algorithm
Theorem 14.6 (McDiarmid [7]). Given (G, l) with maximum edge-length m, we can compute
span(G, l) in O∗((2m+1)n) steps.

218 CHAPTER 14. RADIO CHANNEL ASSIGNMENT AND (WEIGHTED) COLOURING

Proof. Let us describe the method. Let V denote the set of vertices of G. For each S ⊂ V , let
Ni(S) = {v ∈V \S | ∃ an edge uv with u ∈ S and l(uv)≥ i }. For each nested family A⊇ B1 ⊇
·· · ⊇ Bm−1 of m subsets of V and each non-negative integer t, let F(A;B1, . . . ,Bm−1; t) be the
set of all feasible assignments φ : A→{1, . . . , t} for the subproblem on A such that φ(v)≤ t− i
whenever v ∈ Bi, for each i = 1, . . . ,m− 1. Let f (A;B1, . . . ,Bm−1) be the least t such that
F(A;B1, . . . ,Bm−1; t) is non-empty. Thus the span is f (V ; /0, . . . , /0). By definition, if A = /0 then
F = { /0} and f = 0.

Claim 14.6.1. For each non-empty A⊂V

f (A;B1, . . . ,Bm−1) = 1+min
S

f (A\S;B′1, . . . ,B
′
m−1),

where S runs over all stable subsets of A\B1; B′i−1 = Bi∪ (A∩Ni(S)) for each i = 2, . . . ,m−1;
and B′m−1 = A∩Nm(S).
(Note that A\S⊇ B′1 ⊇ ·· · ⊇ B′m−1, as required for the domain of f .)

The method to calculate the span is brutal: we use the claim to tabulate all the values
f (A;B1, . . . ,Bm−1) in increasing order of the size of A. For a given set A of size a, there are
ma points in the domain of f : for each point we have m choices for the smallest element of the
nested family that contains a . The additional time to compute f for a given point with set A of
size a is at most O∗(2a) since they are at most 2a (stable) sets in A. Hence the total time taken

is at most O∗
(

n

∑
a=0

(
n
a

)
ma2a

)
= O∗ ((2m+1)n). It remains only to prove the claim.

Proof Claim 14.6.1. We show first that the left side is at most the right. Let S be a stable subset
of A\B1, and let f (A\S;B′1, . . . ,B

′
m−1) = t−1. We want to show that f (A;B1, . . . ,Bm−1) ≤ t.

Let φ ∈ F(A\S;B′1, . . . ,B
′
m−1) and extend φ to φ̂ : A→{1, . . . , t} by setting φ̂(v) = φ(v) for each

v ∈ A\S and φ̂(v) = t for each v ∈ S.
We must check that φ̂∈ F(A;B1, . . . ,Bm−1). Let uv be an edge with u∈ S and v∈ A\S. Thus

φ̂(u) = t and φ̂(v)≤ t−1. If l(uv) = i∈ {2, . . . ,m}, then v∈Ni(S)⊆ B′i−1, and so φ̂(v) = φ(v)≤
(t−1)−(i−1) = t− i. Thus in each case φ̂(u)− φ̂(v)≥ l(uv). Since S is stable and φ is feasible
for the subproblem on A\S, it now follows easily that φ̂ is feasible for the subproblem on A. If
v ∈ B1 then φ̂(v) = φ(v)≤ t−1 since S⊆ A\B1; and if v ∈ Bi for some i ∈ {2, . . . ,m−1} then
v ∈ B′i−1 and so φ̂(v) = φ(v)≤ t− i by our choice of φ. Hence φ̂ ∈ F(A;B1, . . . ,Bm−1).

Conversely, let us show that the right side is at most the left. Let f (A;B1, . . . ,Bm−1) = t and
let φ ∈ F(A;B1, . . . ,Bm−1). Let S be the stable set φ−1(t). Then S must be non-empty by the
minimality of t, and S ⊆ A\B1 since φ(v) ≤ t−1 for each v ∈ B1. If t = 1 then S = A and the
result holds, so let us assume that t ≥ 2. Define φ′ : A\S→{1, . . . , t−1} by setting φ′(v) = φ(v)
for each v ∈ A\S.

Let us check that φ′ ∈ F(A \ S;B′1, . . . ,B
′
m−1). Clearly φ′ is feasible for the subproblem on

A\S. Let i ∈ {2, . . . ,m−1} and let v ∈ B′i−1 = Bi∪ (A∩Ni(S)). If v ∈ Bi then φ′(v) = φ(v) ≤
t− i = (t−1)− (i−1) by the condition on φ, and if v ∈ Ni(S) then the same inequality holds,
since S is non-empty and φ is feasible for A. Finally, if v ∈ B′m−1 = A∩Nm(S), then as before
φ′(v) = φ(v)≤ t−m = (t−1)− (m−1). Thus φ′ ∈ F(A\S;B′1, . . . ,B

′
m−1).

