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Chapter 1

Linear programming

The nature of the programmes a computer scientist has to conceive often requires some knowl-
edge in a specific domain of application, for example corporate management, network proto-
cols, sound and video for multimedia streaming,. . . Linear programming is one of the necessary
knowledges to handle optimization problems. These problems come from varied domains as
production management, economics, transportation network planning, . .. For example, one can
mention the composition of train wagons, the electricity production, or the flight planning by
airplane companies.

Most of these optimization problems do not admit an optimal solution that can be com-
puted in a reasonable time, that is in polynomial time. However, we know how to efficiently
solve some particular problems and to provide an optimal solution (or at least quantify the dif-
ference between the provided solution and the optimal value) by using techniques from linear
programming.

In fact, in 1947, G.B. Dantzig conceived the Simplex Method to solve military planning
problems asked by the US Air Force that were written as a linear programme, that is a system
of linear equations. In this course, we introduce the basic concepts of linear programming. We
then present the Simplex Method, following the book of V. Chvétal [2]. If you want to read
more about linear programming, some good references are [6, 1].

The objective is to show the reader how to model a problem with a linear programme when
it is possible, to present him different methods used to solve it or at least provide a good ap-
proximation of the solution. To this end, we present the theory of duality which provide ways
of finding good bounds on specific solutions.

We also discuss the practical side of linear programming: there exist very efficient tools
to solve linear programmes, e.g. CPLEX [3] and GLPK [4]. We present the different steps
leading to the solution of a practical problem expressed as a linear programme.

1.1 Introduction

A linear programme is a problem consisting in maximizing or minimizing a linear function
while satisfying a finite set of linear constraints.
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6 CHAPTER 1. LINEAR PROGRAMMING

Linear programmes can be written under the standard form:
- n

Maximize Y, =1CjXj

Subject to: Y, ajjx;

b; forall 1 <i<m (1.1)
Xj 0

<
> forall1 <j<n.

All constraints are inequalities (and not equations) and all variables are non-negative. The
variables x; are referred to as decision variables. The function that has to be maximized is
called the problem objective function.

Observe that a constraint of the form Z;?:l a;jxj > b; may be rewritten as Z?Zl (—ai j)x i <
—b;. Similarly, a minimization problem may be transformed into a maximization problem:
minimizing Z’]’-: 1 €jXj 1s equivalent to maximizing Z?: 1(—cj)xj. Hence, every maximization
or minimization problem subject to linear constraints can be reformulated in the standard form
(See Exercices ?? and ??.).

A n-tuple (x1,...,x,) satisfying the constraints of a linear programme is a feasible solution
of this problem. A solution that maximizes the objective function of the problem is called an
optimal solution. Beware that a linear programme does not necessarily admits a unique optimal
solution. Some problems have several optimal solutions while others have none. The later case
may occur for two opposite reasons: either there exist no feasible solutions, or, in a sense, there
are too many. The first case is illustrated by the following problem.

Maximize 3x1] — X
Subject to: x1 + x < 2 (1.2)
—2x1 — 2x < -—10 ’
X1,Xp > 0

which has no feasible solution (See Exercise 4). Problems of this kind are referred to as unfea-
sible. At the opposite, the problem

Maximize X1 — X2
) . < _
Subjectto: —2x; + x < -1 (1.3)
—x; — 2x < =2
X1,X2 2 0

has feasible solutions. But none of them is optimal (See Exercise 4). As a matter of fact, for
every number M, there exists a feasible solution x,x> such that x; —x, > M. The problems
verifying this property are referred to as unbounded. Every linear programme satisfies exactly
one the following assertions: either it admits an optimal solution, or it is unfeasible, or it is
unbounded.
Geometric interpretation.

The set of points in IR” at which any single constraint holds with equality is a hyperplane in
IR". Thus each constraint is satisfied by the points of a closed half-space of IR”, and the set of
feasible solutions is the intersection of all these half-spaces, a convex polyhedron P.

Because the objective function is linear, its level sets are hyperplanes. Thus, if the maximum
value of ¢x over P is z*, the hyperplane cx = z* is a supporting hyperplane of P. Hence ¢x = z*
contains an extreme point (a corner) of P. It follows that the objective function attains its
maximum at one of the extreme points of P.
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1.2 The Simplex Method

The authors advise you, in a humanist €lan, to skip this section if you are not ready to suffer. In
this section, we present the principle of the Simplex Method. We consider here only the most
general case and voluntarily omit here the degenerate cases to focus only on the basic principle.
A more complete presentation can be found for example in [2].

1.2.1 A first example

We illustrate the Simplex Method on the following example:

Maximize 5x; + 4xp + 3x3

Subject to:
2xp + 3x + x < 5 (1.4)
dx; + x» + 2x3 < 11 )
3x; + 4dxp + 2x3 < 8
x1,x2,x3 > O.

The first step of the Simplex Method is to introduce new variables called slack variables.
To justify this approach, let us look at the first constraint,

2x1 4 3x +x3 < 5. (1.5)

For all feasible solution x1,x,,x3, the value of the left member of (1.5) is at most the value
of the right member. But, there often is a gap between these two values. We note this gap x4. In
other words, we define x4 = 5 — 2x; — 3xo — x3. With this notation, Equation (1.5) can now be
written as x4 > 0. Similarly, we introduce the variables x5 and xg for the two other constraints of
Problem (1.4). Finally, we use the classic notation z for the objective function 5x; + 4x, + 3x3.
To summarize, for all choices of x,x2,x3 we define x4, x5,x¢ and z by the formulas

X4 = 5 — 2x1 — 3x — x3
S S G .9
7 = Sx1 + 4x2 + 3x3.
With these notations, the problem can be written as:
Maximize z subject to x1,x2,x3,X4,X5,Xx6 > 0. (1.7)

The new variables that were introduced are referred as slack variables, when the initial
variables are usually called the decision variables. It is important to note that Equation (1.6)
define an equivalence between (1.4) and (1.7). More precisely:

* Any feasible solution (x,x7,x3) of (1.4) can be uniquely extended by (1.6) into a feasible
solution (x1,x2,x3,x4,X5,x¢) of (1.7).
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* Any feasible solution (x1,x2,x3,x4,x5,%¢) of (1.7) can be reduced by a simple removal of
the slack variables into a feasible solution (x1,x2,x3) of (1.4).

* This relationship between the feasible solutions of (1.4) and the feasible solutions of (1.7)
allows to produce the optimal solution of (1.4) from the optimal solutions of (1.7) and vice
versa.

The Simplex strategy consists in finding the optimal solution (if it exists) by successive
improvements. If we have found a feasible solution (x,x2,x3) of (1.7), then we try to find a
new solution (xX,x2,x3) which is better in the sense of the objective function:

5x1 +4x2 +3x3 > 5x1 4+ 4xp + 3x3.

By repeating this process, we obtain at the end an optimal solution.

To start, we first need a feasible solution. To find one in our example, it is enough to set
the decision variables x1,x2,x3 to zero and to evaluate the slack variables x4,xs,x¢ using (1.6).
Hence, our initial solution,

x1=0,x=0,x3=0,x4 =5,x5=11,x¢ =8 (1.8)

gives the result z = 0.

We now have to look for a new feasible solution which gives a larger value for z. Finding
such a solution is not hard. For example, if we keep xo = x3 = 0 and increase the value of xi,
then we obtain z = 5x; > 0. Hence, if we keep xp = x3 = 0 and if we set x; = 1, then we obtain
z=15 (and x4 = 3,x5 = 7,x¢ = 5). A better solution is to keep x = x3 = 0 and to set x; = 2;
we then obtain z = 10 (and x4 = 1,x5 = 3,x¢ = 2). However, if we keep xo = x3 = 0 and if
we set x; = 3, then z = 15 and x4 = x5 = x¢ = —1, breaking the constraint x; > 0 for all i. The
conclusion is that one can not increase x; as much as one wants. The question then is: how much
can x| be raised (when keeping x, = x3 = 0) while satisfying the constraints (x4, x5,x¢ > 0)?

The condition x4 =5 —2x; — 3x2 —x3 > 0 implies x| < % Similarly, x5 > 0 implies x| < 171
and xg > 0 implies x; < %. The first bound is the strongest one. Increasing x; to this bound
gives the solution of the next step:

5 1
X1 :—,XQIO,X3:O,X4:O,X5: 1,X6:§ (19)

2
which gives a result z = % improving the last value z = 0 of (1.8).

Now, we have to find a new feasible solution that is better than (1.9). However, this task
is not as simple as before. Why? As a matter of fact, we had at disposal the feasible solution
of (1.8), but also the system of linear equations (1.6) which led us to a better feasible solution.
Thus, we should build a new system of linear equations related to (1.9) in the same way as (1.6)
is related to (1.8).

Which properties should have this new system? Note first that (1.6) express the strictly
positive variables of (1.8) in function of the null variables. Similarly, the new system has to
express the strictly positive variables of (1.9) in function of the null variables of (1.9): x1,xs,x¢
(and z) in function of x»,x3 and x4. In particular, the variable x;, whose value just increased
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from zero to a strictly positive value, has to go to the left side of the new system. The variable
x4, which is now null, has to take the opposite move.

