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   Generic and recurring question: find the best tradeoff between   

•  where to store data,  

•  where to carry out computations or execute services,  

•  how much trafic to send in the network and by which route,  

with diverse objectives: minimize the costs, the energy consumption, the failure probability 
or to maximize users’ satisfaction. 

Using tools from algorithmics, optimization, combinatorics (graph theory), simulations and 
experimentations. 



In the cloud

• Application or Services are run in Virtual Machines (VMs) 
or containers or Kata-containers 

• An orchestrator assigns VMs to servers

3

Orchestrator

Classical optimization problem: VM placement satisfying CPU, 
memory, storage constraints while minimizing some cost



Big Data*

• The volume of data businesses want to make sense of is 
increasing  

• Increasing variety of sources  
• Web, mobile, wearables,  

vehicles, scientific, ...  

• Cheaper disks, SSDs, and  
memory  

• Stalling processor speeds 

4
*Thanks: Some slides were borrowed from 
M. Chowdhury (University of Michigan)



Solution: Big Data Centers for Massive 
Parallelism
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Introduction
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• More and more data-oriented parallel 
computing solutions (e.g., MapReduce, Dryad, 
CIEL, and Spark) 

• Traditional scheduling consider properties of  

• server (e.g., CPU and memory usage) 

• job (e.g., execution time, deadline) 

Network resources usually not taken into 
consideration 



Communication is Crucial 

• Performance  

• Facebook jobs spend ~25% of runtime on average in 
intermediate communications*  

[Chowdhury. Presentation in Dimacs. 2017]  

• For some workload, communications may account for up to 50% 
of job completion time [Chowdhury, et al. Orchestra SIGCOMM 
2011]  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As fast storage (e.g. SSD-based) systems proliferate, the network 
is likely to become an more and more important bottleneck 

*Based on a month-long trace with 320,000 jobs and 150 Million tasks, 
collected from a 3000-machine Facebook production MapReduce cluster.



Legacy Networks

• However, network resources are usually not 
optimized.  

• Why?  
‣ Network control is *very* difficult.

8
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Legacy networks

9

Control 
plane

Data plane

• Router=closed systems. Any 
change has to be done manually.  

• Networks are managed by 
complex configurations.  

—> Important difficulties to  
deploy new protocols

-> Dynamic routing decision 
not yet successfully 
implemented in networks. 

/90
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What can be done to improve network usage?

Question: 



Outline

1. Motivation 
2. A new situation: SDN and NFV 
3. Placement of virtual network functions 
‣ Use case: Service Function Chaining 

4. Coflows for datacenters 
5. Scheduling with network tasks 
6. Tools to evaluate solutions 
7. What next?
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• Trick 1: Layered graph 
• Trick 2: Placement = set cover 
• Fact 1: Efficient algorithms exist for SFC 
• Trick 3: Modeling concurrent flows with co-flows 
• Fact 2: Efficient algorithm exist for co-flows 
• Trick 4: The big switch abstraction (and more 

generally finding the bottleneck)
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Modeling Trick

Some modeling tricks or  
algorithmic facts useful to know



Outline

1. Motivation 
2. A new situation: SDN and NFV 
3. Placement of virtual network functions 
‣ Use case: Service Function Chaining 

4. Coflows for datacenters 
5. Scheduling with network tasks 
6. Tools to evaluate solutions 
7. What next?

13



A new context
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1. Software Defined Networking (SDN) 

2. Network Function Virtualization (NFV)
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Software Defined Networks
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Software Defined Networks

15

• Router=closed systems. Any 
change has to be done manually.  

• Networks are managed by 
complex configurations.  

—> Important difficulties to  
deploy new protocols

• Intelligence implemented by a 
centralized controller managing 
elementary switches  

• SDN conceives the network as a 
program. 

—>Allows the deployment of  
advanced (dynamic) protocols

Control 
plane

Data plane

Data plane

Control  
plane

Network  
Applications

/90



Example: Energy Efficiency
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• Core of solutions for energy efficiency: dynamic adaptation of 
resource usage to traffic changes. 

