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Abstract. We study here the clustering of directed social graphs. The
clustering coefficient has been introduced to capture the social phenom-
ena that a friend of a friend tends to be my friend. This metric has been
widely studied and has shown to be of great interest to describe the char-
acteristics of a social graph. In fact, the clustering coefficient is adapted
for a graph in which the links are undirected, such as friendship links
(Facebook) or professional links (LinkedIn). For a graph in which links
are directed from a source of information to a consumer of information, it
is no longer adequate. We show that former studies have missed much of
the information contained in the directed part of such graphs. We thus
introduce a new metric to measure the clustering of a directed social
graph with interest links, namely the interest clustering coefficient. We
compute it (exactly and using sampling methods) on a very large social
graph, a Twitter snapshot with 505 million users and 23 billion links.
We additionally provide the values of the formerly introduced directed
and undirected metrics, a first on such a large snapshot. We exhibit that
the interest clustering coefficient is larger than classic directed clustering
coefficients introduced in the literature. This shows the relevancy of the
metric to capture the informational aspects of directed graphs.

Keywords: Complex networks, Clustering Coefficient, Directed networks,
Social networks, Twitter.

1 Introduction

Networks appear in a large number of complex systems, whether they are social,
biological, economical or technological. Examples include neuronal networks, the
Internet, financial transactions, online social networks, ... Most “real-world” net-
works exhibit some properties that are not due to chance and that are really
different from random networks or regular lattices. In this paper, we focus on
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the study of the clustering coefficient of social networks. Nodes in a network tend
to form highly connected neighborhoods. This tendency can be measured by the
clustering coefficient. It is classically defined for undirected networks as three
times the number of triangles divided by the number of open triangles (formed
by two incident edges). This clustering coefficient had been computed in many
social networks and had been observed as much higher than what randomness
would give. Triangles thus are of crucial interest to understand “real-world” net-
works.
However, a large quantity of those networks are in fact directed (e.g. the web,
online social networks like Instagram, financial transactions). It is for instance
the case of Twitter, one of the largest and most influential social networks with
126 million daily active users [14]. In Twitter, a person can follow someone she
is interested in; the resulting graph, where there is a link u → v if the account
associated to the node u followed the account associated to the node v, is thus
directed. In this study, we used as main dataset the snapshot of Twitter (TS in
short) extracted by Gabielkov et al. as explained in [6] and made available by
the authors. The TS has around 505 million nodes and 23 billion arcs, making
it one of the biggest snapshots of a social network available today.
The classic definition of the clustering coefficient cannot be directly applied on
directed graphs. This is why most of the studies computed it on the so-called
mutual graph, as defined by Myers & al. in [11], i.e., on the subgraph built with
only the bidirectional links. We call mutual clustering coefficient (mcc for short)
the clustering coefficient associated with this graph. We computed this coeffi-
cient in the TS, using both exact and approximated methods. We find a value
for the mcc of 10,7%. This is a high value, of the same order as those found in
other web social networks.
However, this classical way to operate leaves out 2/3 of the graph! Indeed, we
computed that the bidirectional edges only represents 35% of the edges of the
TS. A way to avoid it is to consider all links as undirected and to compute the
clustering coefficient of the obtained undirected graph. We refer to the corre-
sponding computed clustering coefficient as the undirected clustering coefficient
(ucc for short). Such a computation in the TS gives a value of ucc of only 0.11%.
This is way lower than what was found in most undirected social networks. It
is thus a necessity to introduce specific clustering coefficients for the directed
graphs. More generally, when analyzing any directed datasets, it is of crucial
importance to take into account the information contained in its directed part
in the most adequate way.
A first way to do that is to look at the different ways to form triangles with
directed edges. Fagiolo computed the expected values of clustering coefficients
considering directed triangles for random graphs in [5] and illustrated his method
on empirical data on world-trade flows. There are two possible orientations of
triangles: transitive and cyclic triangles, see Figures 1b and 1c. Each type of
triangles corresponds to a directed clustering coefficient:
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– the transitive clustering coefficient (tcc in short), defined as:

tcc =
# transitive triangles

# open transitive triangles
,

– the cyclic clustering coefficient (ccc in short), defined as:

ccc =
3 ·# cyclic triangles

# open transitive triangles
.

We computed both coefficients for the snapshot, obtaining tcc = 1.9% and ccc =
1.7%. However, note that a large part of the transitive and cyclic triangles comes
from bidirectional triangles. When removing them, we arrive to values of tcc =
0.51% and ccc = 0.24%.
We believe those metrics miss an essential aspect of the Twitter graph: while
the clustering coefficient was defined to represent the social cliques between
people, it is not adequate to capture the information aspect of Twitter, known
to be both a social and information media [8, 11]. In this work, we go one step
further in the way directed relationships are modeled. We argue that in directed
networks, the best way to define a relation or similarity between two individuals
(Bob and Alice) is not always by a direct link, but by a common interest, that
is, two links towards the same node (e.g., Bob → Carol and Alice → Carol).
Indeed, when discussing interests, consider two nodes having similar interests.
Apart from being friends, these two nodes do not have any reason to be directly
connected. However, they would tend to be connected to the same out-neighbors.
We exploit this to study a new notion of connections in directed networks and the
new naturally associated clustering coefficient, which we name interest clustering
coefficient, or icc in short, and define as follows:

