
Overview of Networking Challenges
for the Placement of Cloud Services

 Frédéric Giroire

*Combinatorics, Optimisation et Algorithms
For Telecommunications

Journées Cloud 2019

Université Côte d’Azur/CNRS/Inria COATI*, France

One slide on my research

2

Peering 
Link

Network of an
Internet Service  
Provider (ISP)

To other ISP

/17

Optimization of network infrastructures.

Réseaux accès sans-fil
et filaires

One slide on my research

2

Peering 
Link

Network of an
Internet Service  
Provider (ISP)

To other ISP

/17

Optimization of network infrastructures.

Réseaux accès sans-fil
et filaires

 Generic and recurring question: find the best tradeoff between

• where to store data,

• where to carry out computations or execute services,

• how much trafic to send in the network and by which route,

with diverse objectives: minimize the costs, the energy consumption, the failure probability
or to maximize users’ satisfaction.

Using tools from algorithmics, optimization, combinatorics (graph theory), simulations and
experimentations.

In the cloud

• Application or Services are run in Virtual Machines (VMs)
or containers or Kata-containers

• An orchestrator assigns VMs to servers

3

Orchestrator

Classical optimization problem: VM placement satisfying CPU,
memory, storage constraints while minimizing some cost

Big Data*

• The volume of data businesses want to make sense of is
increasing  

• Increasing variety of sources
• Web, mobile, wearables,  

vehicles, scientific, ...  

• Cheaper disks, SSDs, and  
memory  

• Stalling processor speeds

4
*Thanks: Some slides were borrowed from
M. Chowdhury (University of Michigan)

Solution: Big Data Centers for Massive
Parallelism

5

Introduction

6

• More and more data-oriented parallel
computing solutions (e.g., MapReduce, Dryad,
CIEL, and Spark)

• Traditional scheduling consider properties of

• server (e.g., CPU and memory usage)

• job (e.g., execution time, deadline)

Network resources usually not taken into
consideration

Communication is Crucial

• Performance

• Facebook jobs spend ~25% of runtime on average in
intermediate communications*  

[Chowdhury. Presentation in Dimacs. 2017]

• For some workload, communications may account for up to 50%
of job completion time [Chowdhury, et al. Orchestra SIGCOMM
2011]  

7

As fast storage (e.g. SSD-based) systems proliferate, the network
is likely to become an more and more important bottleneck

*Based on a month-long trace with 320,000 jobs and 150 Million tasks,
collected from a 3000-machine Facebook production MapReduce cluster.

Legacy Networks

• However, network resources are usually not
optimized.

• Why?
‣ Network control is *very* difficult.

8

Legacy networks

9

Control
plane

Data plane

• Router=closed systems. Any
change has to be done manually.

• Networks are managed by
complex configurations.

/90

Legacy networks

9

Control
plane

Data plane

• Router=closed systems. Any
change has to be done manually.

• Networks are managed by
complex configurations.

—> Important difficulties to
deploy new protocols /90

Legacy networks

9

Control
plane

Data plane

• Router=closed systems. Any
change has to be done manually.

• Networks are managed by
complex configurations.

—> Important difficulties to
deploy new protocols

-> Dynamic routing decision
not yet successfully
implemented in networks.

/90

10

What can be done to improve network usage?

Question:

Outline

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

11

• Trick 1: Layered graph
• Trick 2: Placement = set cover
• Fact 1: Efficient algorithms exist for SFC
• Trick 3: Modeling concurrent flows with co-flows
• Fact 2: Efficient algorithm exist for co-flows
• Trick 4: The big switch abstraction (and more

generally finding the bottleneck)

12

Modeling Trick

Some modeling tricks or  
algorithmic facts useful to know

Outline

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

13

A new context

However, arrival of two new network
paradigms:  

1. Software Defined Networking (SDN) 

2. Network Function Virtualization (NFV)

14

A new context

However, arrival of two new network
paradigms:  

1. Software Defined Networking (SDN) 

2. Network Function Virtualization (NFV)

14

Software Defined Networks

15

• Router=closed systems. Any
change has to be done manually.

• Networks are managed by
complex configurations.

—> Important difficulties to
deploy new protocols

• Intelligence implemented by a
centralized controller managing
elementary switches

• SDN conceives the network as a
program.

Control
plane

Data plane

Data plane

Control  
plane

Network
Applications

/90

Software Defined Networks

15

• Router=closed systems. Any
change has to be done manually.

• Networks are managed by
complex configurations.

—> Important difficulties to
deploy new protocols

• Intelligence implemented by a
centralized controller managing
elementary switches

• SDN conceives the network as a
program.

—>Allows the deployment of
advanced (dynamic) protocols

Control
plane

Data plane

Data plane

Control  
plane

Network
Applications

/90

Example: Energy Efficiency

16

• Core of solutions for energy efficiency: dynamic adaptation of
resource usage to traffic changes.

HIGH
Traffic

LOW
Traffic

Other applications: energy efficient data centers (virtual
machine assignment), wireless networks (base-station
assignment)…

/90

Software Defined Networks
• Pushed by open source communities + large software and

telecommunication companies.  