14.4. CHANNEL ASSIGNMENT IN THE PLANE 219

The proof of Claim 14.6.1 completes the proof of Theorem 14.6.

An Integer Programme model

The following integer programme (IP) gives a simple reformulation of the channel assignment
model, though other formulations may be better suited to computation for particular types of
problem, see also [10].

Choose an upper limit fmax, and let F = {1, . . . , fmax} be the set of available channels.
We introduce a binary variable yu,i for each transmitter u and channel i : setting yu,i = 1 will
correspond to assigning channel i as one of the channels at transmitters u. Then span(G, l, p) is
given by the following integer programme.

Minimise z subject to :

z ≥ j× yv, j ∀v ∈V (G), j ∈ F
∑ j∈F yv, j = p(v) ∀v ∈V (G)
yu,i + yv, j ≤ 1 ∀u,v ∈V (G) and i, j ∈ F such that (u, i) 6= (v, j) and |i− j|< l(uv)

yv, j ∈ {0,1} ∀v ∈V (G), j ∈ F

To see that this IP formulation is correct, consider an optimal assignment φ : V → F . Set
yv, j = 1 if j ∈ φ(v) and yv, j = 0 otherwise; and set z to be the maximum channel used. It is easy
to see that this gives a feasible solution to the IP, wiht z = span(G, l, p). Conversely, given a
feasible solution to the IP with value t, we may obtain in a similar way a feasible assignment φ.

14.4 Channel assignment in the plane
It is natural to specialise the channel assignment problem to the case where the transmitter sites
are located in the plane, and the minimum channel separation for a pair of sites depends on the
distance between them.

In this section, we will consider only co-channel interference, which corresponds to each
minimum channel separation being 0 (if there is no edge) or 1 (at the same site or between
adjacent sites). Hence we have to determine span(G,1, p). Then we are left with a colouring
problem of a weighted graph. A weighted graph is a pair (G, p), where G is a graph and
p a weight function on the vertex set of G. A t-colouring of a weighted graph (G, p) is a
mapping C : V (G)→ P ({1, . . . , t}) such that for every vertex v ∈ V (G), |C(v)| = p(v) and
for all edge uv ∈ E(G), C(u)∩C(v) = /0. The chromatic number of a weighted graph (G, p),
denoted χ(G, p), is the least integer t such that (G, p) admits a t-colouring. This is a natural
generalisation of the chromatic number of a graph since χ(G,1) = χ(G). Moreover, χ(G, p) =
span(G,1, p).

The clique number of a weighted graph (G, p), denoted ω(G, p), is the maximum weight of
a clique, that is max{p(C) |C clique of G}, where p(C) = ∑v∈C p(v).

Generalising Proposition 8.3, for any weighted graph (G, p), we have

χ(G, p)≥ ω(G, p).

220 CHAPTER 14. RADIO CHANNEL ASSIGNMENT AND (WEIGHTED) COLOURING

14.4.1 Disk graphs
Suppose that we are given a threshold distance d0, such that interference will be acceptable as
long as no channel is re-used at sites less than distance d0 apart. Given a set of V points in the
plane and given d0 > 0, let G(V,d0) denote the graph with vertex set V in which distinct vertices
u and v are adjacent whenever the euclidean distance between them is less than d0. Equivalently,
we may centre an open disk of diameter d0 at each point v, and then two vertices are adjacent
when their disks meet. Such a graph is called a unit disk (or proximity) graph.

Observe that if G is a unit disk graph, the graph Gp obtained from the weighted graph (G, p)
by replacing each vertex v by a complete graph of size p(v) is also a unit disk graph. Hence
our basic version of the channel assignment problem is equivalent to colouring unit disk graphs.
The following result shows that the clique and chromatic numbers of such graphs are not too
far apart.

Proposition 14.7 (Clark, Colbourn and Johnson [2]). For a unit disk graph G,

χ(G)≤ 3ω(G)−2.

Proof. In a realisation of G with diameter d0, consider the “bottom left” point v. All its neigh-
bours lie within an angle of less than 180 degrees at v. Thus we can cover all the neighbours with
three sectors, each with radius less than d0 and angle less than 60 degrees. But the points in each
sector together with v form a clique, and so the degree of v is at most 3(ω(G)− 1). It follows
that the degeneracy of G is at most 3ω(G)−3. The result follows from Proposition 8.7.