HIGH 
Traffic

LOW  
Traffic

Other applications: energy efficient data centers (virtual 
machine assignment), wireless networks (base-station 
assignment)…

/90



Software Defined Networks
• Pushed by open source communities + large software and 

telecommunication companies.  

• Large eco-system: Open Flow / Open Day Light / Open 
Stack / Open vSwitch  

• Software companies: Google  
B4 large scale experiment  
on its inter-data center  
networks [Jain 2013].  

• Telcos: e.g. AT&T targets 75% of network functions as a 
software by 2020. 

17

B4 worldwide deployment (2011)

/90



SDN Challenges

• Defining the architecture.  
•  e.g. northbound APIs to enable 

real network programmability  

• Security 
• e.g. single point of failure 

• Scalability of the SDN environment 
• e.g. avoiding Control – Data 

Plane communications overhead 
 
 

18

Data plane

Network  
Applications

Control  
plane

/90



SDN in summary

19

Decoupling of network control and forwarding 
functions
 

Advantages:
• centralized management
• programmatically configured
• dynamic routing
• ... 
 



A new context

However, arrival of two new network 
paradigms:  

1. Software Defined Networking (SDN) 

2. Network Function Virtualization (NFV)

20



Network Function Virtualization

• Network flows have to be 
processed by a large number of 
network functions…  
 
…offering different services: 
security, traffic engineering, … 

• Legacy networks implements 
network functions using 
expensive specific hardware 
called middleboxes.

21



Network Function Virtualization

• The NFV initiative decouples the network elements from 
underlying hardware  
 
by allowing functions to be run on general hardware using 
Virtual Machines.

22

• Advantages:  
- flexibility,  
- cost,  
- scalability,  
- …

Network Appliances General Purpose
Servers



SDN+NFV = full Network 
Programmability

23

• NFV and SDN independent of each other but complementary

GOAL: exploit the benefits and potentials of both 
approaches 

• A symbiosis between them can improve 
resource management and service 
orchestration: 

- Increased Efficiency and Lower Costs 
- Faster Innovation and Time to market 
- Agility - Automation & change faster 
- No Vendor Lock-in



Research Challenges
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‣ Algorithmic Aspects of Resource Allocation
‣ Evaluation of SDN/NFV solutions
‣ New Protocols & Standardization
‣ Performance
‣ Resiliency
‣ Scalability
‣ Security
‣ …
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Service Function Chaining

• Network flows are often required to be processed by an 
ordered sequence of network functions defining a service

• Different customers can have different requirements in 
terms of the sequence of network functions

27

Video	optimization

Deep	packet	inspection

Firewall

SFC	A

SFC	B



Service Function Chaining
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• Legacy Networks: new service —> new hardware 

- impractical to change the locations of physical middleboxes 
 

• SDN/NFV-enabled Networks: easier and cheaper SFCs 
deployment and provisioning:

- simplified middlebox traffic steering (SDN)

- flexible and dynamic deployment of network functions 
(NFV)

Flows can be managed dynamically from end-to-end and the network functions
 can be installed only along the paths for which and when they are necessary. 



NFV Placement

• NFV: more efficient and flexible network 
management.  

• Hence, placing network functions in a cost 
effective manner is an essential step toward the full 
adoption of the NFV paradigm.  

• Problem: place VNFs to satisfy the ordering 
constraints of the flows with the goal of minimizing 
the total setup cost (such as license fees, network 
efficiency, or energy consumption)

29



Example of Service Function Chains
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SFC Placement
• Challenges:  

- Optimizing routing AND NVF provisioning 
- Modeling order between functions  

• Outline:  
1. Trick 1: The layered graph  

[Dwaraki and Wolf, in HotMIddlebox, 2016]  

2. Approximation algorithms for SFC 
[Tomassilli, Giroire, Huin, Perennes, in INFOCOM 2018]  

‣ Trick 2: NVF placement = Set Cover 
[Sang et al. in Infocom 2017]

34
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SFC Placement

• Classic way to model the problem of routing & 
provisioning SFC is using Integer Linear Programming 
(ILP) with  
• Introduction of large number of binary variables to 

model the function placement. 
• Introduction of large number of binary variables to 

model the order (“function f2 cannot appear on the 
path before function f1”). 