• Large eco-system: Open Flow / Open Day Light / Open
Stack / Open vSwitch  

• Software companies: Google  
B4 large scale experiment  
on its inter-data center  
networks [Jain 2013].  

• Telcos: e.g. AT&T targets 75% of network functions as a
software by 2020. 

17

B4 worldwide deployment (2011)

/90

SDN Challenges

• Defining the architecture.
• e.g. northbound APIs to enable

real network programmability

• Security
• e.g. single point of failure

• Scalability of the SDN environment
• e.g. avoiding Control – Data

Plane communications overhead 
 
 

18

Data plane

Network
Applications

Control  
plane

/90

SDN in summary

19

Decoupling of network control and forwarding
functions
 

Advantages:
• centralized management
• programmatically configured
• dynamic routing
• ... 
 

A new context

However, arrival of two new network
paradigms:  

1. Software Defined Networking (SDN) 

2. Network Function Virtualization (NFV)

20

Network Function Virtualization

• Network flows have to be
processed by a large number of
network functions…  
 
…offering different services:
security, traffic engineering, …

• Legacy networks implements
network functions using
expensive specific hardware
called middleboxes.

21

Network Function Virtualization

• The NFV initiative decouples the network elements from
underlying hardware  
 
by allowing functions to be run on general hardware using
Virtual Machines.

22

• Advantages:
- flexibility,
- cost,
- scalability,
- …

Network Appliances General Purpose
Servers

SDN+NFV = full Network
Programmability

23

• NFV and SDN independent of each other but complementary

GOAL: exploit the benefits and potentials of both
approaches

• A symbiosis between them can improve
resource management and service
orchestration:

- Increased Efficiency and Lower Costs
- Faster Innovation and Time to market
- Agility - Automation & change faster
- No Vendor Lock-in

Research Challenges

24

‣ Algorithmic Aspects of Resource Allocation
‣ Evaluation of SDN/NFV solutions
‣ New Protocols & Standardization
‣ Performance
‣ Resiliency
‣ Scalability
‣ Security
‣ …

Research Challenges

25

‣Algorithmic Aspects of Resource Allocation
‣ Evaluation of SDN/NFV solutions
‣ New Protocols & Standardization
‣ Performance
‣ Resiliency
‣ Scalability
‣ Security
‣ …

Outline

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

26

Service Function Chaining

• Network flows are often required to be processed by an
ordered sequence of network functions defining a service

• Different customers can have different requirements in
terms of the sequence of network functions

27

Video	optimization

Deep	packet	inspection

Firewall

SFC	A

SFC	B

Service Function Chaining

28

• Legacy Networks: new service —> new hardware

- impractical to change the locations of physical middleboxes 

• SDN/NFV-enabled Networks: easier and cheaper SFCs
deployment and provisioning:

- simplified middlebox traffic steering (SDN)

- flexible and dynamic deployment of network functions
(NFV)

Flows can be managed dynamically from end-to-end and the network functions
 can be installed only along the paths for which and when they are necessary.

NFV Placement

• NFV: more efficient and flexible network
management.  

• Hence, placing network functions in a cost
effective manner is an essential step toward the full
adoption of the NFV paradigm.  

• Problem: place VNFs to satisfy the ordering
constraints of the flows with the goal of minimizing
the total setup cost (such as license fees, network
efficiency, or energy consumption)

29

Example of Service Function Chains

30

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

Example of Service Function Chains

31

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

Example of Service Function Chains

32

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

Example of Service Function Chains

33

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

SFC Placement
• Challenges:

- Optimizing routing AND NVF provisioning
- Modeling order between functions  

• Outline:
1. Trick 1: The layered graph  

[Dwaraki and Wolf, in HotMIddlebox, 2016]  

2. Approximation algorithms for SFC 
[Tomassilli, Giroire, Huin, Perennes, in INFOCOM 2018]  

‣ Trick 2: NVF placement = Set Cover 
[Sang et al. in Infocom 2017]

34

SFC Placement
• Challenges:

- Optimizing routing AND NVF provisioning
- Modeling order between functions  

• Outline:
1. Trick 1: The layered graph 

[Dwaraki and Wolf, in HotMIddlebox, 2016]  

2. Approximation algorithms for SFC 
[Tomassilli, Giroire, Huin, Perennes, in INFOCOM 2018]  

‣ Trick 2: NVF placement = Set Cover 
[Sang et al. in Infocom 2017]

35

SFC Placement

• Classic way to model the problem of routing &
provisioning SFC is using Integer Linear Programming
(ILP) with
• Introduction of large number of binary variables to

model the function placement.
• Introduction of large number of binary variables to

model the order (“function f2 cannot appear on the
path before function f1”).

• Leads to not efficient optimization solutions and
algorithms

36

Modeling Trick 1

Layered Graph[1]

• Proposes an alternate way to find Service Path (path &
placement of function)

• Transforms a problem of routing and placement into a
problem of routing,

• While taking into account the order between functions.