To build this new system, we start by putting x; on the left side. Using the first equation of
(1.6), we write x; in function of x;,x3,x4:

5 3 1 1
= —Txy——x3—— 1.1
X| =5 =X X3 X (1.10)

Then, we express x5,x¢ and z in function of x»,x3,x4 by substituting the expression of x|
given by (1.10) in the corresponding lines of (1.6).

5 3 1 1
X5 = 11—4(§—§x2—§x3—§x4> —Xx2 —2x3
= 14 5x)+2x4,

5 3 1 1
X6 = 8—3(5—5)62—5)63—5)64)—4X2—2)C3

1 n 1 1 N 3
) 2X2 2X3 2-x4v

5 3 1 1
= ———X)— ZX3— = 4

Z 5 (2 2x2 2X3 ZX4) +4xy + 3x3
25 7 1 5

T o MR Tayw

So the new system is

5 3 1 1
X1 = 5 T 3 X2 — b X3 — 3 X4
x5 = 1 4+ 5 x + 2 x4 (1.11)
1 1 1 3 .
X6 = 3 + 7 X2 — 5 X3 + 5 X4
_ 23 7 T3
Z = 5 7 Xy + 3 X3 ) X4.

As done at the first iteration, we now try to increase the value of z by increasing a right
variable of the new system, while keeping the other right variables at zero. Note that raising x;
or x4 would lower the value of z, against our objective. So we try to increase x3. How much?
The answer is given by (1.11) : with x; = x4 = 0, the constraint x; > 0 implies x3 < 5, x5 > 0
impose no restriction and xg > 0 implies that x3 < 1. To conclude x3 = 1 is the best we can do,
and the new solution is

x1=2,x=0x3=1,x4=0,x5=1,x6 =0 (1.12)

and the value of z increases from 12.5 to 13. As stated, we try to obtain a better solution but
also a system of linear equations associated to (1.12). In this new system, the (strictly) positive
variables x;,x4,x¢ have to appear on the right. To build this new system, we start by handling
the new left variable, x3. Thanks to the third equation of (1.11) we rewrite x3 and by substitution
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in the remaining equations of (1.11) we obtain:

X3 = 1 + x + 3x — 2x¢

X1 = 2 — 2xp — 2x4 + xg

x5 = 1 4+ 5x + 2x4 (1.13)
z = 13 — 3x — x4 — X6

It is now time to do the third iteration. First, we have to find a variable of the right side
of (1.13) whose increase would result in an increase of the objective z. But there is no such
variable, as any increase of x,x4 or xg would lower z. We are stuck. In fact, this deadlock
indicates that the last solution is optimal. Why? The answer lies in the last line of (1.13):

z = 13 — 3XQ — X4 — X6- (1.14)

The last solution (1.12) gives a value z = 13; proving that this solution is optimal boils down
to prove that any feasible solution satisfies z < 13. As any feasible solution x1, x>, ..., xg satisfies
the inequalities x» > 0,x4 > 0,x¢ > 0, then z < 13 directly derives from (1.14).

1.2.2 The dictionaries

More generally, given a problem

n

Maximize Y i=1CjXj

Subject to: Z?:l ajjxj < b; forall 1<i<m (1.15)
xj 2 0 forall 1<j<n
we first introduce the slack variables x,41,Xn+2,...,X,+m and we note the objective function z.
That is, we define
Xn+i — bl'— Zzzlaijxj for all 1 Slgm (116)
= Yi_iCjXj

In the framework of the Simplex Method, each feasible solution (x1,x7,...,x,) of (1.15) is rep-
resented by n + m positive or null numbers x1,x7, ..., Xp4m, With X, 41, X542, . . ., Xy, defined by
(1.16). At each iteration, the Simplex Method goes from one feasible solution (x1,x2, ..., X;4m)
to an other feasible solution (¥, %2, ..., %,+m), Which is better in the sense that

n n
Z cjXj> Z CjX;j.
J=1 Jj=1

As we have seen in the example, it is convenient to associate a system of linear equations
to each feasible solution. As a matter of fact, it allows to find better solutions in an easy way.
The technique is to translate the choices of the values of the variables of the right side of the
system into the variables of the left side and in the objective function as well. These systems
have been named dictionaries by J.E. Strum (1972). Thus, every dictionary associated to (1.15)
is a system of equations whose variables x;,1,X,42, . ..,X,+m and z are expressed in function of
X1,X2,...,X,. These n+m+ 1 variables are closely linked and every dictionary express these
dependencies.



1.2. THE SIMPLEX METHOD 11

Property 1.1. Any feasible solution of the equations of a dictionary is also a feasible solution
of (1.16) and vice versa.

For example, for any choice of x1,x2,...,x¢ and of z, the three following assertions are
equivalent:

* (x1,x2,...,%¢,2) is a feasible solution of (1.6);
* (x1,x2,...,%6,2) is a feasible solution of (1.11);
* (x1,x2,...,%6,2) is a feasible solution of (1.13).

From this point of view, the three dictionaries (1.6), (1.11) and (1.13) contain the same
information on the dependencies between the seven variables. However, each dictionary present
this information in a specific way. (1.6) suggests that the values of the variables x, xo and x3
can be chosen at will while the values of x4, x5, x¢ and z are fixed. In this dictionary, the decision
variables x1, x2, x3 act as independent variables while the slack variables x4, x5, x¢ are related to
each other. In the dictionary (1.13), the independent variables are x»,x4,xs and the related ones
are x3,x1,Xs5,Z2.

Property 1.2. The equations of a dictionary have to express m variables among x1,x2, ..., Xn+m,2
in function of the n remaining others.

Properties 1.1 and 1.2 define what a dictionary is. In addition to these two properties, the
dictionaries (1.6),(1.11) and (1.13) have the following property.

Property 1.3. When putting the right variables to zero, one obtains a feasible solution by eval-
uating the left variables.

The dictionaries that have this last property are called feasible dictionaries. As a matter
of fact, any feasible dictionary describes a feasible solution. However, all feasible solutions
cannot be described by a feasible dictionary. For example, no dictionary describe the feasible
solutionx; =1, x =0,x3 =1, x4 =2, x5 =5, x¢ = 3 of (1.4). The feasible solutions that can
be described by dictionaries are referred as basic solutions. The Simplex Method explores only
basic solutions and ignores all other ones. But this is valid because if an optimal solution exists,
then there is an optimal and basic solution. Indeed, if a feasible solution cannot be improved
by the Simplex Method, then increasing any of the n right variables to a positive value never
increases the objective function. In such case, the objective function must be written as a linear
function of these variables in which all the coefficient are non-positive, and thus the objective
function is clearly maximum when all the right variables equal zero. For example, it was the
case in (1.14).

1.2.3 Finding an initial solution

In the previous examples, the initialization of the Simplex Method was not a problem. As a
matter of fact, we carefully chose problems with all b; non-negative. This way x; = 0, x, =0,
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.-+, x, = 0 was a feasible solution and the dictionary was easily built. These problems are called
problems with a feasible origin.

What happens when confronted with a problem with an unfeasible origin? Two difficulties
arise. First, a feasible solution can be hard to find. Second, even if we find a feasible solution,
a feasible dictionary has then to be built. A way to solve these difficulties is to use another
problem called auxiliary problem:

Minimise X0
Subjectto: Y aijxj—x0 < b (i=1,2,---,m)
xj > 0 (j=0,1,---,n).

A feasible solution of the auxiliary problem is easily available: it is enough to set x; = 0V €
[1...n] and to give to xp a big enough value. It is now easy to see that the original problem has
a feasible solution if and only if the auxiliary problem has a feasible solution with xp = 0. In
other words, the original problem has a feasible solution if the optimal value of the auxiliary
problem is null. Thus, the idea is to first solve the auxiliary problem. Let see the details on an
example.

Maximise X1 — X2 + x3
Subject to :
2x1 — x + 2x3 < 4
2x1 — 3x + x3 < =5
—x1 + x — 2x3 < -1
X1,X2,X3 2>
Maximise —xg
Subject to:
2xp — x2 + 2x3 — xo < 4
2x1; — 3x + x3 — x9 < =5
—x1 + x — 2x3 — xp < -1
x1,%2,%3,%0 > 0
We introduce the slack variables. We obtain the dictionary:
X4 = 4 — 2x1 + x» — 2x3 4+ Xxo
xs = =5 — 2x1 4+ 3x — x3 4+ xg (1.17)
x = —1 + x1 — x + 2x3 4+ xg
w = —  X0-

Note that this dictionary is not feasible. However it can be transformed into a feasible one by
operating a simple pivot , xo entering the basis as xs exits it:

X0 = 5 4+ 2x1 — 3x 4+ x3 + x5

X4 = 9 — 2% — x3 4+ x5

xs = 4 43 x1 — 4dxo + 3x3 4+ x5
w = =5 — 2x1 4+ 3x — x3 — Xxs.
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More generally, the auxiliary problem can be written as

Maximise —X0
Subject to: Y aijxj—xo < b (i=1,2,---,m)
xj > 0 (j=0,1,2,---,n)

and the associated dictionary is

Xnti = bi— Yijaix; + xo (i=12,---,m)
w = — X0

This dictionary can be made feasible by pivoting xy with the variable the “most unfeasible”, that
is the exiting variable x4 is the one with by < b; for all i. After the pivot, the variable xy has
value —by, and each x,; has value b; — b. All these values are non negative. We are now able
to solve the auxiliary problem using the simplex method. Let us go back to our example.