• Leads to not efficient optimization solutions and 
algorithms

36

Modeling Trick 1



Layered Graph[1]

• Proposes an alternate way to find Service Path (path & 
placement of function) 

• Transforms a problem of routing and placement into a 
problem of routing,  

• While taking into account the order between functions.

37

2

6 5

3

41

Example:  
Request between 1 and 4 for SFC

Modeling Trick 1

[1] Dwaraki and Wolf. Adaptive service-chain routing for virtual network functions in 
software-defined net- works,” in Workshop on Hot topics in HotMIddlebox, 2016]  



Layered Graph
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• Path from first to last layer 
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Layered Graph

• Finding a Service Path boils down now to find  

• a constrained shortest path (because of shared 
capacity) in the layered graph, using fast 
pseudo-polynomial algorithms e.g. [1]  

• or even a simple shortest path (often sufficient 
in practice), using a very fast algorithm like 
Dijkstra.

39

Algorithmic Fact 1

[1] Irnich and Desaulniers. Shortest path problems with resource constraints. Column 
generation. 2005.]  



SFC Placement
• Challenges:  

- Optimizing routing AND NVF provisioning 
- Modeling order between functions  

• Outline:  
1. Trick 1: The layered graph  

[Dwaraki and Wolf, in HotMIddlebox, 2016]  

2. Approximation algorithms for SFC  
[Tomassilli, Giroire, Huin, Perennes, in INFOCOM 2018]  

‣ Trick 2: NVF placement = Set Cover  
[Sang et al. in Infocom 2017]
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• Input: A digraph G = (V,E), a set of  
functions F, and a collection D of demands.  

• A demand d ∈ D is modeled by a couple :  

• a path path(d) of length l(d) and  
• a service function chain sfc(d) of length s(d).  

• A setup cost c(v,f) of function f in node v ∈ V .  

• Output: A function placement Π ⊂ V × F  

• Objective: minimize total setup cost  
 
 
 
 

Problem

41

X

(v,f)2⇧

c(v, f)



• Input: A digraph G = (V,E), a set of  
functions F, and a collection D of demands.  

• A demand d ∈ D is modeled by a couple :  

• a path path(d) of length l(d) and  
• a service function chain sfc(d) of length s(d).  

• A setup cost c(v,f) of function f in node v ∈ V .  

• Output: A function placement Π ⊂ V × F  

• Objective: minimize total setup cost  

• Similarly to [Sang et al. Infocom 2017], we consider the case of an 
operator which has already routed its demands and which now 
wants to optimize the placement of network functions. 

Problem

42

X

(v,f)2⇧

c(v, f)



Related Work
• Roughly two categories Heuristic-Based and ILP based 

• [Kuo et al. Infocom 2016] Maximizing the total number of 
admitted demands 

• [Mehraghdam et al. Cloudnet 2014] Minimizing the number of used 
nodes or the latency of the paths.  

• Works closest to us, Approximation Algorithms 
• [Cohen et al. Infocom 2015] Minimizing setup cost near-optimal 

approximation algorithms with theoretically proven performance. 
However, no execution order of the network functions 

• [Sang et al. Infocom 2017] Minimizing the total number of network 
functions. But one single network function and leave the 
placement of virtual functions with chaining constraint as an open 
problem for future research. 

43



Contributions

“First approximation algorithms taking into account  
ordering constraints.”  

 
+ optimal on trees + validation  

[Tomassilli, Giroire, Huin, Perennes INFOCOM 2018]  

44



Preliminaries: Chains of Length 1

• Direct equivalence with the Minimum Weight 
Hitting Set Problem  
 
 
 
 
 
 
 

45

Modeling Trick 2

[Sang et al. Infocom 2017]
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Modeling Trick 2



Preliminaries: Chains of Length 1

• Elements of S: possible function locations, 
i.e., the vertices in V . Each element has cost 
c(v).  

• Sets in C: paths of the demands in D. Set = all 
path nodes {u1, ..., ul(d)}.  

-> Placement of minimum cost covering all 
demands corresponds to a minimum cost hitting 
set.

