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1 Université Côte d’Azur/CNRS, France
2 INRIA Sophia-Antipolis, France

Abstract. The degree distributions of complex networks are usually
considered to be power law. However, it is not the case for a large num-
ber of them. We thus propose a new model able to build random grow-
ing networks with (almost) any wanted degree distribution. The degree
distribution can either be theoretical or extracted from a real-world net-
work. The main idea is to invert the recurrence equation commonly used
to compute the degree distribution in order to find a convenient attach-
ment function for node connections - commonly chosen as linear. We
compute this attachment function for some classical distributions, as the
power-law, broken power-law, geometric and Poisson distributions. We
also use the model on an undirected version of the Twitter network, for
which the degree distribution has an unusual shape.
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1 Introduction

Complex networks appear in the empirical study of real world networks from var-
ious domains, such that social, biology, economy, technology, ... Most of those
networks exhibit common properties, such as high clustering coefficient, commu-
nities, ... Probably the most studied of those properties is the degree distribution
(named DD in the rest of the paper), which is often observed as following a power-
law distribution. Random network models have thus focused on being able to
build graphs exhibiting power-law DDs, such as the well-known Barabasi-Albert
model [2] or the Chun-Lu model [7], but also models for directed networks [4]
or for networks with communities [20]. However, this is common to find real
networks with DDs not perfectly following a power-law. For instance for social
networks, Facebook has been shown to follow a broken power-law3 [13], while
Twitter only has the distribution tail following a power-law and some atypical
behaviors due to Twitter’s policies, as we report in Section 5.1.

∗This work has been supported by the French government through the UCA JEDI
(ANR-15-IDEX-01) and EUR DS4H (ANR-17-EURE-004) Investments in the Future
projects, by the SNIF project, and by Inria associated team EfDyNet.

3We call a broken power-law a concatenation of two power-laws, as defined in [14].
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(a) DD of the num-
ber of unique callers
and callees from a
mobile phone opera-
tor. [21]

(b) In-DD be-
tween shop-to-shop
recommendations
from an online
marketplace. [22]

(c) Graphlet DD
from a biological
model. [19]

(d) DD of users of
Cyworld, the largest
online social network
of South Korea. [1]

(e) DDs of users of
Flickr, an online so-
cial network. [6]

(f) DD of the length
of the contact list in
Microsoft Messenger
network. [15]

(g) DD of the num-
ber of friends from
FaceBook, a social
network. [13]

(h) Out-DD of the
number of followees
on Twitter. [23]

Fig. 1: DDs extracted from different seminal papers studying networks from var-
ious domains.

It is yet crucial to build models able to reproduce the properties of real
networks. Indeed, some studies such as fake news propagation or evolution over
time of the networks cannot always be done empirically, for technical or ethical
reasons. Carrying out simulations with random networks created with well-built
models is a solution to study real networks without directly experimenting on
them. Those models have to create networks with similar properties as real ones,
while staying as simple as possible.

In this paper, we propose a random growth model able to create graphs with
almost any (under some conditions) given DD. Classical models usually choose
the nodes receiving new edges proportionally to a linear attachment function
f(i) = i (or f(i) = i + b) [2, 4]. The theoretical DD of the networks generated
by those models is computed using a recurrence equation. The main idea of this
paper is to reverse this recurrence equation to express the attachment function
f as a function of the DD. This way, for a given DD, we can compute the
associated attachment function, and use it in a proposed random growth model
to create graphs with the wanted DD. The given DD can either be theoretical,
or extracted from a real network.

We compute the attachment function associated with some classical DD, ho-
mogeneous ones such as Poisson or geometric distributions, and heterogeneous
ones such as exact power-law and broken power-law. We also study the undi-
rected DD of a Twitter snapshot of 400 million nodes and 23 billion edges,
extracted by Gabielkov et al. [10] and made available by the authors. We notice
it has an atypical shape, due to Twitter’s policies. We compute empirically the
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associated attachment function, and use the model to build random graphs with
this DD. A necessary condition is that the given DD must be defined for all
degrees under the (arbitrary chosen) maximum value. However this condition
can be circumvented doing an interpolation between existing points to estimate
the missing ones, as discussed in Section 5.