After the first iteration with x; entering and x¢ exiting, we get:

Xy = I + 0.75x1 + 0.75x3 + 0.25xs — 0.25x¢
X0 2 — 025x; — 1.25x3 + 0.25x5 + 0.75x¢
x4 = T — 15x1 — 25x3 4+ 05x5 + 0.5x¢

w = =2 4+ 025x; 4+ 1.25x3 — 0.25x5 — 0.75x.

After the second iteration with x3 entering and xg exiting:

x3 = 1.6 — 02x1 + 02x5 4+ 0.6x¢ — 0.8xp
xp = 22 + 06x; + 04xs 4+ 0.2x¢ — 0.6xp
X4 = 3 — X1 — X6 + 2xo
w = —  X0-

(1.18)

The last dictionary (1.18) is optimal. As the optimal value of the auxiliary problem is null,
this dictionary provides a feasible solution of the original problem: x; = 0,x; = 2.2,x3 = 1.6.
Moreover, (1.18) can be easily transformed into a feasible dictionary of the original problem.
To obtain the first three lines of the desired dictionary, it is enough to copy the first three lines
while removing the terms with xo:

x3 = 1.6 — 02x1 + 02x5 + 0.6x4
x = 22 4+ 0.6x; + 04xs + 0.2x¢ (1.19)
X4 = 3 — X1 — X6

To obtain the last line, we express the original objective function
Z=X1—Xx2+Xx3 (1.20)

in function of the variables outside the basis x1,x5,x5. To do so, we replace the variables of
(1.20) by (1.19) and we get:

z=x1—(2.240.6x; +0.4x5 + 0.2x6) + (1.6 — 0.2x1 + 0.2x5 + 0.6x¢) (1.21)
z=—0.64+0.2x; —0.2x5 + 0.4x4
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The desired dictionary then is:

x3 = 1.6 — 02x1 + 02x5 + 0.6xq
x = 22 4+ 06x; + 04xs + 0.2x¢
X4 = 3 — X1 — X6

z = =06 + 02x; — 02x5 + 0.4xg

This strategy is known as the Simplex Method in two phases. During the first phase, we set
and solve the auxiliary problem. If the optimal value is null, we do the second phase consisting
in solving the original problem. Otherwise, the original problem is not feasible.

1.3 Duality of linear programming

Any maximization linear programme has a corresponding minimization problem called the dual
problem. Any feasible solution of the dual problem gives an upper bound on the optimal value
of the initial problem, which is called the primal. Reciprocally, any feasible solution of the
primal provides a lower bound on the optimal value of the dual problem. Actually, if one of
both problems admits an optimal solution, then the other problem does as well and the optimal
solutions match each other. This section is devoted to this result also known as the Duality
Theorem. Another interesting application of the dual problem is that, in some problems, the
variables of the dual have some useful interpretation.

1.3.1 Motivations: providing upper bounds on the optimal value

A way to quickly estimate the optimal value of a maximization linear programme simply con-
sists in computing a feasible solution whose value is sufficiently large. For instance, let us
consider the following problem formulated in Problem 1.4. The solution (0,0, 1,0) gives us a
lower bound of 5 for the optimal value z*. Even better, we get z* > 22 by considering the so-
lution (3,0,2,0). Of course, doing so, we have no way to know how close to the optimal value
the computed lower bound is.

Problem 1.4.
Maximize 4x; +xp +5x3+ 3x4

Subject to: X]1 — X2 —x3+3x4 < 1
Sx1+x2+3x3+8x4 < 55

—X1+2x4+3x3—5x < 3

X1,X2,X3,X4 > 0

The previous approach provides lower bounds on the optimal value. However, this intuitive
method is obviously less efficient than the Simplex Method and this approach provides no clue
about the optimality (or not) of the obtained solution. To do so, it is interesting to have upper
bounds on the optimal value. This is the main topic of this section.
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How to get an upper bound for the optimal value in the previous example? A possible
approach is to consider the constraints. For instance, multiplying the second constraint by %,

we get that 7* < 2;—5 Indeed, for any x1,x7,x3,x4 > O:

25 5 40 5

Adx1 +x0+5x3+3x4 < ?x1+§x2+5x3+?x4 = (SX1+XQ+3)C3+8X4) X§
5 275
< 55X - = —
- 3 3

In particular, the above inequality is satisfied by any optimal solution. Therefore, z* < 2;—5
Let us try to improve this bound. For instance, we can add the second constraint to the third
one. This gives, for any x,x2,x3,x4 > O:

dx1 +x0+5x34+3x4 < 4x;+3x2+6x3—3x4
< (5x14+x2 4 3x3 + 8x4) + (—x1 +2x2 4 3x3 — 5x4)
< 5543 =358

Hence, z* < 58.

More formally, we try to upper bound the optimal value by a linear combination
of the constraints. Precisely, for all i, let us multiply the i/ constraint by y; > 0 and then
sum the resulting constraints. In the previous two examples, we had (y1,y2,y3) = (0, %,0) and
(y1,¥2,¥3) = (0,1,1). More generally, we obtain the following inequality:

y1(x1 —x2 —x3+3x4) +y2(5x1 +x2 4+ 3x3 + 8x4) + y3(—x1 +2x2 + 3x3 — 5x4)
(y1 —5y2 —y3)x1 + (=y1 +y2 +2y3)x2 + (—y1 + 3y2 + 3y3)x3 + (3y1 + 8y2 — 5y3)x4
y1+55y2+3y3

IA

For this inequality to provide an upper bound of 4x; 4 x + 5x3 + 3x4, we need to ensure that,
for all x1,x2,x3,x4 > 0,

dx1+xp +5x3 +3x4
< (y1 —=5Sy2—y3)x1 + (—y1 +y2+2y3)x2 + (—y1 + 3y2 + 3y3)x3 + (3y1 + 8y2 — 5¥3)x4.

Thatis, y; — Sy, —y3 >4, —y1 +y2+2y3 > 1, —y1 +3y2 +3y3 > 5, and 3y + 8y, — 5y3 > 3.
Combining all inequalities, we obtain the following minimization linear programme:

Minimize y;+ 55y +3y3

Subject to:
yi—5n—-ys = 4
—yi+y2+2y3 2> 1
—y1+3y2+3y3 > 5
3y1+8y2—5ys > 3
Y1,¥2,¥3 > 0

This problem is called the dual of the initial maximization problem.
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1.3.2 Dual problem

We generalize the example given in Subsection 1.3.1. Consider the following general maxi-
mization linear programme:

Problem 1.5.
Maximize 2?21 Ccjxj
Subject to: Z;le ajixj <b; forall 1 <i<m
x;j >0 forall1 < j<n

Problem 1.15 is called the primal. The matricial formulation of this problem is

Maximize c’'x

Subjectto: Ax<b

x>0
where xI = [x1,...,x,] and ¢! = [cy,...,c,] are vectors in R”, and bT = [by,...,b,] € R™,
and A = [a;;] is a matrix in R"*".
To find an upper bound on ¢’ x, we aim at finding a vector y' = [y, ..., yn] > 0 such that,

for all feasible solutions x > 0 of the initial problem, ¢/ x <y’ Ax < y’b = by, that is:

Minimize by
Subjectto: Aly>e¢
y=0

In other words, the dual of Problem 1.15 is defined by:

Problem 1.6.
Minimize Yt biyi
Subjectto: Y1 a;jyi>c; forall 1< j<n
yi >0 forall 1 <i<m

Notice that the dual of a maximization problem is a minimization problem. Moreover, there
is a one-to-one correspondence between the m constraints of the primal };_; _,a;jx; < b; and
the m variables y; of the dual. Similarly, the n constraints } " | a;;y; > c; of the dual correspond
one-to-one to the n variables x; of the primal.

Problem 1.16, which is the dual of Problem 1.15, can be equivalently formulated under the
standard form as follows.

Maximize o (=bi)yi
Subjectto: Y (—ajj)yi < —c; forall 1<j<n (1.22)
vi >0 foralll1 <i<m

Then, the dual of Problem 1.22 has the following formulation which is equivalent to Prob-
lem 1.15.

Minimize Yo (=cj)x;
Subject to: 27:1(—aij)xj >—b; forall 1<i<m (1.23)
xj >0 forall 1<j<n



1.3. DUALITY OF LINEAR PROGRAMMING 17

We deduce the following lemma.

Lemma 1.7. If D is the dual of a problem P, then the dual of D is P. Informally, the dual of the
dual is the primal.

1.3.3 Duality Theorem

An important aspect of duality is that feasible solutions of the primal and the dual are related.

Lemma 1.8. Any feasible solution of Problem 1.16 yields an upper bound for Problem 1.15. In
other words, the value given by any feasible solution of the dual of a problem is an upper bound
for the primal problem.

Proof. Let (y1,...,ym) be a feasible solution of the dual and (xp,...,x,) be a feasible solution
of the primal. Then,

n n m m n m
Y eixi<) <Z aij)’l') X<y (Z ai.in) i< ) bivie
= - =i\ =

J= \i=
U]

Corollary 1.9. If (v1,...,ym) is a feasible solution of the dual of a problem (Problem 1.16)
and (xi1,...,x,) is a feasible solution of the corresponding primal (Problem 1.15) such that
Yi_icjxj =YL, biyi, then both solutions are optimal.