47

Modeling Trick 2



Preliminaries: Chains of Length 1
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Preliminaries: Chains of Length 1
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Preliminaries: Chains of Length 1
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Preliminaries: Chains of Length 1
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Preliminaries: Chains of Length 1

• The equivalence directly gives:  

• On the positive side, an H(|D|)-
approximation using the greedy-algorithm 
for Set Cover [Chvatal 1979].  

• On the negative side, SFC Placement Problem 
is hard to approximate within ln(|D|) [Alon 
et al. 2006]. 

54

Modeling Trick 2



General Case

• When length of the chain >= 2,  
Extension is not direct even for a single 
chain. 

55

How to deal with the general case?



Associated Network

• A key concept: an associated network for 
each demand

56



Associated Network

• Definition: Associated Networks H(d) for 
demand d with path(d) = u1, u2, ..., ul(d) and 
chain sfc(d) = r1, r2, ..., rs(d) 

57



Associated Network

• Definition: Capacited Associated Network 
H(d,Π) of demand d and function placement Π:  
- All arcs have infinite capacity.  
- Capacity of node u of layer i is 1 if (u,ri) ∈ Π 
and 0 otherwise. 

58



Associated Network

• Key property: A demand d∈D is satisfied 
by Π if and only if there exists a feasible 
st − path in the capacitated associated 
network H(d,Π). 

59



Associated Network: An Example
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Associated Network: An example
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Associated Network: An Example

64

3 flows: A to F  
             A to E 

  F to C

A

B

C

D

F

E

SFC	A

SFC	B}

B B

A A

t

D D

F

s

F



Associated Network: An Example
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New Formulation of the Problem

• Goal: Link our problem with the Hitting Set Problem.  

• Tool: Menger’s theorem for digraphs (max flow-min 
cut)  
“number of st − paths in a digraph is equal to the 
minimum st-vertex cut”  
 
-> Existence of st-paths <=> cost >= 1 of   minimum 
st-vertex cut  
 
-> All cuts of the associated networks have to be hit.  

66



Approximation Algorithms

67

-> leads to two approximation algorithms with logarithmic factor 
• a greedy one (naive and fast versions) 
• one using LP-rounding (naive and fast versions) 



Contributions

• Investigated the problem of placing VNFs to satisfy 
the ordering constraints of the flows with the goal 
of minimizing the total setup cost.  

• We proposed two algorithms that achieve a 
logarithmic approximation factor.  

• For the special case of tree network topologies 
with only upstream and downstream flows, we 
devised an optimal algorithm.  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Algorithmic Fact 1



An optimal algorithm for  
tree topologies

• Finding efficient algorithms for some class 
of graphs (such as trees)  
 
-> often important in practice e.g. for 
Mobile Edge Computing or FOG computing 
(specific topology of access networks)
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Modeling Trick 3



An optimal algorithm for  
tree topologies

• Tree topology.  
- Physical network of any shape,  
- But clients communicating through a logical 
tree (e.g. CDNs, sensor networks, …) 
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Modeling Trick 3



An optimal algorithm for  
tree topologies

• Theorem: SFC Placement Problem NP-hard even on 
a tree and with a single network function.  
(Proof: Reduction from Vertex Cover)  

• Polynomial exact algorithm for upstream or 
downstream flows based on dynamic programming. 
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Modeling Trick 3

Algorithmic Fact 1



SFC - Conclusions

• Efficient algorithms proposed for SFC provisioning  

• Theoretical framework for studying the placement problem 
with ordering constraints.  

• Unaddressed issues:   

- accounting of practical constraints such as soft capacities 
on network functions or hard capacities on network nodes. 

- Affinity/anti-affinity rules  

- Partial order 

- Latency

72

Future research direction: possible to efficiently 
approximate these problems? 