The rest of the paper is organized as follows. We first discuss the related work
in Section 2. In Section 3, we present the new model, and invert the recurrence
equation to find the relation between the attachment function and the DD. We
apply this relation to compute the attachment function associated to a power-law
DD, a broken-power law DD, and other theoretical distributions. In Section 5
we apply our model on a real-world DD, the undirected DD of Twitter.

2 Related Work
The degree distribution has been computed for a lot of networks, in particular
for social networks such as Facebook [13] or Microsoft Messenger [15]. Note that
Myers et al. have also studied DDs for Twitter in [17], using a different dataset
than the one of [10].

Questioning the relevance of power-law fits is not new: for instance, Clauset
et al. [8] or Lima-Mendez and van Helden [16] have already deeply questioned the
myth of power-law -as Lima-Mendez and van Helden call it-, and develop tools
to verify if a distribution can be considered as a power-law or not. Clauset et al.
apply the developed tools on 24 distributions extracted from various domains of
literature, which have all been considered to be power-laws. Among them, “17
of the 24 data sets are consistent with a power-law distribution”, and “there is
only one case in which the power law appears to be truly convincing, in the sense
that it is an excellent fit to the data and none of the alternatives carries any
weight”. In the continuity of this work, Broido and Clauset study in [5] the DD
of nearly 1000 networks from various domains, and conclude that “fewer than 36
networks (4%) exhibit the strongest level of evidence for scale-free structure“.

The study of Clauset et al. [8] only considered distributions which have a
power-law shape when looking at the distribution in log-log. As a complement,
we gathered DDs from literature which clearly do not follow power-law distri-
butions to show their diversity. We extracted from literature DDs of networks
from various domains: biology, economy, computer science, ... Each presented
DD comes from a seminal well cited paper of the respective domains. They are
gathered in Figure 1. Various shapes can be observed from those DDs, which
could (by eyes) be associated with exponential (Fig. 1b, 1c), broken power-law
(Fig. 1a, 1e, 1g), or even some kind of inverted broken power-law (Fig 1d). We
also observe DDs with specific behaviors (Fig. 1f, 1h).

The first proposed models of random networks, such as the Erdős–Rényi
model [9], build networks with a homogeneous DD. The observation that a lot
of real-world networks follow power-law DDs lead Albert and Barabasi to propose
their famous model with linear preferential attachment [2]. It has been followed
by a lot of random growth models, e.g. [4, 7] also giving a DD in power-law. A few
models permit to build networks with any DD: for instance, the configuration
model [3, 18] takes as parameter a DD P and a number of nodes n, creates n
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nodes with a degree randomly picked following P , then randomly connects the
half-edges of every node. Goshal and Newman propose in [11] a model generating
non-growing networks (where, at each time-step, a node is added and another is
deleted) which can achieve any DD, using a method close to the one proposed
in this paper. However, both of those models generate non-growing networks,
while most real-world networks are constantly growing.

3 Presentation of the model

The proposed model is a generalization of the model introduced by Chun and Lu
in [7]. At each time step, we have either a node event or an edge event. During
a node event, a node is added with an edge attached to it; during an edge event,
an edge is added between two existing nodes. Each node to which the edge is
connected is randomly chosen among all nodes with a probability proportional
to a given function f , called the attachment function. The model is as follows:

. We start with an initial graph G0.

. At each time step t:
- With probability p: we add a node u, and an edge (u, v) where the

node v is chosen randomly between all existing nodes with a probability
f(deg(v))∑

w∈V f(deg(w)) ;

- With probability (1 − p): we add an edge (u, v) where the nodes u and
v are chosen randomly between all existing nodes with a probability

f(deg(u))∑
w∈V f(deg(w)) and f(deg(v))∑

w∈V f(deg(w)) .

Note that the Chun-lu model is the particular case where f(i) = i for all i ≥ 1.
We call generalized Chun-Lu model the proposed model where f(i) = i + b, for
all i ≥ 1 with b > −1.

3.1 Inversion of the recurrence equation

The common way to find the DD of classical random growth models is to study
the recurrence equation of the evolution of the number of nodes with degree i
between two time steps. This equation can sometimes be easily solved, some-
times not. But what matters for us is that the common process is to start from
a given model -thus an attachment function f -, and use the recurrence equation
to find the DD P . In this section, we show that the recurrence equation of the
proposed model can be reversed such that, if P if given, we can find an associ-
ated attachment function f .

