
UBINET, Master 2 IFI Algorithms for telecommunications
Final Exam, November 2018

3 hours
No documents are allowed. No computers, cellphones.

Instruction and comments: the points awarded for your answer will be based on the correctness of your
answer as well as the clarity of the main steps in your reasoning. All proposed solutions must be proved.
The two parts are independent. The points are indicated so you may adapt your effort.

1 Parameterized Complexity
All notations throughout this part are in red the first time they are introduced.

1.1 Introduction
Question 1 Give the definition of a vertex cover of a graph G = (V,E).

In the following, for any graph G, let vc(G) denote the minimum size of a vertex cover in G.

Question 2 (Naive algorithm.) Propose a naive algorithm that takes a graph G as input and com-
putes vc(G). What is its time-complexity in function of the size n of V ?

The goal of this problem is the design of a fixed parameter tractable (FPT) algorithm for the following
decision problem. Let k ∈ N be a fixed integer.
Input: a n-node graph G
output: answer Y es if vc(G) ≤ k and No otherwise.

Question 3 (FPT.) Give the definition of a FPT problem.

Question 4 (Case k ∈ {0, 1}.) Propose an algorithm that takes a connected graph G as input and de-
cides if vc(G) ≤ 1. What is its time-complexity?

Question 5 (Integer Linear Programme (ILP).) Write an ILP that, given a graph G = (V,E)
computes vc(G). For every vertex v ∈ V , let xv ∈ {0, 1} denote the variable corresponding to v. Give
the meaning of the variables and of the constraints.

Question 6 (LP relaxation.)

• Explain what is the fractional relaxation of the ILP of the previous question.

• What is the goal of relaxing an ILP?

Let (µv)v∈V be an optimal solution of the fractional relaxation of the LP. That is, for every vertex
v, let assign the value µv ≥ 0 to the variable xv, and such that this assignment satisfies all constraints.

Let V0 = {v ∈ V | µv < 1/2}, V1 = {v ∈ V | µv > 1/2} and V1/2 = {v ∈ V | µv = 1/2}.

1.2 Toward a FPT algorithm
1.2.1 Case V1 = ∅

Let us assume that G has no isolated vertices1.

Question 7 Prove that, if V1 = ∅, then V1/2 = V .

Question 8 Prove that, if V1/2 = V and vc(G) ≤ k, then |V | ≤ 2k.
1An isolated vertex is a vertex adjacent to no edge
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1.2.2 Case V1 6= ∅

This subsection aims at proving that there exists an optimal (integral) vertex cover X ⊆ V with V1 ⊆
X ⊆ V1 ∪ V1/2. Let S∗ ⊆ V be an optimal (integral) vertex cover. Let X = (S∗ \ V0) ∪ V1.

Question 9 Prove that X is a vertex cover of G.

Question 10 Prove that |X| = |S∗| − |S∗ ∩ V0|+ |V1 \ S∗|. Deduce that |S∗ ∩ V0| ≤ |V1 \ S∗|.

Let ε = minv∈V0∪V1
|µv − 1/2|. Note that ε > 0 is well defined since V0 ∪ V1 6= ∅. For every v, let us

define λv as follows:

• λv = µv − ε if v ∈ V1 \ S∗;

• λv = µv + ε if v ∈ V0 ∩ S∗, and

• λv = µv otherwise.

Question 11 Prove that (λv)v∈V is a solution of the fractional relaxation of the LP.

Question 12 What is the value of the solution (λv)v∈V in function of |V0∩S∗|, |V1 \S∗|, ε and the value
of the solution (µv)v∈V ? Deduce that |S∗ ∩ V0| = |V1 \ S∗|

Question 13 Deduce that X is an optimal vertex cover of G.

Question 14 Conclude that vc(G) ≤ k if and only if vc(G \ V1) ≤ k − |V1|

1.3 A FPT algorithm for vertex cover
Let B denote the algorithm of question 2.

Algorithm 1 A FPT algorithm A for deciding if a graph has a Vertex Cover of size ≤ k
Require: A graph G = (V,E) and an integer k
1: If |E| = 0 then
2: Return Y es
3: Else
4: Remove isolated vertices
5: Let (xv = µv)v∈V be an optimal fractional solution obtained by LP
6: If

∑
v∈V

µv > k

7: Return No
8: Else
9: let V1 = {v ∈ V | µv > 1/2}.

10: If V1 6= ∅ then
11: Return A(G \ V1, k − |V1|).
12: Else
13: If |V | > 2k then
14: Return No.
15: Else
16: If B(G) ≤ k then
17: Return Y es.
18: Else
19: Return No.

Question 15 Explain Algorithm A (Algorithm 1) and prove its correctness.