SFC - Conclusions

• SDN and NFV bring several benefits:

- simplify management

- enhance flexibility of the network

- reduce the network cost 

• But also several challenges that need to be addressed 
to fully attain their benefits 
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SDN-NFV enabled network has the potential to boost NFV 
deployment and support new efficient and cost-effective services 



Future Directions

74

• Several major revolutions: 
- 5G
- IoT
- Mobile Edge Computing
- … 

• Assign slices to capacity slots of physical links -> slicing
• Dynamic SFC Placement 
• Network Reconfiguration

New algorithmic problems to be solved

} New challenges



Network Slicing

75

• Assign slices to capacity slots of physical links
- each slice is independent from each other
- each slice may have different QoS requirements

• 2 different network slicing strategies:
- SOFT: traffic is multiplexed in queuing systems: high load 

may affect other slices
- HARD: each slice has dedicated resources at physical and 

MAC layers

(Parallel with isolation problems VM vs Containers)



Outline: Summary

1. Motivation 
2. A new situation: SDN and NFV 
3. Placement of virtual network functions 
‣ Use case: Service Function Chaining 

4.  Coflows for datacenters 
5.  Scheduling with network tasks 
6. Tools to evaluate solutions 
7. What next?
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Convergence Data Centers/Networks

• Convergence  
• of infrastructures,  
• of their control with the next 

generation SDN/NFV networks 

• Allows a joint optimization of 
applications and network trafic.  

• Revisit the fundamental 
problems of scheduling in data 
centers.

Topic of a joint lab between  

Orange and Inria “Big OS”

77/17
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Reminder

79

• More and more data-oriented parallel 
computing solutions (e.g., MapReduce, Dryad, 
CIEL, and Spark) 

• Traditional scheduling consider properties of  

• server (e.g., CPU and memory usage) 

• job (e.g., execution time, deadline) 

• Communications account for up to 50% of job 
completion time [Chowdhury, et al. Orchestra 
SIGCOMM 2011]

Network resources usually not taken into 
consideration 



Related Work

• Optimizing data center communications.  
• [Chowdhury et al. Sigcomm 2011] 

Orchestra. Load balancing mechanisms 
to improve the shuffle phase. 

• [Jalaparti et al. Sigcomm Rev. 2015] 
Corral. Using job recurrence to place 
data and large computation locality .  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Few theoretical frameworks and provably efficient 
algorithms



Related Work
• Theoretical frameworks for Scheduling of complex workflows 

• [Graham Bell System Tech. Journal 1966] Scheduling with  
precedence constraints or list scheduling.  
Main result: 2-1/m-approx.  

• In the 90s, scheduling with communication delays. Minimizing 
makespan still an open problem.  
However, 2-approx if uniform delays and task replication 
[Papadimitriou Yannakakis SIAM J. of Computing 1990] or  
if unitary costs [Rayward-Smith DAM 1987]
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No Network Capacity is assumed: all communications 
can be done at the same time without changing the 
delay! 



Two Theoretical Frameworks
1. Coflows 

or scheduling group of dependant flows 
 
 
 
 

2. Network tasks  
or scheduling while optimizing network resources

82

[Chowdhury,Stoica Hotnets 2012]

[Giroire,Huin,Tomassilli,Pérennes, INFOCOM 2019]
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[Chowdhury,Stoica Hotnets 2012]

[Giroire,Huin,Tomassilli,Pérennes, INFOCOM 2019]



Distributed Data-Parallel Applications 

• Multi-stage dataflow  

- Computation interleaved with 

communication  

• Computation Stage (e.g., Map, Reduce)  

 - Distributed across many machines  

 - Tasks run in parallel  

• Communication Stage (e.g., Shuffle)  
Between successive computation stages 
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A communication stage cannot complete  
until all the data has been transferred 



Question

How to design the network for data parallel applications? 

‣ What are good communication abstractions? 
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Traditional solution: The flow 
abstraction

86

Flow: Transfer of data from a source to a destination

E.g., Lots of work to ensure Per-Flow Fairness and/or 
minimize Flow Completion Time



Is Flow Still the Right Abstraction? 

87

Independent flows cannot capture the collective communication  
behavior common in data-parallel applications



88

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication 
abstraction for 
data-parallel 
applications to 
express their 
performance goals  

[1] Chowdhury,Stoica Hotnets 2012



88

Aggregation
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Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication 
abstraction for 
data-parallel 
applications to 
express their 
performance goals  

[1] Chowdhury,Stoica Hotnets 2012
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Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

Single Flow

• Coflow = Collection of semantically related flows [1]

The Coflow abstraction

• Communication 
abstraction for 
data-parallel 
applications to 
express their 
performance goals  

[1] Chowdhury,Stoica Hotnets 2012
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The Coflow abstraction
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How to 
schedule 
coflows 
online …

                … for faster
        #1 completion
                of coflows?