Corollary 1.9 states that if we find two solutions for the dual and the primal achieving the
same value, then this is a certificate of the optimality of these solutions. In particular, in that
case (if they are feasible), both the primal and the dual problems have same optimal value.

For instance, we can easily verify that (0, 14,0,5) is a feasible solution for Problem 1.4 with
value 29. On the other hand, (11,0, 6) is a feasible solution for the dual with same value. Hence,
the optimal solutions for the primal and for the dual coincide and are equal to 29.

In general, it is not immediate that any linear programme may have such certificate of opti-
mality. In other words, for any feasible linear programme, can we find a solution of the primal
problem and a solution of the dual problem that achieve the same value (thus, this value would
be optimal)? One of the most important result of the linear programming is the duality theorem
that states that it is actually always the case: for any feasible linear programme, the primal and
the dual problems have the same optimal solution. This theorem has been proved by D. Gale,
H.W. Kuhn and A. W. Tucker [5] and comes from discussions between G.B. Dantzig and J. von
Neumann during Fall 1947.

Theorem 1.10 (DUALITY THEOREM). If the primal problem defined by Problem 1.15 admits
an optimal solution (x3,...,x;,), then the dual problem (Problem 1.16) admits an optimal solu-
tion (y3,...,yy), and

n m
Y cixi=) by
j=1 i=1
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Proof. The proof consists in showing how a feasible solution (yi,...,y,) of the dual can be
obtained thanks to the Simplex Method, so that z* =} | b;y; is the optimal value of the primal.
The result then follows from Lemma 1.8.

Let us assume that the primal problem has been solved by the Simplex Method. For this
purpose, the slack variables have been defined by

n
Xnti = bi — Zaij.x]' forl1 <i<m.
j=1

Moreover, the last line of the last dictionary computed during the Simplex Method gives the
optimal value z* of the primal in the following way: for any feasible solution (xy,...,x,) of the
primal we have

n+m

n
7= ZCij =7 4 Z CiX;.
= i=1

Recall that, for all i < n+ m, ¢; is non-positive, and that it is null if x; is one of the basis
variables. We set

Vi =—Cpyi for1 <i<m.

Then, by definition of the y;’s and the x,,1;’s for 1 <i < m, we have

n n 1t
Z:chxj- = Z*+Zfz‘xi—Z)’? (b,-—Zainj>
j=1 '

Since this equation must be true whatever be the affectation of the x;’s and since the ¢;’s are
non-positive, this leads to

m
& = nybi and
i=1
m m
cj = Ej—l—Zaijy,’-‘S ajjy; forall 1 <j<n.
i=1 i=1

Hence, (y},...,y},) defined as above is a feasible solution achieving the optimal value of the
primal. By Lemma 1.8, this is an optimal solution of the dual. 0

1.3.4 Relation between primal and dual

By the Duality Theorem and Lemma 1.7, a linear programme admits a solution if and only if its
dual admits a solution. Moreover, according to Lemma 1.8, if a linear programme is unbounded,
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then its dual is not feasible. Reciprocally, if a linear programme admits no feasible solution,
then its dual is unbounded. Finally, it is possible that both a linear programme and its dual have
no feasible solution as shown by the following example.

Maximize 2x; —x»

Subjectto:  x;—x2 <
—x1+x < =2
X1,x2 2

Besides the fact it provides a certificate of optimality, the Duality Theorem has also a prac-
tical interest in the application of the Simplex Method. Indeed, the time-complexity of the Sim-
plex Method mainly yields in the number of constraints of the considered linear programme.
Hence, when dealing with a linear programme with few variables and many constraints, it will
be more efficient to apply the Simplex Method on its dual.

Another interesting application of the Duality Theorem is that it is possible to compute an
optimal solution for the dual problem from an optimal solution of the primal. Doing so gives
an easy way to test the optimality of a solution. Indeed, if you have a feasible solution of some
linear programme, then a solution of the dual problem can be derived (as explained below).
Then the initial solution is optimal if and only if the solution obtained for the dual is feasible
and leads to the same value.

More formally, the following theorems can be proved

Theorem 1.11 (Complementary Slackness). Let (xi,...,x,) be a feasible solution of Prob-
lem 1.15 and (y1,...,ym) be a feasible solution of Problem 1.16. These are optimal solutions if
and only if

Zaijyizcj, orxj=0, orboth foralll < j<n, and
lﬁl
Y aijxj=bi, oryi=0, orboth forall1<i<m.

J=1

Proof. First, we note that since x and y are feasible (b; —}j_; aijx;)yi > 0 and (Y2 aijyi —
cj)xj > 0. Summing these inequalities over i and j, we obtain

I

<bl’—zaijxj>yl' > 0 (1.24)

=1

i(Za,jy, >xj > 0 (1.25)

Adding Inequalities 1.24 and 1.25 and using the Duality Theorem (Theorem 1.14), we obtain

m n
Zb,-yi ZZa,jx]y,+ZZaljy,x] Zc]x] Zb,yl chszo.
i=1 j=1

i=1j= j=li=
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Therefore, Inequalities 1.24 and 1.25 must be equalities. As the variables are positive, we
further get that

n
for all i, bi—Zaijxj yi=0
j=1
m
andforallj, Zaijyi_cj )Cj:O.
i=1

A product is equal to zero if one of its two members is null and we obtain the desired result. [

Theorem 1.12. A feasible solution (xy,...,x,) of Problem 1.15 is optimal if and only if there is
a feasible solution (yy,...,ym) of Problem 1.16 such that:

Y aijyi=cj if xj>0

. 1.26
yi=0 if Yiljaijxj<bi (1.26)
Note that, if Problem 1.15 admits a non-degenerate solution (xi,...,x,), i.e., x; > 0 for any

i < n, then the system of equations in Theorem 1.12 admits a unique solution.

Optimality certificates - Examples. Let see how to apply this theorem on two examples.
Let us first examine the statement that

X]=2,%=4x3=0,x=0,x5=7,x,=0

is an optimal solution of the problem

Maximize 18x; — 7Txp + 12x3 + 5Sx4 +  8xg
Subjectto:  2x; — 6xp + 2x3 + Txg4 + 3x5 + 8x¢ < 1
=3x1 — X 4+ 4x3 — 3x4 + x5 + 2x < -2
8x1 — 3x + Sxz3 — 2x4 + 2x < 4
4x; + 8x3 + Tx4 — x5 + 3x < 1
S5x1 + 2xp — 3x3 + 6x4 — 2x5 — xg < 5
X1,X2, % > 0
In this case, (1.26) says:
2y — 3y, + 8y3 + 4y + Sy5 = 18
—6y7 — ¥5 — 3} + 2y; = -7
3+ ¥ - v — 2% = 0
Y5 = 0
5 = 0

As the solution (%,O, %, 1,0) is a feasible solution of the dual problem (Problem 1.16), the

proposed solution is optimal.
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Secondly, is
x(=0,x%=2,x3=0,x3=7,x5=0

an optimal solution of the following problem?

Maximize 8x; — 9xp + 12x3 + 4xg + 1lx;

Subjectto: 2x; — 3xo + 4dx3 + x4 + 3x5 < 1
x1 + Txo + 3x3 — 2x4 + x5 < 1

5x1 + 4xo — 6x3 + 2x4 + 3x5 < 22
X1,Xx2,,x5 > 0

Here (1.26) translates into:

=3y + Ty; + 43 = -9
o= 2%+ 293 = 4
¥ = 0

As the unique solution of the system (3.4,0,0.3) is not a feasible solution of Problem 1.16, the
proposed solution is not optimal.

1.3.5 Interpretation of dual variables

As said in the introduction of this section, one of the major interests of the dual programme is
that, in some problems, the variables of the dual problem have an interpretation.

A classical example is the economical interpretation of the dual variables of the following
problem. Consider the problem that consits in maximizing the benefit of a company building
some products. Each variable x; of the primal problem measures the amount of product j that is
built, and b; the amount of resource i (needed to build the products) that is available. Note that,
for any i < n, j < m, a; j represents the number of units of resource i needed per unit of product
J. Finally, ¢; denotes the benefit (the price) of a unit of product j.

Hence, by checking the units of measure in the constraints ) a;;y; > cj, the variable y; must
represent a benefit per unit of resource i. Somehow, the variable y; measures the unitary value
of the resource i. This is illustrated by the following theorem the proof of which is omitted.

Theorem 1.13. If Problem 1.15 admits a non-degenerate optimal solution with value z7*, then
there is € > 0 such that, for any |t;| <€ (i=1,...,m), the problem

Maximize Yi_cjx;
Subject to Z’}Zlaijxj <bi+t; (i=1,....,m)
)CjZO (j:1,...,n)
admits an optimal solution with value z* +Y!" | yit;, where (yi,...,yy,) is the optimal solution

of the dual of Problem 1.15.

Theorem 1.13 shows how small variations in the amount of available resources can affect the
benefit of the company. For any unit of extra resource i, the benefit increases by y;. Sometimes,
y; is called the marginal cost of the resource i.