icc =
4 ·# K22s

# open K22s
,

where a K22 is defined as a set of four nodes in which two of them follow the two
others, and an open K22 is a K22 with a missing link, see Figure 1d. We computed
the icc on the Twitter snapshot, obtaining icc = 3.6% (3.1% when removing
the bidirectional structures). This value, an order of magnitude higher than
the previous clustering coefficients computed on the non bidirectional directed
graph, confirms the interest of this metric. If the clustering coefficient of triangles
are good metrics to capture the social aspect of a graph, the interest clustering
coefficient is a good metric to capture the informational aspect.
In summary, our contributions are the following:

– We define a new clustering coefficient for graphs with interest links.
– We succeeded in computing it, both exactly and using sampling methods,

for a snapshot of Twitter with 505 million nodes and 23 billion edges.
– We additionally provide the values of the directed and undirected clustering

coefficients previously defined in the literature. We believe this is the first
time that such coefficients are computed exactly for a large directed online
social network.
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The paper is organized as follows. We first discuss related work in Section 2. In
Section 3, we present the algorithms we used to compute the values of the interest
clustering coefficient, both exactly and by sampling. We discuss the results on
the clustering coefficients of Twitter in Section 4 .

(a) Undirected triangles. (b) Transitive directed triangles.

(c) Cyclic directed triangles. (d) K22s.

Fig. 1: Closed (left) and open (right) undirected and directed triangles and K22s.

2 Related Work

Clustering coefficient. The clustering coefficient shows that, when two people
know each other, there is a high probability that those people have common
friends. The clustering coefficient has numerous important applications, such
as spam detection [4], link recommendation [15], information spread [7], etc.
There are different definitions of the clustering coefficient. The global clustering
coefficient, sometimes also called transitivity, was first introduced by Barrat and
Weigt in [2]. It is defined as 3 times the number of triangles in the graph, divided
by the number of connected triplets of vertices in the graph. Another definition
was given by Watts and Strogatz [19] and is called the local clustering coefficient.
It is defined as the mean over all nodes of the graph of the local clustering of
each node, that is the probability that two random neighbors of the node are
also connected together. We use the global clustering coefficient in this paper.
The clustering coefficient has also been defined for weighted graphs [13].

Computations for social graphs. The undirected clustering coefficient of
some social networks has been provided in the literature. It has been computed
on very large snapshots for Facebook [17], Flickr, and YouTube [10]. The local
clustering coefficient has also been studied in the undirected mutual graph of
Twitter [11]. The undirected clustering coefficient is usually much higher in social
networks than in random models.

Directed graphs. All these studies only consider the undirected clustering
coefficient, even for directed graphs like Twitter. Fagiolo introduced definitions
of directed clustering coefficients, that we named tcc and ccc [5], but those
definitions had never been computed and discussed on large datasets to our
knowledge, as we do in this paper. Moreover, we believe that these metrics are
not the most relevant ones for directed graphs with interest links.
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Computing substructures. Researchers studied methods to efficiently com-
pute the number of triangles in a graph, as naive methods are computationally
very expensive on large graphs. Two families of methods have been proposed:
triangle exact counting or enumeration and estimations. In the first family, the
fastest algorithm is due to Alon, Yuster, and Zwick [1] and runs in O(m1.41),
with m the number of edges. However, methods using matrix multiplication can-
not be used for large graphs because of their memory requirements. In practice,
enumeration methods are often used, see e.g., [9]. Methods to count rectangles
and butterfly structures in undirected bipartite networks were also proposed
in [18] and in [12]. In this paper, we propose an efficient enumeration algorithm
to count the number of K22s and open K22s in a very large graph. We focused
on the case in which only one adjacency can be stored, as this was our case for
the TS. To the best of our knowledge, we are the first to consider this setting.

3 Computing Clustering Coefficients in Twitter

To compute the interest clustering coefficient and the triangle clustering coeffi-
cients of very large networks, we used two different methods presented here: an
exact count and an estimation using sampling techniques, either with a Monte
Carlo algorithm or with a sampling of the graph. As a typical example of a mas-
sive directed social network with interest links, we carried out the computations
for a Twitter snapshot (TS in short) with 505 million nodes and 23 billion links,
described in Report [16].

3.1 Exact Count

We computed the exact numbers of K22s and open K22s in the Twitter Snapshot.
Recall that we are discussing a dataset with hundreds of million nodes and
billions of arcs. Results are reported in Table 1 and discussed in section 4. We
first present in this section the algorithms we use, and discuss their complexity.

In the rest of this paper, we call top vertices (resp. bottom vertices) of a K22
the vertices which are destinations (resp. sources) of the K22 edges. We call a
fork a set of two edges of a K22 connected to the same vertex. We say that a
fork has top (or bottom) vertex x if both edges are connected to x and x is a top
(resp. bottom) vertex of the K22. The same terminology applies to open K22s.