                 … to meet
        #2   more
                 deadlines?

1

2

N

1

2

N

.

.

.

.

.

.
Datacenter

The Coflow abstraction



Network and Coflow Model

• “Big switch” conceptual model = 
abstract out the datacenter network 
fabric as one big switch interconnecting 
servers. 

• Assumption: the fabric core can sustain 
100% throughput and only the ingress 
(NICs) and egress (TOR switches) queues 
are potential congestion points. 

• Indeed: most data center network 
architecture (e.g. Fat Tree) have full 
bissection bandwidth and are 
permutation networks. 
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Modeling Trick 4



Network and Coflow Model

• Big-switch model  

• Clairvoyant scheduler = Coflow details  
known at arrival time:  

- Source-destination for each flow 
- Size of each flow 
- Coflow weight  

• Considered Metric: Coflow Completion Time (CCT) = Time 
when all flows of a coflow have completed 

91

Goal: Minimize Average Weighted CCT 



Benefit of inter-coflow scheduling
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Coflows: Main Known Results

Problem of min. avg CCT - Negative Algorithmic Results:   

• NP-Hardness (reduction from concurrent open-shop scheduling).  
[Chowdhury, Zhong, and Stoica. Varys. In ACM SIGCOMM 2014]  
Thus, best hope for = approximation algorithms.  

• Lower Bounds: Inapproximibility within a factor of 2 − ε.  
[Bansal and Khot. Inapproximability of hypergraph vertex cover 
and applications to scheduling problems. In EATCS ICALP 2010.]  

• Necessity for Coordination: Without Ω(√n) of the optimal. 
[Chowdhury and Stoica. Efficient coflow scheduling without 
prior knowledge. In ACM SIGCOMM 2015] 
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Coflows: Main Known Results
Problem of min. avg CCT - Positive Algorithmic Results:   

Lots of coflow schedulers proposed:  

• Baraat [Dogar et al. in ACM SIGCOMM 2014 ] 

• Varys [Chowdhury, Zhong, and Stoica. Efficient coflow scheduling with 
varys. In ACM SIGCOMM 2014] 

• Sincronia [Agarwal et al. Sincronia: near-optimal network design for 
coflows. In ACM SIGCOMM 2018] 

• Best known approximation algorithm: 4-approximation  
[Agarwal, Rajakrishnan, Narayan, Agarwal, Shmoys, Vahdat, Sincronia: 
near-optimal network design for coflows. In ACM SIGCOMM 2018]
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Algorithmic Fact 2



Key open challenges 
• Better theoretical understanding  

• Efficient solutions to deal with 

•  decentralization,  

• more complex topologies,  

• estimations over DAG,  

• etc.  

• Extensions to  

• non-clairvoyant scheduler,  
• other performance metrics, e.g. tail completion time, fairness. 

• co-designing routing along with scheduling of coflows. 

95[Coflow Recent Advances and What’s Next? M. Chowdhury Dimarcs 2017]



Key open challenges

• Better theoretical understanding  

• Gap between lower and upper bounds: 2 − ε vs 4-approx. 

• Improved competitive ratio for online coflow scheduling 
(best known 12).  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Key open challenges
• Coordination is necessary to determine realtime 

• Coflow size (sum);  

• Coflow rates (max);  

• Partial order of coflows (ordering);  

• Can be a large source of overhead  

• Does not impact too much for large coflows in 
slow networks, but ...  

• How to perform decentralized coflow scheduling?  