In many networks design problems, a clever interpretation of dual variables may help to
achieve more efficient linear programme or to understand the problem better.
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1.4 Exercices

1.4.1 General modelling
Exercise 1. Which problem(s) among (1.27), (1.28) and (1.29) are under the standard form?

Maximize 3x; — 5x»
Subjectto: 4x; + S5xo > 3
6x; — 6xp = 7 (1.27)
x1 + 8xp < 20
x;,x2 =2 0

Minimize 3x; + xp + 4x3 + x4
Subjectto: 9x; + 2x + 6x3 + 5S5x4 < 5

8x1 + 9x + Tx3 + 9xg < 2 (1.28)
xi,x2,x3 > 0
Maximize 8x; — 4x»
Subjectto: 3x; + x < 7
9% 4+ S5xp < =2 (1.29)
X1,X2 > 0

Exercise 2. Put under the standard form:

Minimize —8x; + 9% 4+ 2x3 — 6x4

Subject to: 6x; + 6xp — 10x3 4+ 2x4 > 3
X1,X2,X3,X4 2 0
Exercise 3.  a) Put under the standard form:
Maximize —6x; + 4xp + 2x3
Subject to: dx; 4+ S5x — x3 = 3
2x1 + 3x + 2x3 < 4
X1,X2,X3 Z 0

Could you reformulate the above linear programme using only 2 variables?

b) Write a linear programme with only non negative variables equivalent to the one below:

Maximize 8x; — 4xp
Subjectto: 3x; + x < 7
9% 4+ S5xp < =2
Xy = 0
Xy € R

Hint: You may have to add additional variables.
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Exercise 4. Show that the linear programme (1.30) has no feasible solutions and that the linear

programme (1.31) is unbounded.

Maximize 3x] — x
Subject to: x1 + x < 2
—2x1 — 2x < -—10
X1,x2 2> 0

Maximize Xl — X2
Subjectto: —2x; + x < -1
—Xx1 — 2x < =2
xp,x2 >0

(1.30)

(1.31)

Exercise 5. Find necessary and sufficient conditions on the numbers s and ¢ for the problem

Maximize x; + xp

Subjectto: sx; + txp

a) to admit an optimal solution;
b) to be unfeasible;

¢) to be unbounded.

IV IA
O -

X1,X2

Exercise 6. Prove or disprove: if the following linear programme (1.32)

Maximize 2?21

Subject to: 2?21 a;jx;
Xj

CjXj

b; forall 1 <i<m
0

<
> forall 1 < j<n.

is unbounded, then there exists an index k such that the problem:

Maximize Xk

1 . n
Subject to: }j_; a;jx;
Xj

1s unbounded.

b; for 1 <i<m

<
> 0 for 1<;j<n

(1.32)

Exercise 7. The factory Radioln builds to types of radios A and B. Every radio is produced by
the work of three specialists Pierre, Paul and Jacques. Pierre works at most 24 hours per week.
Paul works at most 45 hours per week. Jacques works at most 30 hours per week. The resources
necessary to build each type of radio and their selling prices as well are given in the following

table:

Radio A Radio B

Pierre

Paul

Jacques
Selling prices

1h 2h
2h 1h
1h 3h

15 euros 10 euros
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We assume that the company has no problem to sell its production, whichever it is.

a) Model the problem of finding a weekly production plan maximizing the revenue of Ra-
dioln as a linear programme. Write precisely what are the decision variables, the objective
function and the constraints.

b) Solve the linear programme using the geometric method and give the optimal production
plan.

Exercise 8. The following table shows the different possible schedule times for the drivers of
a bus company. The company wants that at least one driver is present at every hour of the
working day (from 9 to 17). The problem is to determine the schedule satisfying this condition
with minimum cost.

Time | 9—-11h | 9-13h | 11 -16h | 12—-15h | 13-16h | 14— 17h | 16 - 17h
Cost 18 30 38 14 22 16 9

Formulate an integer linear programme that solves the company decision problem.

Exercise 9 (Chebyshev’s approximation). Data : m measures of points (x;,y;) € R%,i=1,...,m.
Objective: Determine a linear approximation y = ax + b minimizing the largest error of approx-
imation. The decision variables of this problem are a € R and b € R. The problem may be

y

formulated as:
minz = max {|y; —ax; —b|}.

i=1,...m

It is unfortunately not under the form of a linear programme. Let us try to do some transforma-
tions.

Questions:
1. We call MIN-MAX the problem of minimizing the maximum of a set of numbers:
minz with z = max{cyx,...,cxx}.

How to write a MIN-MAX as a linear programme?
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2. Can we express the following constraints
X[ < b

or
x> b

in a linear problem (that is without absolute values)? If yes, how?

3. Rewrite the problem of finding a Chebyshev’s linear approximation as a linear pro-
gramme.

1.4.2 Modelling Combinatorial Problems via (integer) linear program-
ming

Lots of combinatorial problems may be formulated as linear programmes.

Exercise 10 (MINIMUM VERTEX COVER). A vertex cover in a graph G = (V,E) is a set K

of vertices such that each edge e of E is incident to at least one vertex of K. The MINIMUM
VERTEX COVER problem is to find a vertex cover of minimum cardinality in a given graph.

1. Express MINIMUM VERTEX COVER for the following graph as an integer linear pro-
gramme:

v (&) @

2. Express MINIMUM VERTEX COVER for a general graph as a linear programme.

General knowledge: The MINIMUM VERTEX COVER is an NP-complete problem. However,
there exist approximation algorithms to solve it with a factor of approximation 2.

Exercise 11 (MINIMUM EDGE COVER). An edge cover of a graph G = (V E) is a set of edges
F C E such that every vertex v € V is incident to at least one edge of F. The MINIMUM EDGE
COVER problem is to find an edge cover of minimum cardinality in a given graph.

Adapt the integer linear programme modelling MINIMUM VERTEX COVER to obtain an
integer linear programming formulation of MINIMUM EDGE COVER.

Exercise 12. Consider the graph
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A
|

B-D
|

/
C

What does the following linear programme do?

Minimize Xa+xg+xc+xp
Subject to:
xa+xp>1
xg+xp>1
xpt+xc =1
xc+xp>1

x4 >0,xp > 0,xc >0,xp >0

Exercise 13 (Maximum cardinality matching problem (Polynomial < flows or augmenting
paths)). Let G = (V,E) be a graph. Recall that a matching M C E is a set of edges such that
every vertex of V is incident to at most one edge of M. The MAXIMUM MATCHING problem
is to find a matching M of maximum size. Express MAXIMUM MATCHING as a integer linear
programme.

General knowledge: MAXIMUM MATCHING is polynomial problem.

Exercise 14 (MAXIMUM CLIQUE). Recall that a cligue of a graph G = (V,E) is a subset C
of V, such that every two vertices in V are joined by an edge of E. The MAXIMUM CLIQUE
problem consist of finding the largest cardinality of a clique.

Express MAXIMUM CLIQUE as an integer linear programme.

General knowledge: MAXIMUM CLIQUE is an NP-complete problem.

Exercise 15 (French newspaper enigma). What is the maximum size of a set of integers between
1 and 100 such that for any pair (a,b), the difference a-b is not a square ?

1. Model this problem as a graph problem.
2. Write a linear programme to solve it.

Exercise 16 (Resource assignment). A university class has to go from Marseille to Paris using
buses. There are some strong inimities inside the group and two people that dislike each other
cannot share the same bus. What is the minimum number of buses needed to transport the whole
group? Write a LP that solve the problem. (We suppose that a bus does not have a limitation on
the number of places.)

Exercise 17 (MAXIMUM STABLE SET). Recall that a stable set of a graph G = (V,E) is a
subset S of pairwise non-adjacent vertices. The MAXIMUM STABLE SET problem consist in
finding the largest cardinality of a stable set. Give a linear programming formulation of this
problem.
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Exercise 18 (MINIMUM SET COVER). LetU ={1,...,n} beasetand S = {S, ..., Sy} aset of
subsets of U. An S-cover of U is a subset of 7 of § such that Jrcs T = U. The MINIMUM SET
COVER problem consists in, given a set U S , finding an S-cover of U of minimum cardinality.
Example: U ={1,2,3,4,5,6}, 81 ={1,3,6}, S, ={2,4}, S3 ={4,6}, S4 = {1}, S5 = {2,4,5}.
C = {51,52,83} is a set cover of cardinality 3. C* = {S1,Ss} is a minimum set cover of cardi-
nality 2.

Formulate MINIMUM SET COVER as an integer linear programme.

General knowledge: The associate decision problem k-SET COVER, which consists in deciding
wether U has an S-cover of cardinality at most k is A/ P-complete.

Exercise 19 (Instance of MAXIMUM SET PACKING). Suppose you are at a convention of for-
eign ambassadors, each of which speaks English and other various languages.

- French ambassador: French, Russian

- US ambassador:

- Brazilian ambassador: Portuguese, Spanish

- Chinese ambassador: Chinese, Russian

- Senegalese ambassador: Wolof, French, Spanish

You want to make an announcement to a group of them, but because you do not trust them,
you do not want them to be able to speak among themselves without you being able to under-
stand them (you only speak English). To ensure this, you will choose a group such that no two
ambassadors speak the same language, other than English. On the other hand you also want to
give your announcement to as many ambassadors as possible.

Write a linear programme giving the maximum number of ambassadors at which you will
be able to give the message.

Exercise 20 (MAXIMUM SET PACKING). Given a finite set S and a list L of subsets of S.
The MAXIMUM SET PACKING problem consists in finding the maximum number of pairwise
disjoint sets in a given list £ . Give a linear programming formulation of this problem.

1.4.3 Modelling flows and shortest paths.

Recall that an elementary flow network is a four-tuple N = (D, s,t,c) where
- D= (V,A).