Theorem 1. In the proposed model, if the attachment function is chosen as:

∀i ≥ 1, f(i) =
1

P (i)

∞∑
k=i+1

P (k), (1)

then the DD of the created graph is distributed according to P .§

§Note that Equation 1 can also be expressed as f(i) = P (k>i)
P (i)

.
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Proof. We consider the variation of the number of nodes of degree i N(i, t)
between a time step from t to (t+1). During this time step, a node with degree
i may gain a degree and thus diminishes by 1 the number of nodes of degree i.
This happens with a probability p + 2(1 − p) (the mean number of half-edges

connected to existing nodes during a time step) × f(i)∑
j≥1 f(j)N(j,t) (the probability

for this particular node of degree i to be chosen). Since it is the same for all nodes
of degree i, the number of nodes going from degree i to i+ 1 during a time step

is
(
p + 2(1 − p)

)
× f(i)∑

j≥1 f(j)N(j,t) × N(i, t). In the same way, some nodes with

degree i − 1 may be connected to an edge and increase the number of nodes
of degree i. Finally, with probability p, a node of degree 1 is added. Gathering
those contributions, taking the expectation, and using concentration results give
the following equation:

E[N(i, t+ 1)]− E[N(i, t)] = (2)

pδi,1 + (2− p) f(i− 1)∑
j≥1

f(j)E[N(j, t)]
E[N(i− 1, t)]− (2− p) f(i)∑

j≥1
f(j)E[N(j, t)]

E[N(i, t)]

where δi,j is the Kronecker delta. The first term of the right hand is the proba-
bility of addition of a node. The second (resp. third) term is the probability that
a node of degree i− 1 (resp. i) gets chosen to be the end of an edge. The factor
(2 − p) = p + 2(1 − p) comes from the fact that this happens with probability
p during a node event (connection of a single half-edge) and with probability
2(1− p) during an edge event (possible connection of 2 half-edges).

Let P (i) = lim
t→+∞

E[N(i,t)]
pt (the p in the denominator comes from the fact

that E[N(t)] = pt). We denote g(i) = 2−p
p

f(i)∑
j≥1 f(j)P (j) . We first show that

g(i) = 1
P (i)

∞∑
k=i+1

P (k). We will then show that we can choose f = g.

We use the following lemma from [7]:

Lemma 1. Let (at), (bt), (ct) be three sequences such that at+1 = (1− bt
t )at+ct,

lim
t→+∞

bt = b > 0, and lim
t→+∞

ct = c. Then lim
t→+∞

at
t exists and equals c

1+b .

For i = 1, the equation becomes:

E[N(1, t+ 1)]− E[N(1, t)] = p− (2− p) f(1)∑
j≥1

f(j)E[N(j, t)]
E[N(1, t)]. (3)

Taking at = E[N(1,t)]
p , bt = (2−p)f(1)

p
∑
j≥1 f(j)

E[N(j,t)]
pt

, and ct = 1, we have lim
t→+∞

bt =

g(1) > 0 and lim
t→+∞

ct = 1. We can thus apply Lemma 1:

lim
t→+∞

E[N(1, t)]

pt
= P (1) =

1

1 + g(1)
. (4)
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Now, ∀i ≥ 2, taking at = E[N(i,t)]
p , bt = (2−p)f(i)

p
∑
j≥1 f(j)

E[N(j,t)]
pt

, and

ct = (2−p)f(i−1)
p
∑
j≥1 f(j)

E[N(j,t)]
pt

E[N(i−1,t)]
pt , we have lim

t→+∞
bt = g(i) > 0 and lim

t→+∞
ct =

g(i− 1)P (i− 1). Lemma 1 gives:

lim
t→+∞

E[N(i, t)]

pt
= P (i) =

g(i− 1)P (i− 1)

1 + g(i)
. (5)

Iterating over Equation 5, we express g as a function of P :

g(i)P (i) = g(i− 1)P (i− 1)− P (i) = g(1)P (1)−
i∑

k=2

P (k) = 1−
i∑

k=1

P (k)

=⇒ g(i) =
1

P (i)

∞∑
k=i+1

P (k) (6)

Now, notice that:

∞∑
k=1

g(k)P (k) =

∞∑
k=1

2− p
p

f(k)∑∞
k′=1 f(k′)P (k′)

P (k) =
(2− p)
p

. (7)

So g(i) satisfies g(i) = 2−p
p

g(i)∑∞
k=1 g(k)P (k) . Hence the attachment function can be

chosen as f = g, which concludes the proof. ut

For a given probability law, Theorem 1 can be used to compute the attach-
ment function which, when used in the model, will give this probability law as
DD.