• Some centralization necessary with strong 
lower bound of Ω(√n) 

• But, which “amount of coordination” is  
unclear  

• e.g. Sincronia does not need per flow 
rate adaptation  97



Key open challenges 

• Schedule a DAG of coflows 

• Consider both network and server 
resources (cores) 
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Key open challenges 

• Schedule a DAG of coflows 

• Consider both network and server 
resources (cores) 
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-> Introduction of a new  
     theoretical framework 



Two Theoretical Frameworks
1. Coflows 

or scheduling group of dependant flows 
 
 
 
 

2. Network tasks  
or scheduling while optimizing network resources

99

[Chowdhury,Stoica Hotnets 2012]

[Giroire,Huin,Tomassilli,Pérennes, INFOCOM 2019]



A new scheduling framework
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• Goal: schedule workflows while  
taking into account the  
limited communication  
bandwidth  

•  2 kinds of tasks: 

- CPU tasks: to be executed  
by servers 

- Network tasks: to be  
executed by network machines 

• Network tasks may or may not be executed depending on 
the placement of the CPU tasks 



A simple example with 2 Servers and 1 
Network Machine)
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2 Servers (P1 and P2)

Network

Dependency Digraph 
of a Job 
with 9 CPU Tasks



A simple example with 2 Servers and 1 
Network Machine)

101

2 Servers (P1 and P2)

Network

Dependency Digraph 
of a Job 
with 9 CPU Tasks

Workflow with network tasks
A possible schedule



Modeling Data Center Networks
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• More general networks (without full 
bissection bandwidth) leads to  
             -approximation 
with C minimum network multicut 
[Garg et al STOC 1993]

Modeling Data Center Networks

104

• Simple Networks (machines 
connected via a bus or via an 
antenna) 

Network

• Data Center Networks
- modeling border links

C

O(m logm)



Contributions

1. Introduction of new scheduling framework to model 
communication delays when tasks are competing for a 
limited network bandwidth.  

2. Show how to schedule data center jobs while routing their 
communications  

3. Hardness results of SCHEDULING WITH NETWORK TASKS problem  

4. Two efficient scheduling algorithms, G-LIST and PARTITION  

5. Extensive evaluation using workflows based on Google trace 
[Reiss et al. White paper]
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Two Efficient Algorithms

106

• G-LIST: greedy algorithm
- Generalization of the List Scheduling algorithm
- Idea: place a task where there is most needed data and 

only if needed network tasks can all be done
- Theorem: G-List is optimal on simple MapReduce 

workflows.  

• PARTITION: a 2-phase algorithm
1. assign the tasks to machines while minimizing the CPU and 

the networking work 
2. compute a schedule for the tasks



 PARTITION: 2-phase approach

• Phase 1: Distribute tasks into 
machines minimizing 
communications  
 
 

• Phase 2: Schedule the tasks when 
placed minimizing makespan

107

M2

M1



PARTITION: Phase 1
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• Based on the k-balanced graph 
partitioning problem: 

Goal: Partition vertices of input graph G into k 
equally sized components, while minimizing the 
total weight of the border edges

Known results:                         -approximation  
algorithm [Krauthgamer SODA 2009]

Beware! Best solution is not necessarily  
with the largest number of machines 



PARTITION: Phase 1
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Principle of PARTITION-ASSIGN Algo: 

1. Choose a number of machines, k.  

2. Solve a k-balanced partitioning 
problem 

3. Do it for all possible 1 ≤ k ≤ m

Beware! Best solution is not necessarily  
with the largest number of machines 



PARTITION: Phase 2

110

- SchedulingWhen Placed problem.  

- Results:   

- Hardness: NP-complete and 
inapproximability 5/4 
(reduction from 3SAT) 

- Approximation algorithm, 
PARTITION-SCHEDULE.  

M2

M1



Network tasks: Conclusion

111

• Proposition of a new framework to model the orchestration 
of tasks in a datacenter for scenarios in which the network 
bandwidth is a limiting resource. 
 

• Two algorithms to solve the problem, for which we derive 
some theoretical guarantees.  

• Demonstration of the effectiveness of our algorithms using 
datasets built using statistics from Google data center 
traces. 



Network tasks: Conclusion
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A lot of open questions:  

- Main one: inapproximability of the general problem?   

Reminder: Without network, scheduling with a 
dependency digraph not approximable within a factor 
4/3 [Lenstra Rinnooy Kan 78] and 2-approximation.  

Goal: With network, approximation algorithm or 
inapproximability (with a constant>4/3 or  
log factor) 

-> Study of variants of k-balanced partition. 



A lot of open questions:  

- On the practical side: study of behaviors of the algorithms on a 
testbed, comparing them with practical solutions proposed for 
data centers.  