37

2

6 5

3

41

Example:  
Request between 1 and 4 for SFC

Modeling Trick 1

[1] Dwaraki and Wolf. Adaptive service-chain routing for virtual network functions in
software-defined net- works,” in Workshop on Hot topics in HotMIddlebox, 2016]  

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41 • # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

38

Example: Request between 1 and 4 for SFC

Modeling Trick 1

2

6 5

3

41

2

6 5

3

41

2

6 5

3

41

• # layers = # functions + 1

• Link between layers gives
the placement

• Link inside layers gives
the routing

• Path from first to last layer

Layered Graph

• Finding a Service Path boils down now to find  

• a constrained shortest path (because of shared
capacity) in the layered graph, using fast
pseudo-polynomial algorithms e.g. [1]  

• or even a simple shortest path (often sufficient
in practice), using a very fast algorithm like
Dijkstra.

39

Algorithmic Fact 1

[1] Irnich and Desaulniers. Shortest path problems with resource constraints. Column
generation. 2005.]  

SFC Placement
• Challenges:

- Optimizing routing AND NVF provisioning
- Modeling order between functions  

• Outline:
1. Trick 1: The layered graph  

[Dwaraki and Wolf, in HotMIddlebox, 2016]  

2. Approximation algorithms for SFC  
[Tomassilli, Giroire, Huin, Perennes, in INFOCOM 2018]  

‣ Trick 2: NVF placement = Set Cover  
[Sang et al. in Infocom 2017]

40

• Input: A digraph G = (V,E), a set of  
functions F, and a collection D of demands.

• A demand d ∈ D is modeled by a couple :

• a path path(d) of length l(d) and
• a service function chain sfc(d) of length s(d).

• A setup cost c(v,f) of function f in node v ∈ V .

• Output: A function placement Π ⊂ V × F

• Objective: minimize total setup cost  
 
 
 
 

Problem

41

X

(v,f)2⇧

c(v, f)

• Input: A digraph G = (V,E), a set of  
functions F, and a collection D of demands.

• A demand d ∈ D is modeled by a couple :

• a path path(d) of length l(d) and
• a service function chain sfc(d) of length s(d).

• A setup cost c(v,f) of function f in node v ∈ V .

• Output: A function placement Π ⊂ V × F

• Objective: minimize total setup cost

• Similarly to [Sang et al. Infocom 2017], we consider the case of an
operator which has already routed its demands and which now
wants to optimize the placement of network functions.

Problem

42

X

(v,f)2⇧

c(v, f)

Related Work
• Roughly two categories Heuristic-Based and ILP based

• [Kuo et al. Infocom 2016] Maximizing the total number of
admitted demands

• [Mehraghdam et al. Cloudnet 2014] Minimizing the number of used
nodes or the latency of the paths.

• Works closest to us, Approximation Algorithms
• [Cohen et al. Infocom 2015] Minimizing setup cost near-optimal

approximation algorithms with theoretically proven performance.
However, no execution order of the network functions

• [Sang et al. Infocom 2017] Minimizing the total number of network
functions. But one single network function and leave the
placement of virtual functions with chaining constraint as an open
problem for future research.

43

Contributions

“First approximation algorithms taking into account
ordering constraints.”  

 
+ optimal on trees + validation  

[Tomassilli, Giroire, Huin, Perennes INFOCOM 2018]  

44

Preliminaries: Chains of Length 1

• Direct equivalence with the Minimum Weight
Hitting Set Problem  
 
 
 
 
 
 
 

45

Modeling Trick 2

[Sang et al. Infocom 2017]

Preliminaries: Chains of Length 1

• Direct equivalence with the Minimum Weight
Hitting Set Problem  

• Input: Collection C of subsets of a finite set S. 
Output: A hitting set for C, i.e., a subset S′ ⊆ S
such that S′ contains at least one element from
each subset in C.

• Objective: Minimize the cost of the hitting set,
i.e.,  

46

Modeling Trick 2

Preliminaries: Chains of Length 1

• Direct equivalence with the Minimum Weight
Hitting Set Problem  

• Input: Collection C of subsets of a finite set S. 
Output: A hitting set for C, i.e., a subset S′ ⊆ S
such that S′ contains at least one element from
each subset in C.

• Objective: Minimize the cost of the hitting set,
i.e.,  

46

Modeling Trick 2

Preliminaries: Chains of Length 1

• Direct equivalence with the Minimum Weight
Hitting Set Problem  

• Input: Collection C of subsets of a finite set S. 
Output: A hitting set for C, i.e., a subset S′ ⊆ S
such that S′ contains at least one element from
each subset in C.

• Objective: Minimize the cost of the hitting set,
i.e.,  

46

Modeling Trick 2

Preliminaries: Chains of Length 1

• Elements of S: possible function locations,
i.e., the vertices in V . Each element has cost
c(v).

• Sets in C: paths of the demands in D. Set = all
path nodes {u1, ..., ul(d)}.  

-> Placement of minimum cost covering all
demands corresponds to a minimum cost hitting
set.