It would be nice to improve this result: perhaps the factor 3 could be replaced by 3/2? It
is shown in [1] that it is NP-hard to recognise unit disk graphs. Many problems are NP-hard
for unit disk graphs, even given a realisation in the plane, see [2]: for example finding χ(G) or
α(G). However there is a polynomial time algorithm to find ω(G), given a realisation in the
plane.

Theorem 14.8 (Clark, Colbourn and Johnson [2]). Given a realisation of a unit disk graph G,
there is a polynomial time algorithm to find ω(G).

Proof. Suppose we are given a representation with diameter 1. The algorithm relies on the
following fact. For every clique K, there are points u and v in K at euclidean distance d < 1
such that all points of K is contained in the region Ruv of points in the plane within distance at
most d of both u and v. See Figure 14.1.

Hence we consider in turn each edge uv of G and the corresponding region Ruv and find a
maximum clique in Ruv. The line uv cuts Ruv into two halves: let A and B be the sets of points
in the two halves. It is easy to verify that A and B are cliques.

Let H be the bipartite graph with bipartition (A,B) where a ∈ A and b ∈ B are adjacent if
they are at euclidean distance at least 1. Then we obtain a maximum clique within L by forming
(A∪B)\C, where C is a minimum cover in H.

If the transmitters can have different powers, we are led to consider disk graphs, which are
defined as for unit disk graphs except that the diameters may be different.

14.4. CHANNEL ASSIGNMENT IN THE PLANE 221

u Ruv v

Figure 14.1: The region Ruv.

Proposition 14.9. For a disk graph G,

χ(G)≤ 6ω(G)−5.

Proof. Consider a vertex v with disk of smallest diameter, and proceed as in the proof of Propo-
sition 14.7 to show that the degeneracy is at most 6(ω(G)−1).

14.4.2 Triangular lattice

The triangular lattice T L crops up naturally in radio channel assignment. It is sensible to aim to
spread the transmitters out to form roughly a part of a triangular lattice, with hexagonal cells,
since that will give the best “coverage”, that is, for a given number of transmitters in a given
area this pattern minimises the maximum distance to a transmitter.

The triangular lattice graph T L may be described as follows. The vertices are all integer
linear combinations ae1 + be2 of the two vectors e1 = (1,0) and e2 = (1

2 ,
√

3
2). Thus we may

identify the vertices with the pairs (a,b) of integers. Two vertices are adjacent when the Eu-
clidean distance between them is 1. Therefore, each vertex x = (a,b) has six neighbours: its
left neighbour (a− 1,b), its right neighbour (a + 1,b), its leftup neighbour (a− 1,b + 1), its
rightup neighbour (a,b + 1), its leftdown neighbour (a,b− 1) and its rightdown neighbour
(a+1,b−1). See Figure 14.2.

(a+1,b−1)

(a,b)

(a,b+1)(a−1,b+1)

(a,b−1)

(a−1,b) (a+1,b)

Figure 14.2: The vertex (a,b) and its six neighbours.

222 CHAPTER 14. RADIO CHANNEL ASSIGNMENT AND (WEIGHTED) COLOURING

A hexagonal graph is an induced subgraph of the triangular lattice.
The triangular lattice has a unique (up to colours permutations) 3-colouring cT , defined

by cT ((a,b)) = a− b mod 3. See Figure 14.3. It follows immediately that for any weighted

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

2 3

2 3

1

1

1

1 2

1 2

Figure 14.3: The unique 3-colouring of the triangular lattice.

hexagonal graph (G, p),

χ(G, p)≤ 3max{p(v) | v ∈V (G)} ≤ 3ω(G, p).

In the rest of this section, we will improve this upper bound. It is fairly easy to improve it
for bipartite graphs.

Lemma 14.10. Let (G, p) be a weighted bipartite graph. Then χ(G, p) = ω(G, p).

Proof. Let (A,B) be a bipartition of G. Let v be a vertex of G. Assign it the colour set
{1,2, . . . , p(v)} if it is in A and the colour set {ω(G, p)− p(v) + 1, . . . ,ω(G, p)} if it is in B.
This give us an optimal colouring of (G, p). Indeed, if uv is an edge with u ∈ A and v ∈ B then
p(u)+ p(v)≤ ω(G, p).

Remark 14.11. This lemma gives us a polynomial time algorithm to compute the chromatic
number of a bipartite weighted graph. Indeed, calculating ω(G, p) is easy because it is the
maximum of max{p(v) | v ∈V (G)} and max{p(u)+ p(v) | uv ∈ E(G)} since a clique has size
at most 2 in a bipartite graph.