- c is a capacity function from A to R* Ueo. For an arc a € A, c(a) represents its capacity,
that is the maximum amount of flow it can carry.

- s and t are two distinct vertices: s is the source of the flow and ¢ the sink. In an elementary
network, the source has no incoming arcs and the destination has no outgoing arcs.
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A flow is a function f from A to R™ which respects the flow conservation constraints and
the capacity constraints.

General knowledge: MAXIMUM FLOW is a polynomial problem. It can be solved using the
Floyd Fulkerson algorithm.

Exercise 21 (MAXIMUM FLOW). Write a linear programming formulation of the MAXIMUM
FLOW problem.

Exercise 22 (MULTICOMMODITY FLOW). Consider a flow network A’ = (D, s,7,¢). Consider
a set of k commodities (s¢,7¢,d“) with 1 < ¢ < k, where where d° is the amount of flow that
has to be sent from node s¢ to node ¢¢. The multicommodity flow problem is to determine if all
demands can be simultaneously routed on the network. This problem models a telecom network
and is one of the fundamental problem of the networking research field.

Write a linear program that solves the multicommodity flow problem.

General knowledge: MULTICOMMODITY FLOW is an NP-complete problem as soon as the
number of commodity is larger or equal to 2.

Exercise 23 (SHORTEST (s,7)-PATH). Let D = (V,A,l) be a an arc-weighted digraph with / is a
length function from A to R™. For a € A, 1(a) is the length of arc a. Let s and ¢ two distinguished
vertices.

Write a linear programme that finds the length of a shortest path between s and ¢.

General knowledge: SHORTEST (s,t)-PATH is a polynomial problem. It can be solved using
the Dijskstra algorithm.

Exercise 24 (Eccentricy and diameter). The distance between two vertices in a graph is the
number of edges in a shortest path connecting them. The eccentricity € of a vertex v is the
greatest distance between v and any other vertex. It can be thought of as how far a node is from
the node most distant from it in the graph. The diameter of a graph is the maximum eccentricity
of any vertex in the graph. That is, it is the greatest distance between any pair of vertices.

1. Write a linear programme to compute the eccentricity of a given vertex.
2. Write a linear programme which computes the diameter of a graph.

Exercise 25 (MINIMUM (s,7)-CUT). Recall that in a flow network N = (G, s,t,c) an (s,t)-cut
is a bipartition C = (V;,V;) of the vertices of G such that s € V; and ¢ € V;. The capacity of the
cut C, denoted by 8(C), is the sum of the capacities of the out-arcs of V; (i.e., the arcs (u,v) with
uecViandveV,).

Write a linear programme that finds the minimum capacity of an (s,7)-cut.
Hint: Use variables to know in which partition is each vertex and additional variables to know
which edges are in the cut.
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1.4.4 Simplex

Exercise 26. Solve with the Simplex Method the following problems:

a.
Maximize 3x; + 3x» + 4x3
Subject to:
X1 + x 4+ 2x3 < 4
2x1 + 3x3 <5
2x1 + x + 3x3 < 7
x1,x,x3 > 0
b.
Maximize 5x; + 6xp + 9x3 + 8xg
Subject to:
X1 4+ 2x% + 3x3 + x4 < 5
X1 + x 4+ 2x3 + 3x4 < 3
X1,X2,x3,x4 > 0
c.
Maximize 2x; + X
Subject to:
2x1 + 3xp < 3
X1 + 5xp < 1
2xp + x < 4
41 + x < 5
xp,x2 > 0

Exercise 27. Use the Simplex Method to describe all the optimal solutions of the following
linear programme:

Maximize 2x; + 3x2 + 5x3 + 4dx4

Subject to:
X1 + 2% + 3x3 4+ x4 < 5
X1 + x 4+ 2x3 + 3x4 < 3
X1,X2,X3,X4 > 0

Exercise 28. Solve the following problems using the Simplex Method in two phases.

a.
Maximise 3x; + xp
Subject to:
X1 — x < -1
X1 — x < =3
2x1 + x < 4
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b.
Maximise 3x; + x»
Subject to:
xp — x < -1
—x; — x < 3
2x1 + x < 2
X1,X2
c.
Maximise 3x; + xp
Subject to:
x1 — x < -1
—x] — x < =3
2x1 — x < 2
X1,X2

1.4.5 Duality

Exercise 29. Write the dual of the following linear programme.

Maximize 7x; + X
Subject to:
dx; + 3x < 3
X — 2x < 4
5% — 2x < 3
xp,x2 > 0
Exercise 30. Consider the following linear programme.
Minimize —2x1 — 3x2 — ZX3 — 3X4
Subject to:
—2x1 — xp — 3x3 — 2x4
3x1 + 2% + 2x3 4+ x4
X1,X2,X3,X4

a) Write the programme (1.40) under the standard form.
b) Write the dual (D) of programme (1.40).

c¢) Give a graphical solution of the dual programme (D).

LINEAR PROGRAMMING
> 0

> 0

> -8 (1.33)
< 7

> 0

d) Carry on the first iteration of the Simplex Method on the linear programme (1.40).

After three iterations, one find that the optimal solution of this programme is x; = 0,

x2:2,X3:Oandx4:3.

e) Verify that the solution of (D) obtained at Question c) is optimal.
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Exercise 31. Prove that the following linear programme is unbounded.

Maximize 3x1 — 4xp + 3x3
Subject to :
X1 + x 4+ x3 < -3
—2x1 — 3x 4+ 4x3 < =5
—3x1 + 2% — x3 < -3
X1,X2,X3 > 0
Exercise 32. We consider the following linear programme.
Maximize X1 — 3xp 4+ 3x3
Subject to :
2xp — x2 + x3 < 4
—4x;1 4+ 3x < 2
3x1 — 2% — x3 < 5
x1,x2,x3 > 0

Is the solution x} = 0, x5 = 0, x3 = 4 optimal?

Exercise 33. We consider the following linear programme.

Maximize 7x; + 6x» + 5x3 — 2x4 + 3x5
Subject to:
X1 + 3x 4+ Sx3 — 2x4 + 2x5< 4
4x; + 2x — 2x3 + x4 + x5< 3
2x1 + 4dxp 4+ 4dx3 — 2x4 4+ S5x5< 5
3x1 + x 4+ 2x3 — x4 — 2x5< 1
X1,X2,X3,X4,X5 > 0.
Is the solution x7 = 0,x5 = %,x§ = %,xj; = %,)@ =0, optimal?

Exercise 34. 1. Because of the arrival of new models, a salesman wants to sell off quickly its
stock composed of eight phones, four hands-free kits and nineteen prepaid cards. Thanks to a
market study, he knows that he can propose an offer with a phone and two prepaid cards and
that this offer will bring in a profit of seven euros. Similarly, we can prepare a box with a phone,
a hands-free kit and three prepaid cards, yielding a profit of nine euros. He is assured to be able
to sell any quantity of these two offers within the availability of its stock. What quantity of each
offer should the salesman prepare to maximize its net profit?

2. A sales representative of a supermarket chain proposes to buy its stock (the products, not
the offers). What unit prices should he negociate for each product (phone, hands-free kits, and
prepaid cards)?

Exercise 35 (FARKAS’ LEMMA). The following two linear programmes are duals of each other.

Maximize 0'x subject to Ax=0 and x>b
Minimize —b'z subjectto ATy—z=0 and z>0
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Farkas’ Lemma says that exactly one of the two linear systems:
Ax=0, x>b and yA >0, yAb>0

has a solution. Deduce Farkas’ Lemma from the Duality Theorem (Theorem 1.14 below).
We recall the duality theorem:
Theorem 1.14 (DUALITY THEOREM). If the primal problem defined by Problem 1.15 admits

an optimal solution (x3,...,x;,), then the dual problem (Problem 1.16) admits an optimal solu-
tion (y3,...,yy), and

n m
Y cixi =) by

j=1 i=1

with
Problem 1.15.
Maximize Z?:l CjXj
Subject to: Z?:] ajixj <b; forall 1 <i<m
x; >0 forall1<j<n

and

Problem 1.16.
Minimize YL biyi
Subject to: Y7 a;y; >cj forall 1< j<n
yi>0 forall 1 <i<m

Exercise 36. The following two linear programmes are duals of each other.

Minimize 07y subjectto ATy >c

Maximize ¢'x subjectto Ax=0 and x>0

A variant of Farkas’ Lemma says that exactly one of the two linear systems:
ATyZC and Ax=0, x>0, x>0

has a solution. Deduce this variant of Farkas’ Lemma from the Duality Theorem (Theorem 1.14
above).

Exercise 37 (Application of duality to game theory- Minimax principle). In this problem, based
on a lecture of Shuchi Chawla, we present an application of linear programming duality in the
theory of games. In particular, we will prove the Minimax Theorem using duality.

Let us first give some definition. A two-players zero-sum game is a protocol defined as
follows: two players choose strategies in turn; given two strategies x and y, we have a valuation
function f(x,y) which tells us what the payoff for Player one is. Since it is a zero sum game, the
payoff for the Player two is exactly — f(x,y). We can view such a game as a matrix of payoffs
for one of the players. As an example take the game of Rock-Paper-Scissors, where the payoff
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is one for the winning party or O if there is a tie. The matrix of winnings for player one will
then be the following:
0 -1 1
A= 1 0 -1
-1 1 0

Where A;; corresponds to the payoff for player one if player one picks the i-th element and
player two the j-th element of the sequence (Rock, Paper, Scissors). We will henceforth refer
to player number two as the column player and player number one as the row player. If the row
player goes first, he obviously wants to minimize the possible gain of the column player.