47

Modeling Trick 2

Preliminaries: Chains of Length 1

48

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

Modeling Trick 2

Preliminaries: Chains of Length 1

49

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

Modeling Trick 2

Preliminaries: Chains of Length 1

49

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

Modeling Trick 2

Preliminaries: Chains of Length 1

49

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

Modeling Trick 2

Preliminaries: Chains of Length 1

49

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

Modeling Trick 2

Preliminaries: Chains of Length 1

50

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

c(A,f1)

c(B,f1)

c(C,f1)

c(D,f1)

c(E,f1)

c(F,f1)

Modeling Trick 2

Preliminaries: Chains of Length 1

51

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

c(A,f1)

c(B,f1)

c(C,f1)

c(D,f1)

c(E,f1)

c(F,f1)

Modeling Trick 2

Preliminaries: Chains of Length 1

52

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

c(A,f1)

c(B,f1)

c(C,f1)

c(D,f1)

c(E,f1)

c(F,f1)

Modeling Trick 2

Preliminaries: Chains of Length 1

53

A

B

C

D

F

E

3 flows: A to F
 A to E

 F to C
} SFC

ABDF

ACE

FEC

A

C

B

E

D

F

c(A,f1)

c(B,f1)

c(C,f1)

c(D,f1)

c(E,f1)

c(F,f1)

Cost= c(A,f1)+c(E,f1)

Modeling Trick 2

Preliminaries: Chains of Length 1

• The equivalence directly gives:  

• On the positive side, an H(|D|)-
approximation using the greedy-algorithm
for Set Cover [Chvatal 1979].  

• On the negative side, SFC Placement Problem
is hard to approximate within ln(|D|) [Alon
et al. 2006].

54

Modeling Trick 2

General Case

• When length of the chain >= 2,  
Extension is not direct even for a single
chain.

55

How to deal with the general case?

Associated Network

• A key concept: an associated network for
each demand

56

Associated Network

• Definition: Associated Networks H(d) for
demand d with path(d) = u1, u2, ..., ul(d) and
chain sfc(d) = r1, r2, ..., rs(d)

57

Associated Network

• Definition: Capacited Associated Network
H(d,Π) of demand d and function placement Π:  
- All arcs have infinite capacity.  
- Capacity of node u of layer i is 1 if (u,ri) ∈ Π
and 0 otherwise.

58

Associated Network

• Key property: A demand d∈D is satisfied
by Π if and only if there exists a feasible
st − path in the capacitated associated
network H(d,Π).

59

Associated Network: An Example

60

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

D

B B

A A

t

C C

D

s

Associated Network: An Example

61

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

D

B B

A A

t

C C

D

s

Associated Network: An Example

62

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

D

B B

A A

t

C C

D

s

Associated Network: An example

63

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

B B

A A

t

D D

F

s

F

Associated Network: An Example

64

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

B B

A A

t

D D

F

s

F

Associated Network: An Example

65

3 flows: A to F
 A to E

 F to C

A

B

C

D

F

E

SFC	A

SFC	B}

B B

A A

t

D D

F

s

F

Order not respected = No st-paths

New Formulation of the Problem

• Goal: Link our problem with the Hitting Set Problem.  

• Tool: Menger’s theorem for digraphs (max flow-min
cut)  
“number of st − paths in a digraph is equal to the
minimum st-vertex cut”  
 
-> Existence of st-paths <=> cost >= 1 of minimum
st-vertex cut  
 
-> All cuts of the associated networks have to be hit.  

66

Approximation Algorithms

67

-> leads to two approximation algorithms with logarithmic factor
• a greedy one (naive and fast versions)
• one using LP-rounding (naive and fast versions)

Contributions

• Investigated the problem of placing VNFs to satisfy
the ordering constraints of the flows with the goal
of minimizing the total setup cost.  

• We proposed two algorithms that achieve a
logarithmic approximation factor.  

• For the special case of tree network topologies
with only upstream and downstream flows, we
devised an optimal algorithm.  

68

Algorithmic Fact 1

An optimal algorithm for
tree topologies

• Finding efficient algorithms for some class
of graphs (such as trees)  
 
-> often important in practice e.g. for
Mobile Edge Computing or FOG computing
(specific topology of access networks)

69

Modeling Trick 3

An optimal algorithm for
tree topologies

• Tree topology.  
- Physical network of any shape,  
- But clients communicating through a logical
tree (e.g. CDNs, sensor networks, …)

70

Modeling Trick 3

An optimal algorithm for
tree topologies

• Theorem: SFC Placement Problem NP-hard even on
a tree and with a single network function.  
(Proof: Reduction from Vertex Cover)  

• Polynomial exact algorithm for upstream or
downstream flows based on dynamic programming.

71

Modeling Trick 3

Algorithmic Fact 1

SFC - Conclusions

• Efficient algorithms proposed for SFC provisioning

• Theoretical framework for studying the placement problem
with ordering constraints.  

• Unaddressed issues:

- accounting of practical constraints such as soft capacities
on network functions or hard capacities on network nodes.

- Affinity/anti-affinity rules

- Partial order

- Latency

72

Future research direction: possible to efficiently
approximate these problems?