McDiarmid and Reed [?] showed that it is NP-complete to decide whether the chromatic
number of a weighted hexagonal graph is 3 or 4. Hence, there is no polynomial time algorithm
for finding the chromatic number of weighted hexagonal graphs (unless P=NP). Therefore, one
has to find approximate algorithms. The better known so far has approximation ratio 4/3 and is
based on the following result:

Theorem 14.12 (McDiarmid and Reed [?]). For any weigthed hexagonal graph G,

χ(G, p)≤ 4ω(G, p)+1
3

.

14.4. CHANNEL ASSIGNMENT IN THE PLANE 223

Proof. The weighted colouring of (G, p) with 4ωp(G)+1
3 colours is given by the following al-

gorithm : We first calculate the 3-colouring cT of G. We then compute ω(G, p) and set
k = bω(G,p)+1

3 c. The algorithm proceeds in two stages.
In the first stage, we use 3k colours (i, j) for i = 1,2,3 and j = 1, . . . ,k. For each vertex v, we

compute the value m(v) which is the maximum of p(u) over its neighbours u such that cT (u) =
cT (v)+ 1 mod 3. (These are its right, leftup and leftdown neighbours if they are present.) If v
has no such neighbours then m(v) = 0. Let r(v) = min{p(v)− k,k−m(v)}. We assign to v the
colours (cT (v),1), . . . ,(cT (v),min{k, p(v)}). Moreover, if r(v) > 0 we assign to v the colours
(cT (v)+1,k− r(v)+1), . . . ,(cT (v)+1,k). By definition of r(v) those colours are not assigned
to the neighbours of v, so the colouring is proper.

Now let U be the set of vertices whose demand is not yet fulfilled after the first stage. Then
v ∈ U if and only if p(v) > max{k,2k−m(v)}, and in this case, the number of colours that
remain to be assigned to v is p′(v) = p(v)−max{k,2k−m(v)}.

Let H be the graph induced by the vertices of U . H is triangle-free because p(v)≥ k+1 for
every vertex v ∈U . Hence ω(H) ≤ 2. In addition, for all vertex v ∈U , p′(v) ≤ p(v)+ m(v)−
2k ≤ ω(G, p)− 2k and for any two neighbours u and v in H, p′(u) + p′(v) ≤ ω(G, p)− 2k.
Hence ω(H, p′)≤ ω(G, p)−2k.

We shall prove that H is acyclic and thus bipartite. Hence by Lemma 14.10, one can assign
p′(v) colours to every vertex v of U using ω(H, p′) colours. Hence in total, we have used at
most

3k +ω(H, p′)≤ ω(G, p)+ k ≤ 4ω(G, p)+1
3

colours.
Remains to prove that H is acyclic. Observe that the left-most vertex in a cycle in a hexag-

onal graph has at least two neighbours to its right, that is among its rightup neighbour , its right
neighbour and its rightdown neighbour. Hence it is sufficient to prove that in H a vertex v has
at most one neighbour to its right Since H is triangle-free, it suffices to prove that v, its rightup
neighbour x and its rightdown neighbour z cannot be all three in U . Suppose for a contradiction
that these three vertices are in U . Set s = min{p(x), p(z)}. Then s ≥ k + 1. Furthermore, if
m(v) > 0 and u is the neighbour of v in which m(v) is attained, then v, u and either x or z form
a triangle, so p(v) + m(v) + s ≤ ω(G, p). Notice that this inequality is also true if m(v) = 0
because p(v)+ s≤ ω(G, p) for v is adjacent to x and z. Thus we have

1≤ p′(v)≤ p(v)+m(v)−2k ≤ ω(G, p)− s−2k ≤ ω(G, p)−3k−1≤ 0

which is a contradiction.

A distributed algorithm which guarantees the 4
3ω(G, p) bound is reported by Narayanan and

Schende [11]. However, one expects to have approximate algorithms with ratios better than 4/3.
In particular, Reed and McDiarmid conjecture that, for big weights, the ratio may be decreased
to almost 9/8.

Conjecture 14.13 (McDiarmid and Reed [?]). There exists a constant c such that for any
weigthed hexagonal graph (G, p),

χ(G, p)≤ 9
8

ω(G, p)+ c.