With the presented model, we also have an implicit constraint between the
mean degree and the parameter p. Indeed by construction, we have E[N(t)] = pt
and E(|E|(t)) = t with |E|(t) the number of edges at time t, leading to a mean-
degree of 1

p . But the mean-degree can also be expressed as
∑
k≥1 kP (k).

Condition 1 The parameter p has to satisfy:

1

p
=< k > (8)

We can finally combine the previous results and present the method to build a
random network with a fixed DD:

1) Use Equation 1 to compute f from P ;

2) Compute p using Condition 1;

2) Build the graph with the proposed model, given (f, p) as parameters.
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Name P(i) f(i) Condition

Generalized Chun-Lu C Γ (i+b)
Γ (i+b+α)

1
α−1

i+ b
α−1

p = α−2
α+b−1

Exact Power-Law i−α

ζ(α)
ζ(α,i+1)

i−α p = ζ(α)
ζ(α−1)

Geometric Law q(1 − q)i−1 1−q
q

p = q

Poisson Law 1
eλ−1

λi

i!
eλ γ(i+1,λ)

λi
p = 1−e−λ

λ

Broken Power-Law

{
C Γ (i+b1)
Γ (i+b1+α1)

if i ≤ d

Cγ Γ (i+b2)
Γ (i+b2+α2)

if i > d
cf eq. 17& 18 cf eq. 16

Table 1: Attachment functions f and conditions on p for some classical probabil-
ity distributions P . ζ(s) is the Riemann zeta function, ζ(s, q) the Hurwitz zeta
function, and γ(a, x) is the lower incomplete Gamma function.

4 Application to some distributions

We now apply Equation 1 to compute the attachment function for some clas-
sical distributions. We first start in Section 4.1 from the distribution obtained
with the generalized Chun-Lu model to show we find a linear dependence, as
expected. We then compute in Section 4.2 the associated attachment function of
the broken power-law distribution. Using similar computations (which can be
found in Report [12]), we computed the attachment function of other classical
distributions. Table 1 summarizes those results.

4.1 Preliminary: Generalized Chun-Lu model

As a first example, by taking a power-law DD, we should be able to find a linear
probability distribution for the generalized Chun-Lu model.

In the general Chun-Lu model, we can show that the real DD is not an exact
power-law but a fraction of Gamma function -equivalent to a power-law for high
degrees- of the form:

∀i ≥ 1, P (i) = C
Γ (i+ b)

Γ (i+ b+ α)
∼
i�1

i−α (9)

where C = (α − 1)Γ (b+α)
Γ (b+1) , and α > 2. The choice of α determines the slope of

the DD, while the choice of b determines the mean-degree of the graph.

Constraint on p: Condition 1 gives:

1

p
=

∞∑
k=1

kP (k) = (α− 1)
Γ (b+ α)

Γ (b+ 1)
× α2 + α(2b− 1) + b(b− 1)

(α− 2)(α− 1)

Γ (b+ 1)

Γ (α+ b+ 1)

=⇒ p =
(α− 2)

α+ b− 1
(10)

Attachment function f: Using Theorem 1:
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f(i) =
1

P (i)

∑
k≥i+1

P (k) =
Γ (i+ b+ α)

Γ (i+ b)

Γ (i+ b+ 1)

(α− 1)Γ (i+ α+ b)
(11)

=⇒ f(i) =
1

α− 1
i+

b

α− 1
(12)

As expected, we find a linear attachment function. To create a graph with a
wanted slope α and mean-degree p−1, one only has to choose α as the wanted
slope and b following equation 10. In the particular case b = 0, we recover the
Chun-Lu model of [7], with a slope of α = 2 + p

2−p as expected.