Conclusion
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Outline

1. Motivation 
2. A new situation: SDN and NFV 
3. Placement of virtual network functions 
‣ Use case: Service Function Chaining 

4. Coflows for datacenters 
5. Scheduling with network tasks 
6. Tools to evaluate solutions 
7. What next?
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Validating solutions
• Theoretical results (explain main parameter 

dependencies, but often too simplistic hypothesis) 
• Simulations (represent more complex phenomena,  

but bad fidelity to real networks, implementation 
different from actual application) 

• Emulations (fast and good scalability, can run 
actual application, can interact width a live 
environment) 

• Experimentations (Wide-area implementation not 
always possible, too few nodes may be available, 
not reproducible)  
 

• Most used tool for SDN/NFV networks: Mininet. 

115



Mininet

116



Mininet Limitations
•Mininet provides a flexible and cost-efficient experimental 
platform to evaluate SDN applications.  

•  But it has several limitations: 
- resources limits (CPU, bandwidth) if experiments are run 
on a single host.  

-no strong notion of virtual time (timing measurements 
based on system clock)  

•  When the physical host is overloaded, Mininet  
-may return wrong results or 
-not be able to run the experiments 

117



Mininet Limitations
•Mininet provides a flexible and cost-efficient experimental 
platform to evaluate SDN applications.  

•  But it has several limitations: 
- resources limits (CPU, bandwidth) if experiments are run 
on a single host.  

-no strong notion of virtual time (timing measurements 
based on system clock)  

•  When the physical host is overloaded, Mininet  
-may return wrong results or 
-not be able to run the experiments 

117

Need to overcome Mininet Limitations and increase the 
performance fidelity of network experiments 



Distributed Network Emulation

Existing tools:  
• Mininet Cluster Edition: [1] 
• Maxinet: [Wette et al. IFIP Networking 2014]

118

Solution: distribute the load for resource intensive 
experiments.

[1] https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype

https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype


A new tool: Distrinet
• Limitations of existing tools: 

- No performance guarantees 

- New API 

• Distrinet Work in progress [2] 
+ Fully compatible with Mininet API. 
+ Automatic deployment in private 

infrastructures (linux machines and Grid5000) 
or public cloud (AWS). 

+ Some guarantees that resources requirements 
(e.g. cores, memory, network) are satisfied.   

+ Minimization of resource utilization for 
private infrastructures and costs for public 
cloud. 

119

[2] Di Lena, Tomassilli, Saucez, Giroire, Turletti and Lac. Mininet on steroids: 
exploiting the cloud for Mininet performance IEEE CloudNet 2019



Outline
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Challenge 1

• Lots of open algorithmic problems 
• For SFCs 
• For coflows 
• For variants of scheduling
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Challenge 2

• Scheduling beyond the cloud 
• Fog Computing and Mobile Edge 

Computing
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Fog/Edge Computing

123

• PROBLEM: Interactive applications require ultra-low network latencies 
(< 20 ms) … but latencies to the closest data center are 20-30 ms using 
wired networks, up to 50-150 ms on 4G mobile networks 

• SOLUTION: Exploit distributed and near-edge computation:
- Reduce latency and network traffic
- improve power consumption

- increase scalability and availability  

Analyze most IoT data near the devices that produce and act on that data 
FOG COMPUTING



Fog/Edge Computing - Challenges

124

• Computing and networking resources are:

•  heterogeneous 

• not always available 

• Service cannot be processed everywhere 

• Demands and resources are dynamic

How to assign the IoT applications to computing nodes (fog nodes) 

which are distributed in a Fog environment?



Mobile Edge Computing

125

• IDEA: Offloading to improve latency and alleviate congestion in 
the core -> Push the content (application servers) close to the 
users using MEC servers (small datacenter collocated with the 
base station) in the infrastructure close to the edge of the network

• PROBLEM: assign users, application, and share of traffic to the 
MEC servers

• Constraints:
- mobile traffic depends on time and locality
- geographical constraints
- mobility of the users
- budget



Challenge 3

• Getting realistic scenarios with  
• data (application and networks) 
• architecture
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