What is the payoff of the row player? If the row player plays first, he knows that the column
player will choose the minimum of the line he will choose. So he has to choose the line with
the maximal minimum value. That is its payoff is

maxminA;;.
i

Similarly, what is the payoff of the column player if he plays first? If the column player plays
first, the column player knows that the row player will choose the maximum of the column that
will be chosen. So the column player has to choose the column with minimal maximum value.
Hence, the payoff of the row player in this case is

minmaxA;;.
J 1

Compare the payoffs. It is clear that

maxminA;; < minmaxA,;.
i oo

The minimax theorem states that if we allow the players to choose probability distributions
instead of a given column or row, then the payoff is the same no matter which player starts.
More formally:

Theorem 1.17 (Minimax theorem). If x and y are probability vectors, then

max (miny’ Ax) = min(max(y Ax)).
y X X Uy

Let us prove the theorem.

1. Formulate the problem of maximizing its payoff as a linear programme.

2. Formulate the second problem of minimizing its loss as a linear programme.
3. Prove that the second problem is a dual of the first problem.

4. Conclude.

Exercise 38. Prove the following proposition.
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Proposition 1.18. The dual problem of the problem
Maximize ¢! x subjectto Ax<a and Bx=Db and x>0
is the problem

Minimize aly +b’z subjectto ATy+BTz> ¢ and y > 0.
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Linear Programming
Frédéric Giroire Year

TP n°

Linear Program Solvers

In this class, we learn how to solve a linear program on a computer using a solver (here
GLPK). Then, we use the graph and linear program libraries of SAGEMATH to solve some com-
binatorial problems and networking problems. We finish by modelling a research problem : In a
telecom backbone network, find a routing of the demands that minimizes the energy consump-
tion of the network.

SAGEMATH is based on the PYTHON language. A crash course of PYTHON and a list on the
functions to be used is given in this document.

Installation instructions and detailed documentation can be found :

- GLPK http://www.glpk.fr

- SAGEMATH http://www.sagemath.org/index.html The software can be used online, without
installation. But you will need to create an account.

1 Using GLPK to solve Linear Programmes

We examine here the input file format of GLPK, its commands and output format. We then
use it to solve a maximum matching problem.

1.1 Introduction to GLPK
1.1.1 File format.

Different formats exist. We use here CPLEX format which is widely used. Example :

Maximize
obj: x1 + 2 x2 + 3 x3 + x4
Subject To
cl: - x1 +x2 + x3 + 10 x4 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: x2 -3.5x4 =0
Bounds
0 <= x2 <= 40
2 <=x4 <=3
x1 free
Integer
x4
Binary
x3
End



The type of a variable is a non-negative real number by defaut. It can be set to Integer or
Binary with the corresponding keywords, and to a possibly negative variable with the keyword
free.

1.1.2 GLPK commands.

Do not hesitate to use glpsol --help to have a list and explanation of the program com-

mands.
To launch the solver and solve the LP defined in the file prog.lp in the CPLEX file format,
use : glpsol --cpxlp prog.lp -o output.txt The output is written in the file output.txt.

1.1.3 Output format.

Problem:

Rows: 3

Columns: 4 (2 integer, 1 binary)
Non-zeros: 9

Status: INTEGER OPTIMAL

Objective: obj = 87.5 (MAXimum)

No. Row name Activity Lower bound Upper bound
1cl -19 20
c2 30 30
3 c3 0 0 =
No. Column name Activity Lower bound Upper bound
1 x1 60.5
2 x2 10.5 0 40
3 x3 1 0 1
4 x4 3 2

Integer feasibility conditions:

KKT.PE: max.abs.err = 0.00e+00 on row O
0.00e+00 on row O

max.rel.err
High quality

KKT.PB: max.abs.err = 0.00e+00 on row O
0.00e+00 on row O

max.rel.err
High quality

End of output

Karush-Kuhn-Tucker (KKT) optimality conditions are used to assess the numerical accuracy of
the resulting solution.



1.2 Solving a Graph Problem with GLPK

Again, we look at the MAXIMUM MATCHING PROBLEM. A small reminder.

Definition. Let G = (V, E) be a graph.

— A matching M C E is a collection of edges such that every vertex of V' is incident to at
most one edge of M.

— The maximum cardinality matching problem is to find a matching M of maximum size.

On the following graph,

The problem can be modeled with the following LP :

Var. : rzap =1if AB€e M,
zap = 0 otherwise

max TAB +ZBC +TCE
+ZpE +TEF +TAF +ZBF
s.t
zAB +TAr <1
zAB tTpc +xpr <1
zpc +xop <1
zpp <1
zop +xpr +xpp <1
TpF +ZTpF +xar <1
TAB;TBC,TCE:TDE;TEF,TAF,TBF > 0
TAB;TBC,TCE;TDE;TEF,TAF,TBF €N

This LP is easily translated into a format readable by GLPK :

Maximize
xAB+xBC+xCE+xDE+xEF+xAF+xBF
Subject to
cl: xAB + xAF <=1
c2: xAB + xBC + xBF <=1
c3: xBC + xCE <=1
c4: xDE <=1
c5: xCE + xEF + xDE <
c6: xBF + xEF + xAF <
Binary:
xAB, xBC, xCE, xDE, xEF, xAF, xBF

1
1

The output given by GLPK is

Problem:

Rows: 6

Columns: 13 (7 integer, 7 binary)
Non-zeros: 14

Status: INTEGER OPTIMAL

Objective: obj = 3 (MAXimum)

No. Row name Activity Lower bound Upper bound

1ci 1 1
2 c2 1 1



3 c3 1 1

4 c4 1 1

5 cb 1 1

6 c6 1 1
No. Column name Activity Lower bound Upper bound

1 xAB 0 0

2 xBC 1 0

3 xCE 0 0

4 xDE 1 0

5 xEF 0 0

6 xAF 1 0

7 xBF * 0 0 1

Integer feasibility conditions:

INT.PE: max.abs.err. = 0.00e+00 on row O
max.rel.err. = 0.00e+00 on row O
High quality

INT.PB: max.abs.err. = 0.00e+00 on row O
max.rel.err. = 0.00e+00 on row O

High quality

End of output

The maximum matching is of size 3. The three edges of the matching are BC', DE, and AF'.



2 Using Sagemath

Concise Formating

As we have seen in the former lessons, graph problems can be written in a more concise form
and for a general graph. For example, here is a formulation of the MINIMUM VERTEX COVER
Problem : as :

Var. : z; =1ifi € C,
z; = 0 otherwise
min Diey Ti
s. t.

T +x; > 1 (Vij € E)

z; € {0,1} (VieV)
For the solver, the user has to write a small script in his language of preference to obtain
the same generality. The script takes a graph as an input and outputs the LP files that will be

the input of GLPK.
Here, to avoid have to script input-output we will use the graph library of the Sage software.

Solving a graph problem with Sage

Here is how to write the MINIMUM VERTEX COVER Problem using Sage. The program takes
the Petersen graph as an input.

# Define a graph
sage: g=graphs.PetersenGraph()

# Define the linear program as a minimization problem
sage: p=MixedIntegerLinearProgram(maximization=False)

# Defining the variables
sage: b=p.new_variable(binary=True)

# Setting the constraints
sage: for (u,v) in g.edges(labels=None):
p.add_constraint (b[ul+b[v] >= 1)

# Setting the objective function
sage: p.set_objective(sum([b[ul for u in gl))

# Write the LP in a file under the LP format.
sage: p.write_lp("max-matching-sage-1p.lp")

# Solving the linear program
sage: p.solve()

# Printing the solution
sage: b = p.get_values(b)
sage: m = [u for u in g if b[u] == 1]
sage: print m
[0, 1, 3, 7, 8, 9]

# Drawing the solution
sage: g.show(vertex_colors={"red":m})



3 Crash course of Python

Python can be seen as a very powerful scripting language allowing to write very quickly
programs. In particular, it is a convenient language for class : all commands can be tested in a
terminal as the language is interpreted (and the compilation is not necessary) ; the documenta-
tion is incorporated inside the terminal. You can get the doc of a function or object by writing
its name followed by ? and the source code with ??. Additionaly, the list of methods of an object
can be obtained by putting a dot after an object and pressing tab).

sage: g ?

Type: Graph

Base Class: <class ’sage.graphs.graph.Graph’>

String Form: Graph on O vertices

Namespace: Interactive

Length: 0

File: /Applications/sage/local/lib/python2.6/site-packages/sage/graphs/graph.py
Docstring:

Undirected graph.

A graph is a set of vertices connected by edges. See also the
Wikipedia article on graphs.

One can very easily create a graph in Sage by typing:

sage: g = Graph()

sage: g.
Display all 256 possibilities? (y or n)

g.add_cycle g.is_directed

g.add_edge g.is_drawn_free_of_edge_crossings
g.add_edges g.is_equitable

g.add_path g.is_eulerian

g.add_vertex g.is_even_hole_free

Below are presented quickly differences with other programming languages like C or Java,
common commands, and nice tricks existing in this language.