SFC - Conclusions

• SDN and NFV bring several benefits:

- simplify management

- enhance flexibility of the network

- reduce the network cost

• But also several challenges that need to be addressed
to fully attain their benefits

73

SDN-NFV enabled network has the potential to boost NFV
deployment and support new efficient and cost-effective services

Future Directions

74

• Several major revolutions:
- 5G
- IoT
- Mobile Edge Computing
- … 

• Assign slices to capacity slots of physical links -> slicing
• Dynamic SFC Placement
• Network Reconfiguration

New algorithmic problems to be solved

} New challenges

Network Slicing

75

• Assign slices to capacity slots of physical links
- each slice is independent from each other
- each slice may have different QoS requirements

• 2 different network slicing strategies:
- SOFT: traffic is multiplexed in queuing systems: high load

may affect other slices
- HARD: each slice has dedicated resources at physical and

MAC layers

(Parallel with isolation problems VM vs Containers)

Outline: Summary

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

76

Convergence Data Centers/Networks

• Convergence
• of infrastructures,
• of their control with the next

generation SDN/NFV networks

• Allows a joint optimization of
applications and network trafic.

• Revisit the fundamental
problems of scheduling in data
centers.

Topic of a joint lab between

Orange and Inria “Big OS”

77/17

Outline

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

78

Reminder

79

• More and more data-oriented parallel
computing solutions (e.g., MapReduce, Dryad,
CIEL, and Spark)

• Traditional scheduling consider properties of

• server (e.g., CPU and memory usage)

• job (e.g., execution time, deadline)

• Communications account for up to 50% of job
completion time [Chowdhury, et al. Orchestra
SIGCOMM 2011]

Network resources usually not taken into
consideration

Related Work

• Optimizing data center communications.
• [Chowdhury et al. Sigcomm 2011]

Orchestra. Load balancing mechanisms
to improve the shuffle phase.

• [Jalaparti et al. Sigcomm Rev. 2015]
Corral. Using job recurrence to place
data and large computation locality .  

80

Related Work

• Optimizing data center communications.
• [Chowdhury et al. Sigcomm 2011]

Orchestra. Load balancing mechanisms
to improve the shuffle phase.

• [Jalaparti et al. Sigcomm Rev. 2015]
Corral. Using job recurrence to place
data and large computation locality .  

80

Few theoretical frameworks and provably efficient
algorithms

Related Work
• Theoretical frameworks for Scheduling of complex workflows

• [Graham Bell System Tech. Journal 1966] Scheduling with  
precedence constraints or list scheduling.  
Main result: 2-1/m-approx.  

• In the 90s, scheduling with communication delays. Minimizing
makespan still an open problem.  
However, 2-approx if uniform delays and task replication
[Papadimitriou Yannakakis SIAM J. of Computing 1990] or  
if unitary costs [Rayward-Smith DAM 1987]

81

Related Work
• Theoretical frameworks for Scheduling of complex workflows

• [Graham Bell System Tech. Journal 1966] Scheduling with  
precedence constraints or list scheduling.  
Main result: 2-1/m-approx.  

• In the 90s, scheduling with communication delays. Minimizing
makespan still an open problem.  
However, 2-approx if uniform delays and task replication
[Papadimitriou Yannakakis SIAM J. of Computing 1990] or  
if unitary costs [Rayward-Smith DAM 1987]

81

No Network Capacity is assumed: all communications
can be done at the same time without changing the
delay!

Two Theoretical Frameworks
1. Coflows 

or scheduling group of dependant flows 
 
 
 
 

2. Network tasks  
or scheduling while optimizing network resources

82

[Chowdhury,Stoica Hotnets 2012]

[Giroire,Huin,Tomassilli,Pérennes, INFOCOM 2019]

Two Theoretical Frameworks
1. Coflows 

or scheduling group of dependant flows 
 
 
 
 

2. Network tasks  
or scheduling while optimizing network resources

83

[Chowdhury,Stoica Hotnets 2012]

[Giroire,Huin,Tomassilli,Pérennes, INFOCOM 2019]

Distributed Data-Parallel Applications

• Multi-stage dataflow  

- Computation interleaved with

communication

• Computation Stage (e.g., Map, Reduce)  

 - Distributed across many machines  

 - Tasks run in parallel

• Communication Stage (e.g., Shuffle)  
Between successive computation stages

84

Distributed Data-Parallel Applications

• Multi-stage dataflow  

- Computation interleaved with

communication

• Computation Stage (e.g., Map, Reduce)  

 - Distributed across many machines  

 - Tasks run in parallel

• Communication Stage (e.g., Shuffle)  
Between successive computation stages

84

A communication stage cannot complete
until all the data has been transferred

Question

How to design the network for data parallel applications?

‣ What are good communication abstractions?

85

Traditional solution: The flow
abstraction

86

Flow: Transfer of data from a source to a destination

E.g., Lots of work to ensure Per-Flow Fairness and/or
minimize Flow Completion Time

Is Flow Still the Right Abstraction?