Question 16 Give the time-complexity of algorithm A in function of the number n of vertices of G and
of k (Assume that the time complexity of executing the LP is O(nc) for some constant c ∈ N).
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2 Modeling using linear programs

2.1 Traveling Salesman Problem (4 points)
Given a graph G with n vertices whose edges are weighted by a function w : E(G) → R, a solution to
the Traveling Salesman Problem (or TSP) is a cycle of length n going through all the vertices (exactly
once) of the graph G whose weight (the sum of the weight of its edges) is minimum.

Below is a formulation of the problem as an integer program.

1) Explain what the variables xij represent.

2) In two lines, explain what Constraints (1) and (2) are. In one or two lines, explain why they are
not sufficient to model the TSP.

3) We now consider the variables ui, i = 2, ..., n introduced in Constraint (3). Show that ui − uj ≤
n− 1,∀i, j = 2, ..., n.

4) Show that the variables ui = 2, ..., n define an order on the vertices of the graph (except for one
vertex). Conclude that it is a correct formulation of the TSP.

min
∑n

i=1

∑n
j=1 wijxij

subject to ∑n
i=1 xij = 1 (∀j ∈ V (G)) (1)∑n
j=1 xij = 1 (∀i ∈ V (G)) (2)

ui − uj + nxij ≤ n− 1 (∀i, j = 2, ...n and i 6= j) (3)
xij binary (∀i, j = 1, ...n and i 6= j)
ui integer (∀i ∈ V (G))

2.2 Stations and customers. (8 points)
A provider (or operator) wants to connect n customers to the internet. For this purpose, the operator
uses an individual wired connection from each customer c to one of the m stations (routers, dslams or
similar gateways).

Stations and customers are located in the plane (with no obstacle). The n customers are immobile,
that is their locations are fixed and known. The wiring cost to connect a customer c to station s is 0, 1
euro per meter. For instance, establishing a connection between a customer and a station that are 1
kilometer apart costs 100 euros.

Last, stations do have a bounded capacity, that is, a station can serve at most L customers. The
operator problem is to choose the connections (such that all customers are connected to a station) in
order to minimize the global cost, i.e., the sum of the cost of all n links.

1. Fixed locations.

In this part, we assume that the locations of the stations are also fixed and known. In particular,
the distance (in meters) between any customer c and any station s is fixed and denoted by d(c, s).

• Question 1. What is the minimum cost solution when L ≥ n ?

Now and for all the remaining part of the Problem, we assume that L is a fixed integer, L > 0.

• Question 2. Give a necessary and sufficient condition (in function of n,m and L) for the
problem to be feasible.

Let G = (V,A) be a directed graph with a capacity function c : A → R+ and a weight function
w : A→ R+. The weighted flow problem consists in finding a flow f : A→ R+ satisfying all usual
constraints (capacity, flow conservation) and minimizing

∑
a∈A f(a)w(a).

Let H = (S ∪ C,A) be the bipartite graph with S = {s1, · · · , sm}, C = {c1, · · · , cn} and A is the
set of all arcs from si to cj , i ≤ m, j ≤ n.
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• Question 3. Add a vertex-source and a vertex-target, and define capacity and weight func-
tions in H, in order to model the operator problem in terms of a weighted flow problem.

• Question 4. Give a linear programme to solve the obtained weighted flow problem.

Let G = (V,E) be a graph with a weight function w : V → R+ on the vertices, and a weight
function p : E → R+ on the edges. A w-matching is a set F of edges such that, for any vertex
v ∈ V , v is incident to at most w(v) edges in F . The weight of a w-matching F is

∑
e∈F p(e).

• Question 5. Model the operator problem as a weighted w-matching problem. Give a linear
programme to solve it.

2. Fixed locations with distance restriction.

Due to signal quality issues one cannot actually connect a point to a station when it is too far way.
So we add the following constraint : a station can only be connected to node at distance less than
1 kilometer. We say that a customer sees a station if it is at distance less than 1 kilometer from
this station.

• Question 6. Adapt the flow model to include this max distance constraint.

• Question 7. Prove that there is no solution to the problem if and only if there is a set of k
customers seeing all together less than k/L stations.

3. Stations are not fixed anymore and no distance restriction.

In this part, we come back to the model without any distance restriction, that is a customer can
be connected to any station independently of the distance. However, the stations are not fixed
anymore. To simplify the problem, we assume that the customers are placed on some vertices of a
k× k-grid. To place a station at some vertex of the grid costs 1000 Euros. A station can still serve
at most L customers.

The new problem of the operator is to decide the number of stations, where to place them and how
to connect them to the customers. The total cost for the operator is now the wiring cost plus the
station cost.

• Question 8. Model the new operator problem as a weighted flow problem. You may use a
bipartite graph with one part with k2 vertices and the other part with n vertices.

• Question 9. Give a linear programme to solve this problem.

• Question 10. Explain why the obtained linear programme is more difficult to solve than the
programme in Question 4.
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