4.2 Broken Power-law

We now study the case of a broken power-law, corresponding to the DD of real
world complex networks, as discussed in Section 2. which was the one we were
interested in initially. We consider a distribution of the form:

P (i) =

{
C Γ (i+b1)
Γ (i+b1+α1)

if i ≤ d
Cγ Γ (i+b2)

Γ (i+b2+α2)
if i > d

(13)

where d, b1, α1, b2, and α2 are parameters of our distribution such that α1 > 2,
α2 > 2, C a normalisation constant, and γ chosen in order to obtain continuity
for i = d. As seen in section 4.1, the ratio of gamma functions is close to a
power-law as soon as i gets large. Hence, this distribution corresponds to two
powers-laws, with different slopes, and a switch between the two at the value d.

We can easily find the continuity constant γ, since it verifies:

Γ (d+ b1)

Γ (d+ b1 + α1)
= γ

Γ (d+ b2)

Γ (d+ b2 + α2)
=⇒ γ =

Γ (d+ b1)Γ (d+ b2 + α2)

Γ (d+ b1 + α1)Γ (d+ b2)
. (14)

Constraints on C and p: The value of C can be computed by summing over
all degrees:

C =
( ∞∑
k=1

P (k)
)−1

=
( 1

α1 − 1

Γ (b1 + 1)

Γ (α1 + b1)
+

Γ (b1 + d)

Γ (α1 + b1 + d)

( b2 + d

α2 − 1
− b1 + d

α1 − 1

))−1
(15)

Using Condition 1, p is defined by the following equation:

1

pC
=

d∑
k=1

k
Γ (k + b1)

Γ (k + b1 + α1)
+ γ

∞∑
k=d+1

k
Γ (k + b2)

Γ (k + b2 + α2)

=
α2
1 + α1(2b1 − 1) + b1(b1 − 1)

(α1 − 2)(α1 − 1)

Γ (b1 + 1)

Γ (α1 + b1 + 1)
(16)

− α2
1(d+ 1) + α1(b1(d+ 2) + d2 − 1) + b1(b1 − 1)− d(d+ 1)

(α1 − 2)(α1 − 1)

Γ (b1 + d+ 1)

Γ (α1 + b1 + d+ 1)

+ γ
α2
2(d+ 1) + α2(b2(d+ 2) + d2 − 1) + b2(b2 − 1)− d(d+ 1)

(α2 − 2)(α2 − 1)

Γ (b2 + d+ 1)

Γ (α2 + b2 + d+ 1)
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f(
i)

(a) Theoretical attachment function f (b) DD of a random network

Fig. 2: Theoretical attachment function f and degree distribution of a random
network for the broken power-law distribution. Parameters are N = 5 · 105,
b1 = b2 = 1, α1 = 2.1, α2 = 4 and d = 100.

Attachment function f : For the computation of the attachment function, we
have to distinguish two cases:

Case 1: i ≥ d

f(i) =
Γ (i+ b2 + α2)

Γ (i+ b2)

1

α2 − 1

Γ (i+ b2 + 1)

Γ (i+ b2 + α2)
=

1

α2 − 1
i+

b2
α2 − 1

(17)

We find a linear attachment function: indeed for i > d, we only take into account
the second power-law, hence we expect to find the same result than in section 4.1.

Case 2: i < d

f(i) =
Γ (i+ b1 + α1)

Γ (i+ b1)

(
d∑

k=i+1

Γ (k + b1)

Γ (k + b1 + α1)
+ γ

∞∑
k=d+1

Γ (k + b2)

Γ (k + b2 + α2)

)

=
i+ b1
α1 − 1

+
Γ (i+ b1 + α1)Γ (d+ b1)

Γ (i+ b1)Γ (d+ b1 + α1)

( b2 + d

α2 − 1
− b1 + d

α1 − 1

)
(18)

In this second case, we have a linear part, in addition to a more complicated
part. Note that, for (α1, b1) = (α2, b2), i.e., when the two power-laws are equals,
this second term vanishes, letting as expected only the linear part. Figure 2a
shows the shape of f . We see that, while the second part is linear as discussed
before, the first part is sub-linear.