87

Independent flows cannot capture the collective communication  
behavior common in data-parallel applications

88

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication
abstraction for
data-parallel
applications to
express their
performance goals  

[1] Chowdhury,Stoica Hotnets 2012

88

Aggregation

Broadcast

Shuffle

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication
abstraction for
data-parallel
applications to
express their
performance goals  

[1] Chowdhury,Stoica Hotnets 2012

88

Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication
abstraction for
data-parallel
applications to
express their
performance goals  

[1] Chowdhury,Stoica Hotnets 2012

88

Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

Single Flow

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication
abstraction for
data-parallel
applications to
express their
performance goals  

[1] Chowdhury,Stoica Hotnets 2012

89

The Coflow abstraction

89

How to
schedule
coflows
online …

 … for faster
 #1 completion
 of coflows?

 … to meet
 #2 more
 deadlines?

1

2

N

1

2

N

.

.

.

.

.

.
Datacenter

The Coflow abstraction

Network and Coflow Model

• “Big switch” conceptual model =
abstract out the datacenter network
fabric as one big switch interconnecting
servers. 

• Assumption: the fabric core can sustain
100% throughput and only the ingress
(NICs) and egress (TOR switches) queues
are potential congestion points. 

• Indeed: most data center network
architecture (e.g. Fat Tree) have full
bissection bandwidth and are
permutation networks.

90

Modeling Trick 4

Network and Coflow Model

• Big-switch model  

• Clairvoyant scheduler = Coflow details  
known at arrival time:

- Source-destination for each flow
- Size of each flow
- Coflow weight  

• Considered Metric: Coflow Completion Time (CCT) = Time
when all flows of a coflow have completed

91

Goal: Minimize Average Weighted CCT

Benefit of inter-coflow scheduling

92

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6

Fair Sharing

L1

L2

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing

L1

L2

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First[1],[2]

L1

L2

L1

L2

[1] Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
[2] pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First[1],[2]

L1

L2

L1

L2

[1] Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
[2] pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First[1],[2]

L1

L2

L1

L2

[1] Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
[2] pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6 time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First[1],[2] The Optimal

L1

L2

L1

L2

L1

L2

[1] Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
[2] pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6 time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First[1],[2] The Optimal

Coflow1 comp. time = 3

L1

L2

L1

L2

L1

L2

[1] Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
[2] pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Benefit of inter-coflow scheduling

92

time2 4 6 time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First[1],[2] The Optimal

Coflow1 comp. time = 3
Coflow2 comp. time = 6

L1

L2

L1

L2

L1

L2

[1] Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
[2] pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

 Link 1
 Link 2

3 Units

Coflow 1
6 Units

Coflow 2

2 Units

Coflows: Main Known Results

Problem of min. avg CCT - Negative Algorithmic Results:  

• NP-Hardness (reduction from concurrent open-shop scheduling).  
[Chowdhury, Zhong, and Stoica. Varys. In ACM SIGCOMM 2014]  
Thus, best hope for = approximation algorithms.  

• Lower Bounds: Inapproximibility within a factor of 2 − ε.  
[Bansal and Khot. Inapproximability of hypergraph vertex cover
and applications to scheduling problems. In EATCS ICALP 2010.]  

• Necessity for Coordination: Without Ω(√n) of the optimal.
[Chowdhury and Stoica. Efficient coflow scheduling without
prior knowledge. In ACM SIGCOMM 2015]

93

Coflows: Main Known Results
Problem of min. avg CCT - Positive Algorithmic Results:

Lots of coflow schedulers proposed:

• Baraat [Dogar et al. in ACM SIGCOMM 2014]

• Varys [Chowdhury, Zhong, and Stoica. Efficient coflow scheduling with
varys. In ACM SIGCOMM 2014]

• Sincronia [Agarwal et al. Sincronia: near-optimal network design for
coflows. In ACM SIGCOMM 2018]

• Best known approximation algorithm: 4-approximation  
[Agarwal, Rajakrishnan, Narayan, Agarwal, Shmoys, Vahdat, Sincronia:
near-optimal network design for coflows. In ACM SIGCOMM 2018]

94

Algorithmic Fact 2

Key open challenges
• Better theoretical understanding  

• Efficient solutions to deal with

• decentralization,

• more complex topologies,

• estimations over DAG,

• etc.  

• Extensions to

• non-clairvoyant scheduler,
• other performance metrics, e.g. tail completion time, fairness.

• co-designing routing along with scheduling of coflows. 

95[Coflow Recent Advances and What’s Next? M. Chowdhury Dimarcs 2017]

Key open challenges

• Better theoretical understanding

• Gap between lower and upper bounds: 2 − ε vs 4-approx.

• Improved competitive ratio for online coflow scheduling
(best known 12).  

96

Key open challenges
• Coordination is necessary to determine realtime

• Coflow size (sum);

• Coflow rates (max);

• Partial order of coflows (ordering);  

• Can be a large source of overhead

• Does not impact too much for large coflows in
slow networks, but ...

• How to perform decentralized coflow scheduling?