224 CHAPTER 14. RADIO CHANNEL ASSIGNMENT AND (WEIGHTED) COLOURING

Note that the ratio 9/8 in the above conjecture is the best possible. Indeed, consider a 9-cycle
C9 with constant weight k. A colour can be assigned to at most 4 vertices, so χ(C9,k) ≥ 9k

4 .
Clearly, ω(C9,k) = 2k. So χ(C9,k) ≥ 9

8ω(C9,k). An evidence for this conjecture has been
given by Havet [5], who proved that if a hexagonal graph G is triangle-free (i.e. has no K3)
then χ(G, p) ≤ 7

6ω(G, p) + 5. See also [12] for an alternative proof and [6] for a distributed
algorithm for colouring triangle-free hexagonal graphs with 5

4ω(G, p)+3 colours.

Exercises
Exercise 14.1. Let (G, l) be a unit demand instance of the channel assignment problem and m
a non-negative integer. A subset U of vertices is m-assignable if span(G〈U〉, l) ≤ m. Let αm

denote the maximum size of an m-assignable set. Show that

span(G, l)≥ m×|V (G)|
αm −m−1.

Exercise 14.2. Let G be a bipartite graph and p a demand function. Let pmax = max{p(v) | v ∈
V (G)} be the maximum demand.

1. Let l be the length defined by l(uv) = 1 for all uv ∈ E(G) and l(vv) = 3 for all v ∈V (G).

a. Show that 3pmax−2≤ span(G, l, p)≤ 3pmax−1.

b. Show that span(G, l, p) ≤ 3pmax− 1 if and only if there are two adjacent vertices
with demand pmax.

2. Let l be the length defined by l(uv) = 1 for all uv ∈ E(G) and l(vv) = 2 for all v ∈V (G).

a. Show that 2pmax−1≤ span(G, l, p)≤ 2pmax.

b. A path in G is critical if it has an even number of vertices, the endvertices have
demand pmax and the internal vertices have demand < pmax.
Show that span(G, l, p) = 2pmax−1 if and only if for every critical path P, p(P)≤
(|V (P)|−1)pmax− (|V (P)|−2)/2. (Gerke [4]).

Exercise 14.3. A bicolouring of a graph G is a colouring of (G,2), where 2 is the appropriate
all 2’s function. A t-bicolouring is a bicolouring in {1, . . . , t}.

1 Let P = (x0,x1, . . . ,xm) be a path of length m≥ 4. Show that for any 2-subsets c0 and cm
of {1, . . . ,5}, there is a 5-bicolouring such that C(x0) = c0 and C(xm) = cm.

2 a) Show that every triangle-free hexagonal graph is 5-bicolourable.
b) Deduce that for any weighted hexagonal graph (G, p), χ(G, p)≤ 5

4ω(G, p)+3.(Havet [5])

Bibliography

[1] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput.
Geom. 9:3–24, 1998.

[2] B. N. Clark, C. J. Colbourn and D. S. Johnson. Unit disk graphs Discrete Math. 86:165–
177, 1990.

[3] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and
Co., San Francisco, Calif., 1979.

[4] S. Gerke. Colouring weighted bipartite graphs with a co-site constraint. Discrete Math-
ematics 224:125–138, 2000.

[5] F. Havet. Channel assignment and multicolouring of the induced subgraphs of the trian-
gular lattice. Discrete Mathematics 233:219–231, 2001.

[6] F. Havet and J. Zerovnik. Finding a five bicolouring of a triangle-free subgraph of the
triangular lattice. Discrete Mathematics 244:103–108, 2002.

[7] C. McDiarmid. On the span in channel assignment problems: bounds, computing and
counting. Discrete Math. 266:387–397, 2003.

[8] C. McDiarmid and B. Reed. Channel assignment and weighted coloring. Net-
works 36:114–117, 2000.

[9] C. McDiarmid and B. Reed. Channel assignment on graphs of bounded treewidth. Dis-
crete Math. 273(1-3):183-192, 2003.

[10] R. A. Murphy, M. D. Pardalos and M. G.C. Resende. Frequency assignment problems.
Chapter in Handbook of Combinatorial Optimization Vol. 4, (D.-Z. Dhu and P.M. Parda-
los, editors), 1999.

[11] L. Narayanan and S. Schende. Static Frequency Assignment in Cellular Networks. In
Sirocco 97, (Proceedings of the 4th international Colloqium on structural information
and communication complexity, Ascona, Switzerland), D. Krizanc and P. Wildmayer
(eds.), Carleton Scientific pp. 215–227, 1997.

225

226 BIBLIOGRAPHY

[12] K. S. Sudeep and S. Vishwanathan. A technique for multicoloring triangle-free hexagonal
graphs. Discrete Mathematics 300(1-3), 256–259, 2005.