We used this attachment function to build a network using our model. The
DD is shown in Figure 2b: we see we built a random network with a broken
power-law distribution as wanted.

5 Real degree distributions

The model can also be applied to an empirical DD. Indeed, we observe in The-
orem 1 that f(i) only depends on the values P (i) which can be arbitrary, that
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(a) DD of the Twitter’s undirected net-
work.

101 103 105

degree

10 1

100

101

102

103

104

#
N

o
d
e
s
 w

it
h
 t

h
is

 d
e
g
re

e

(b) DD of a random network with 8 · 105

nodes using the attachment function of
Figure 3c.
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degree i

102

103

104

105

f(
i)

(c) Attachment function f resulting from
the undirected DD of Twitter.

Fig. 3: Modelization of the undirected Twitter’s graph.

is not following any classical function. This is a good way to model random net-
works with an atypical DD. As an example, we apply our model on the DD of
an undirected version of Twitter, shown as having atypical behavior due to the
Twitter policies. We start with a presentation of this DD, then apply our model
to build a random graph with this distribution.

5.1 Undirected DD of Twitter

For this study, we use a Twitter snapshot from 2012, recovered by Gabielkov and
Legout [10] and made available by the authors. This network contains 505 million
nodes and 23 billion edges, making it one of the biggest social graph available
nowadays. Each node corresponds to an account, and an arc (u, v) exists if the
account u follows the account v. The in- and out-DDs are presented in [23].

In our case, we look at an undirected version of the Twitter snapshot. We
consider the degree of each node as being the sum of its in- and out-degrees. The
distribution of this undirected graph is presented in Figure 3a. We notice two
spikes, around d = 20 and d = 2000. We do not know the reason of the first one
(which could be social, or due to recommendation system). The second spike
is explained by a specificity of Twitter: until 2015, to avoid bots which were
following a very large number of users, Twitter limited the number of possible
followings to max(2000,number of followers). In other words, a user is allowed to
follow more than 2000 people only if he is also followed by more than 2000 people.
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This leads to a lot of accounts with around 2000 followings. This highlights the
fact that some networks have their own specificities, sometimes due to intern
policies, which cannot be modeled but by a model specifically built for them.

5.2 Modelization

Figure 3c presents the obtained form of the attachment function f computed
using Equation 1 with the DD of Twitter. We notice that the overall function
is mainly increasing, showing that nodes of higher degrees have a higher chance
to connect with new nodes, like in classical preferential attachment models. We
also notice two drops, around 20 and 2000. They are associated with the risings
on the DD on the same degrees: to increase the amount of nodes with those
degrees, the attachment function has to be smaller, so nodes with this degree
have less chance to gain new edges.

We finally use our model with the empirical attachment function of Figure 3c.
Note that, in an empirical study, P can be equal to zero for some degrees,
for which no node has this degree in the network. In Twitter, the smallest of
those degrees occurs around 18.000. In that case, f cannot be computed. To
get around this difficulty, we interpolate the missing values of P , using the two
closest smaller and bigger degrees of the missing points. Since we observe the
probability distribution on a log-log scale, we interpolate between the two points
as a straight line on a log-log scale, i.e., as a power-law function. We believe this
is a fair choice since we only look at the tail of the distribution, which looks like
a straight line, and since we interpolate between each pair of closest two points
only, instead of fitting on the whole tail of the distribution.

The DD of a random network built with our model is presented in Figure 3b.
For time computation reasons, the built network only has N = 2 · 105 nodes, to
be compared to the 5 · 108 nodes of Twitter. However, it is enough to verify that
its DD shape follows the one of the real Twitter’s DD: in particular we recognize
the spikes around d = 20 and d = 2000.

6 Conclusion

In this paper, we proposed a new random growth model picking the nodes to be
connected together in the graph with a flexible probability f . We expressed this
f as a function of any distribution P , leading to the possibility to build a random
network with any wanted degree distribution. We computed f for some classical
distributions, as much as for a snapshot of Twitter of 505 million nodes and 23
billion edges. We believe this model is useful for anyone studying networks with
atypical degree distributions, regardless of the domain. If the presented model
is undirected, we also believe a directed version of it, based on the Bollobás et
al. model [4], can be easily generalized from the presented one.
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