• Some centralization necessary with strong
lower bound of Ω(√n)

• But, which “amount of coordination” is
unclear

• e.g. Sincronia does not need per flow
rate adaptation  97

Key open challenges

• Schedule a DAG of coflows

• Consider both network and server
resources (cores)

98

Key open challenges

• Schedule a DAG of coflows

• Consider both network and server
resources (cores)

98

-> Introduction of a new  
 theoretical framework

Two Theoretical Frameworks
1. Coflows 

or scheduling group of dependant flows 
 
 
 
 

2. Network tasks  
or scheduling while optimizing network resources

99

[Chowdhury,Stoica Hotnets 2012]

[Giroire,Huin,Tomassilli,Pérennes, INFOCOM 2019]

A new scheduling framework

100

• Goal: schedule workflows while  
taking into account the  
limited communication  
bandwidth  

• 2 kinds of tasks:

- CPU tasks: to be executed  
by servers

- Network tasks: to be  
executed by network machines

• Network tasks may or may not be executed depending on
the placement of the CPU tasks

A simple example with 2 Servers and 1
Network Machine)

101

2 Servers (P1 and P2)

Network

Dependency Digraph
of a Job
with 9 CPU Tasks

A simple example with 2 Servers and 1
Network Machine)

101

2 Servers (P1 and P2)

Network

Dependency Digraph
of a Job
with 9 CPU Tasks

Workflow with network tasks
A possible schedule

Modeling Data Center Networks

102

• Simple Networks (machines
connected via a bus or via an
antenna)

- one network machine per channel  

Network

Modeling Data Center Networks

102

• Simple Networks (machines
connected via a bus or via an
antenna)

- one network machine per channel  

Network

• Data Center Networks
- key property: large bisection

bandwidth (full for VL2 and Fat
Trees) [Chen et al. JPDC 2016]

- only border links (i.e., links between
the servers and the ToR switches)
have to be taken into account

Modeling Data Center Networks

102

• Simple Networks (machines
connected via a bus or via an
antenna)

- one network machine per channel  

Network

• Data Center Networks
- key property: large bisection

bandwidth (full for VL2 and Fat
Trees) [Chen et al. JPDC 2016]

- only border links (i.e., links between
the servers and the ToR switches)
have to be taken into account

Modeling Data Center Networks

103

• Only inter-rack bandwidth to be
modeled

Modeling Data Center Networks

103

• Only inter-rack bandwidth to be
modeled

• 2 network machines per link:
- one for upload
- one for download 

Nu
1 Nd

1

Modeling Data Center Networks

103

• Only inter-rack bandwidth to be
modeled

• 2 network machines per link:
- one for upload
- one for download 

• Network transfer between M1 and
M13

• job in download machine of M1

• job in upload machine of M13

Nu
1 Nd

1 Nu
13 Nd

13

Modeling Data Center Networks

103

• Only inter-rack bandwidth to be
modeled

• 2 network machines per link:
- one for upload
- one for download 

• Network transfer between M1 and
M13

• job in download machine of M1

• job in upload machine of M13

Nu
1 Nd

1 Nu
13 Nd

13

Modeling Data Center Networks

103

• Only inter-rack bandwidth to be
modeled

• 2 network machines per link:
- one for upload
- one for download 

• Network transfer between M1 and
M13

• job in download machine of M1

• job in upload machine of M13

Nu
1 Nd

1 Nu
13 Nd

13

• More general networks (without full
bissection bandwidth) leads to  
 -approximation
with C minimum network multicut
[Garg et al STOC 1993]

Modeling Data Center Networks

104

• Simple Networks (machines
connected via a bus or via an
antenna)

Network

• Data Center Networks
- modeling border links

C

O(m logm)

Contributions

1. Introduction of new scheduling framework to model
communication delays when tasks are competing for a
limited network bandwidth.  

2. Show how to schedule data center jobs while routing their
communications  

3. Hardness results of SCHEDULING WITH NETWORK TASKS problem  

4. Two efficient scheduling algorithms, G-LIST and PARTITION  

5. Extensive evaluation using workflows based on Google trace
[Reiss et al. White paper]

105

Two Efficient Algorithms

106

• G-LIST: greedy algorithm
- Generalization of the List Scheduling algorithm
- Idea: place a task where there is most needed data and

only if needed network tasks can all be done
- Theorem: G-List is optimal on simple MapReduce

workflows.  

• PARTITION: a 2-phase algorithm
1. assign the tasks to machines while minimizing the CPU and

the networking work
2. compute a schedule for the tasks

 PARTITION: 2-phase approach

• Phase 1: Distribute tasks into
machines minimizing
communications  
 
 

• Phase 2: Schedule the tasks when
placed minimizing makespan

107

M2

M1

PARTITION: Phase 1

108

• Based on the k-balanced graph
partitioning problem:

Goal: Partition vertices of input graph G into k
equally sized components, while minimizing the
total weight of the border edges

Known results: -approximation  
algorithm [Krauthgamer SODA 2009]

Beware! Best solution is not necessarily
with the largest number of machines

PARTITION: Phase 1

109

Principle of PARTITION-ASSIGN Algo:

1. Choose a number of machines, k.

2. Solve a k-balanced partitioning
problem

3. Do it for all possible 1 ≤ k ≤ m

Beware! Best solution is not necessarily
with the largest number of machines

PARTITION: Phase 2

110

- SchedulingWhen Placed problem.

