Modelling Graph Problems using Linear **Programmes: An Example**

Frédéric Giroire

Definition. Let G = (V, E) be a graph.

- A matching M ⊆ E is a collection of edges such that every vertex of V is incident to at most one edge of M.
- The maximum cardinality matching problem is to find a matching M of maximum size.

Reminder: The problem is polynomial

- for a bipartite graph (augmenting paths or applications of flows)
- for a general graph (Edmund's algorithm)

An example:

Figure: A graph with 6 vertices

An example:

Figure: A matching with 2 edges

An example:

Figure: The maximum matching with 3 edges

Question: How to write the Maximum Cardinality Matching Problem as a linear programme?

First step: define the variables. Not always easy, most of the time good idea to think of the objective function.

Goal here: find a maximum subset of edges → variables on the edges seem useful.

First step: define the variables. Not always easy, most of the time good idea to think of the objective function.

Goal here: find a maximum subset of edges → variables on the edges seem useful.

Variables: one variable per edge, x_{AB} for edge AB.

 x_{AB} binary variable $x_{AB} = 1$ if AB in the matching $x_{AB} = 0$ otherwise

Second step: write the objective function.

$$\max x_{AB} + x_{BC} + ... + x_{AF}$$

Third step: write the contraints.

Third step: write the contraints.

• A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.

Third step: write the contraints.

• A matching $M \subseteq E$ is a collection of edges such that every vertex of V is incident to at most one edge of M.

Constraint on vertex *A*: $x_{AB} + x_{AF} \leq 1$.

Third step: write the contraints.

 A matching M ⊆ E is a collection of edges such that every vertex of V is incident to at most one edge of M.

Constraint on vertex *A*: $x_{AB} + x_{AF} \leq 1$.

Constraint on vertex *B*: $x_{AB} + x_{BC} + x_{BF} \le 1$.

One constraint per vertex.

Variables: $x_{AB} = 1$ if edge AB is in the matching and $x_{AB} = 0$ otherwise.

max
$$x_{AB} + x_{BC} + x_{CE} + x_{DE} + x_{EF} + x_{AF} + x_{BF}$$
 subject to
$$x_{AB} + x_{AF} \le 1$$

$$x_{AB} + x_{BC} + x_{BF} \le 1$$

$$x_{BC} + x_{CE} \le 1$$

$$x_{DE} \le 1$$

$$x_{CE} + x_{EF} + x_{DE} \le 1$$

$$x_{BF} + x_{EF} + x_{AF} \le 1$$

$$x_{AB}, x_{BC}, x_{CE}, x_{DE}, x_{EF}, x_{AF}, x_{BF} \ge 0$$

$$x_{AB}, x_{BC}, x_{CF}, x_{DF}, x_{FF}, x_{AF}, x_{BF} \in \mathbb{N}$$

Can be written in a more concise form and more generally for any graph.

Var.:
$$x_{ij} = 1$$
 if $ij \in M$, $x_{ij} = 0$ otherwise max $\sum_{(i,j) \in E} x_{ij}$ s. t.
$$\sum_{ij \in E} x_{ij} \le 1 \qquad (\forall i \in V)$$

$$x_{ij} \ge 0 \qquad (\forall (i,j) \in E)$$
 $x_{ij} \in \mathbb{N} \qquad (\forall (i,j) \in E)$