Variables in Python are directly used without declaration.

x=10
name="frederic"

Contrary to language like C or Java, blocks are defined by indentation (and not by brackets
{}). The indentation is done with a tab or a succession of 3 spaces. For example, a conditional
statement would be defined in the following way in Python :

if x > 5 and x/2==0:

print "OK"
Functions are defined by using the keyword def.
def sum(x,y):

value = x+y
return value



Lists are handled in a very natural way in Python. Defining a list :
1 = [2,10,5]
Iterating on the elements of a list :

for x in 1:
print x

There is a very elegant functionality in Python called list comprehension. This is the possibility
of creating a new list from a list.

12 = [2%x for x in 1 if x > 4]

This command creates a list with the elements of 1 that are greater than 4.
A nice trick with tuples

x = (3,"2e element")
1 (x,(4,"et oui"))
for (a,b) in 1:
print "The value of ",b,"is ",a"."

Python commands and Sagemath functions for the exercises

The script below :

- Defines a graph g with 5 vertices, using constructor Graph(n).

- Iterates on the vertices of the graphs and print their names. Note that, by default, nodes are
designated by numbers.

- Adds an edge between vertices 1 and 2 with label 4, add and edge between vertices 3 and 4
with label 7, using method g.add_edge (u,v,w).

- Iterates on the edges, using method g.edges(). Note that an edge is a triple, and that the
values of its elements can be retrieved very elegantly. If you would like to retrieve only the end
vertices, use g.edges (labels=None).

- Retrieve the neighbors of vertex 1, using the method g.neighbors(u).

sage: g = Graph(5)
sage: for v in g:
cela print v

sage: g.add_edge(1,2,4) # an edge without weight can be added simply by g.add_edge(1,2)
sage: g.add_edge(3,4,7)

sage: for (u,v,w) in g.edges():

et print "Label of edge ",u,v,": ",w

Label of edge 12 : 4

Label of edge 34 : 7

sage: g.neighbors(1)

[2]

- Defining a digraph with 7 vertices, using constructor DiGraph (n).
- To retrieve the in-neighbors and out-neighbors of a vertex, use the function d.neighbors_in(v)
and d.neighbors_out(v).

sage: d = DiGraph(7)
sage: d.add_edge(3,4,7)
sage: d.add_edge(3,1,8)
sage: d.neighbors_out(3)
[1, 4]



4 Exercises

4.1 Solving linear programs using GLPK

Exercise 1 Consider the VERTEX COVER PROBLEM on the following graph :

F E @

Solve the problem using GLPK.

Exercise 2 Consider the SHORTEST PATH PROBLEM on the following graph :

3

Solve the problem using GLPK.

Exercise 3 Consider the MAXIMUM FLOW PROBLEM on the following graph :

3

Solve the problem using GLPK.



4.2 Solving Graph and Network Problems using Sage

Exercise 4 [Maximum Independant Set with Sage] Write a Sage script to solve the MAXIMUM
INDEPENDANT SET PROBLEM on the Petersen graph.

Exercise 5 [Maximum Matching with Sage]

1. Write a Sage script that solves the MAXIMUM MATCHING on the following graph (use
a function taking a graph as a parameter maximumMatching(g), define the graph below
and call the function)

’ . @

Hint : Beware not to use both variables b[(u,v)] and b[(v,u)], as there is only a single edge
uwv. You may use the following trick : You define the function B, as B = lambda x, y :
bl (x,y) if x<y else (y,x)]. You then call B(u,v) instead of b[(u,v)].

2. Relax the integer property of the variables and relaunch the program on the above graph.
What is the solution and its value 7 Comment.

Exercise 6 [Shortest Path with Sage]

Write a Sage script that solves the SHORTEST PATH PROBLEM from the node s to the node p on
the following weighted graph and plots the shortest path in red on the digraph. (use a function
taking a directed graph as a parameter shortestPath(d), define the digraph below with labels
on the arcs, and call the function).

Exercise 7 [Flows with Sage*]

1. Write a Sage script that solves the MAXIMUM FLOW PROBLEM from the node s to the
node p on the following network (use a function taking a directed graph as a parameter
maximumFlow(d), define the digraph below with labels on the arcs for the capacities, and
call the function). Plots the flows and capacities on the arcs of the digraph.

3

2

2. There exists a second classic linear formulation of the MAXIMUM FLOW PROBLEM, the
path-formulation.



We note P the set of all paths going from s to t. In this formulation, there is a variable
fp € RT per path p € P giving the value of the flow on path p. The MAXIMUM FLOW
PROBLEM can be written as :

max ZpeP fp

S. t.
Zz’jeA < Cij (VZ] S A)

fp €RT (VpeP)

Write a second Sage function solving the MAXIMUM FLOW PROBLEM using this formu-
lation. You may use the Sage function d.all _simple paths().

3. Launch both functions on complete digraphs of sizes 3,4,5, ... Compare the implementa-
tion time. Comment.

4. A Telecom company wants to send a maximum flow on the above network, but it wants to
transport flow only on paths with less than 4 edges, as longer paths imply longer delays.
Which formulation the company should use 7 Comment.

Exercise 8 [Multicommodity Flows with Sage]

1. Write a Sage script to solve the MULTICOMMODITY FLOW PROBLEM on the Petersen
graph for an all-to-all demand. You should define a function taking as parameter a net-
work and a demand matrix.

2. Consider a variant of the MULTICOMMODITY FLOW PROBLEM in which a flow should
be an integer and should use only one path from its source to its destination. Write the
corresponding LP. Launch it on the Petersen graph. Comment (nature of the solution,
execution time).
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4.3

Modelling and Solving a Research Problem

Exercise 9 [Reducing Network Energy Consumption *] A backbone network is a core network
of today’s Internet. It is operated by a large company such as France Telecom in France. Sche-
matically, it is made of computers routing the traffic called routers and of optical fibers linking
them. Its role is to transfer the Internet traffic from a big city to an other big city. It can be
modelled as a network, that is a digraph G = (V, F) with a weight function ¢ : E — R and a
demand matrix D, where D;; is the traffic demand from city i to city j. Each bi-directional link
uv corresponds to two arcs u — v and v — u. The capacity of all arcs are equal and of value 1.
An example of such networks is given below :

We consider here the problem of reducing backbone network energy consumption. Recent studies
have shown that the energy consumption of routers does not depend of the traffic load that they
route, but mainly on the number of active links between them. We suppose here that links that
are not used can be turned-off.

1.

Model the problem of minimizing the backbone energy consumption while routing all the
demands as a linear program (you may start from the program for the multicommodity
flow provided by the professor).

. We want to study 4-regular square grid networks that are often used by operators. Use

the Sage software to find the routing using the minimum amount of energy for a 3 by 3
grid for an all-to-all traffic demand of intensity 1/10, that is D;; = 0.1 for all 4,5 € V.
What is the percentage of energy that can be saved ?

The traffic of the operator is highly dynamic. For example, it varies during the day and is
of low level at night. We want to implement an algorithm adapting to the level of trafic.
To do so, we first want to assess the percentage of energy that can be saved for different
levels of traffic.

What is the maximum level traffic Dpax that can be routed by a n x n-grid (when
D;j = Dax, Vi, j € V) 7 Write a sage script that returns the energy saving for 5 different
levels of traffic between 0 and Dy in a 3 x 3 grid.

Try to do the same study for 4 x 4-grids, 5 x 5-grids,... what happens?

Propose solutions. In particular, propose a heuristic algorithm able to provide solutions
for large networks.

Virtual network functions. Now each flow is divided into 2 subflows of equal size. The
first subflow has to pass through 2 network functions, a firewall and a DPI (Deep Packet
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Inspection). The second one, through 3 network functions : a firewall, a TCP optimizer
and a Video Optimizer. Each node has capacity 2, meaning that each node can host at
most 2 virtual network functions.

Write an ILP and then a script solving the energy aware routing while doing the assigment
of network functions. You will plot the positions on network functions in the network.
Solve first the problem with only 1 flow, then 2 flows, ... For how many flows, you may
solve the problem ?

Exercise 10 [Reducing Network Energy Consumption using Virtualization *]

Network Function Virtualization (NFV) is a promising network architecture concept to re-
duce operational costs. In legacy networks, network functions, such as firewall or TCP optimiza-
tion, are performed by specific hardware. In networks enabling NF'V coupled with the Software
Defined Network (SDN) paradigm, Virtual Network Functions (VNFs) can be implemented
dynamically on generic hardware. This is of primary interest to implement energy efficient solu-
tions, in order to adapt the resource usage dynamically to the demand. In this project, we study
how to use NFV coupled with SDN to improve the energy efficiency of networks.

1. Model the problem of minimizing the backbone energy consumption while routing all the
demands as a linear program (you may start from the program for the multicommodity
flow provided by the professor).

2. Use Sagemath and the glpk solver to solve the problem on larger and larger grids. What
happens ?

2. Propose a heuristic algorithm to find a good solution of the problem for large networks.

3. Solve the problem using the heuristic algorithm. Compare the solutions of the ILP with
the one of the heuristic algorithm (energy saved and execution time).

We consider now a setting in which a flow has to go through a Service Function Chain, that is
several network functions in a specific order.

4. Propose an ILP to solve this variant of the problem.

5. Propose a heuristic algorithm to solve this variant of the problem.

6. Compare the solutions provided by the ILP and the algorithm in terms of energy saved
and execution time.
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