- Results:

- Hardness: NP-complete and
inapproximability 5/4
(reduction from 3SAT)

- Approximation algorithm,
PARTITION-SCHEDULE.

M2

M1

Network tasks: Conclusion

111

• Proposition of a new framework to model the orchestration
of tasks in a datacenter for scenarios in which the network
bandwidth is a limiting resource. 

• Two algorithms to solve the problem, for which we derive
some theoretical guarantees.  

• Demonstration of the effectiveness of our algorithms using
datasets built using statistics from Google data center
traces.

Network tasks: Conclusion

112

A lot of open questions:

- Main one: inapproximability of the general problem?

Reminder: Without network, scheduling with a
dependency digraph not approximable within a factor
4/3 [Lenstra Rinnooy Kan 78] and 2-approximation.

Goal: With network, approximation algorithm or
inapproximability (with a constant>4/3 or  
log factor)

-> Study of variants of k-balanced partition. 

A lot of open questions:  

- On the practical side: study of behaviors of the algorithms on a
testbed, comparing them with practical solutions proposed for
data centers.

Conclusion

113

Outline

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

114

Validating solutions
• Theoretical results (explain main parameter

dependencies, but often too simplistic hypothesis)
• Simulations (represent more complex phenomena,

but bad fidelity to real networks, implementation
different from actual application)

• Emulations (fast and good scalability, can run
actual application, can interact width a live
environment)

• Experimentations (Wide-area implementation not
always possible, too few nodes may be available,
not reproducible)  
 

• Most used tool for SDN/NFV networks: Mininet.

115

Mininet

116

Mininet Limitations
•Mininet provides a flexible and cost-efficient experimental
platform to evaluate SDN applications.

• But it has several limitations:
- resources limits (CPU, bandwidth) if experiments are run
on a single host.

-no strong notion of virtual time (timing measurements
based on system clock)  

• When the physical host is overloaded, Mininet
-may return wrong results or
-not be able to run the experiments 

117

Mininet Limitations
•Mininet provides a flexible and cost-efficient experimental
platform to evaluate SDN applications.

• But it has several limitations:
- resources limits (CPU, bandwidth) if experiments are run
on a single host.

-no strong notion of virtual time (timing measurements
based on system clock)  

• When the physical host is overloaded, Mininet
-may return wrong results or
-not be able to run the experiments 

117

Need to overcome Mininet Limitations and increase the
performance fidelity of network experiments

Distributed Network Emulation

Existing tools:
• Mininet Cluster Edition: [1]
• Maxinet: [Wette et al. IFIP Networking 2014]

118

Solution: distribute the load for resource intensive
experiments.

[1] https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype

https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype

A new tool: Distrinet
• Limitations of existing tools:

- No performance guarantees

- New API

• Distrinet Work in progress [2]
+ Fully compatible with Mininet API.
+ Automatic deployment in private

infrastructures (linux machines and Grid5000)
or public cloud (AWS).

+ Some guarantees that resources requirements
(e.g. cores, memory, network) are satisfied.

+ Minimization of resource utilization for
private infrastructures and costs for public
cloud.

119

[2] Di Lena, Tomassilli, Saucez, Giroire, Turletti and Lac. Mininet on steroids:
exploiting the cloud for Mininet performance IEEE CloudNet 2019

Outline

1. Motivation
2. A new situation: SDN and NFV
3. Placement of virtual network functions
‣ Use case: Service Function Chaining

4. Coflows for datacenters
5. Scheduling with network tasks
6. Tools to evaluate solutions
7. What next?

120

Challenge 1

• Lots of open algorithmic problems
• For SFCs
• For coflows
• For variants of scheduling

121

Challenge 2

• Scheduling beyond the cloud
• Fog Computing and Mobile Edge

Computing

122

Fog/Edge Computing

123

• PROBLEM: Interactive applications require ultra-low network latencies
(< 20 ms) … but latencies to the closest data center are 20-30 ms using
wired networks, up to 50-150 ms on 4G mobile networks

• SOLUTION: Exploit distributed and near-edge computation:
- Reduce latency and network traffic
- improve power consumption

- increase scalability and availability  

Analyze most IoT data near the devices that produce and act on that data
FOG COMPUTING

Fog/Edge Computing - Challenges

124

• Computing and networking resources are:

• heterogeneous

• not always available

• Service cannot be processed everywhere

• Demands and resources are dynamic

How to assign the IoT applications to computing nodes (fog nodes)

which are distributed in a Fog environment?

Mobile Edge Computing

125

• IDEA: Offloading to improve latency and alleviate congestion in
the core -> Push the content (application servers) close to the
users using MEC servers (small datacenter collocated with the
base station) in the infrastructure close to the edge of the network

• PROBLEM: assign users, application, and share of traffic to the
MEC servers

• Constraints:
- mobile traffic depends on time and locality
- geographical constraints
- mobility of the users
- budget

Challenge 3

• Getting realistic scenarios with
• data (application and networks)
• architecture

126

Challenge 3

• Getting realistic scenarios with
• data (application and networks)
• architecture

126

THANKS FOR YOUR ATTENTION!