Trivial algorithm. The trivial algorithm would consider all quadruplets of
vertices with 2 upper vertices. Then, for each quadruplet, it would check the
existence of a K22 and of open K22s. There are

(
4
2

)(
n
4

)
such quadruplets. It thus

gives a complexity of O(n4). This method can thus not be considered for the TS
as it would perform 6.4× 1033 iterations.

Improved algorithm. The practical complexity can be greatly improved by
only considering connected quadruplets, and by mutualizing the computations of
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the common neighbors of the in-neighbors of a vertex, as explained below. The
pseudo-code is given in Algorithm 1.
The algorithm’s main loop iterates on the vertices of the graph. For each vertex
x, we consider its in-neighborhood N−(x). We then compute how many times
a vertex w (with w < x to avoid counting a K22 twice) appears in the out-
neighborhoods of the vertices of N−(x). We denote it #occ(w). We use a table
to store the value of #occ(w) in order to be able to do a single pass on each
out-neighbor.
For a vertex w, any pair of its #occ(w) in-neighbors common with x forms a
K22 with x and w as top vertices. There are hence

(
#occ(w)

2

)
K22s with x and w

as top vertices. The number of K22s with x as a top vertex is then

#K22(x) =
∑

w|#occ(w)≥2

(
#occ(w)

2

)
.

The number of open K22s with x as the top vertex is computed by noticing
that, for any pair of vertices u and v of N−(x), we have d+(u)− 1+ d+(v)− 1−
1v∈N+(u)−1u∈N+(v) open K22s containing this fork (ux, vx). We can count the
number of open K22s with x as a top vertex, u as the bottom vertex of out-degree
at least 2 (and thus another vertex v as the bottom vertex of out-degree at least
1). A vertex u ∈ N−(x) is thus in (d+(u)−1

∑
v∈N−(x)\{u} 1v∈N+(u))(d

−(x)−1)
such open K22s. The only subtlety is that we count the number of arcs, which
are between two vertices of N−(x), during the loop on the out-neighborhoods of
the vertices of N−(x). We note this number #internalArcs. We then have:

#openK22(x) =

 ∑
u∈N−(x)

(d+(u)− 1)(d−(x)− 1)

−#internalArcs.

Lastly, the global number of K22s (resp. open K22s) in the digraph is just the
sum of the number of K22s (resp. open K22s) with a vertex x as a top vertex,
as, since we only consider K22s formed with a vertex w such that x < w, we
only count each K22 once.

Complexity of the used algorithm. The complexity thus is m+
∑
u d

+(u)(d+(u)−
1), with m the number of edges. Indeed, each edge is only considered once as an
in-arc and d+ − 1 times as an out-arc. Note that, in the Twitter Snapshot, the
sum of the squares of the degrees is equal to 8 · 1013. The order of the number of
iterations needed to compute the number of K22s was thus massively decreased
from the 6.4× 1033 iterations of the trivial algorithm.
For graphs following a power-law degree distribution with exponent between 2
and 3, we show in [16] that this gives a complexity between O(m+n) and O(n2),
to be compared to the one of the naive method O(n4).
Note that the number of undirected and directed triangles can be easily com-
puted while counting the K22s, see [16].
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Algorithm 1 Enumeration of K22s and open K22s
1: Input: Digraph(V,A)
2: #occ=0 . table
3: for x ∈ V do
4: #internalArcs← 0 . We count the number of arcs internal to N−(x) as these

arcs do not form open K22s
5: for v ∈ N−(x) do
6: #openK22s + = (d+(v)− 1)(d−(x)− 1)
7: for w ∈ N+(v) \ {x} do
8: #occ[w]+ = 1
9: if w ∈ N−(x) then . We use a second table to test that.
10: #internalArcs+ = 1

11: for w with #occ[w] ≥ 2 do
12: #k22+ =

(
#occ[w]

2

)
13: #openK22s − = #internalArcs
14: #occ← 0 . Done with a double loop
15: icc ← 4#K22

#openK22

3.2 Approximate Counts

As discussed later in Section 4, the exact count of the number of K22s and open
K22s in Twitter implies massive computations. This number can be estimated
using Monte Carlo Method and/or computations on a sample of the graph. We
discuss both methods below. One of our goals was to see how good computations
made in the literature using smaller Twitter snapshots were.

Exact icc on Twitter Samples. We built samples of the TS to estimate the
interest clustering coefficient. Several choices can be made to build the samples.
To avoid missing nodes of high degrees (which would lead to a high variance),
we sampled the arcs (and not the nodes). Given a sampling probability p, we
keep an arc in the sample with probability p. We generated samples of different
sizes corresponding to sampling probabilities from p = 1/100 to p = 1/16000.
Estimator of the number of K22 and open K22s. We use the classic estimator
X =

∑
A∈AXA, where XA is the random variable which is equal to 1 if all the

arcs of pattern A are selected in the sample and 0 otherwise. Theoretical bounds
for expectation and variance are given in [16]. The difficulty for the variance
comes from the fact that two K22s can share a common link.
Results.We present in Figure 2a the results of the algorithm for different sample
sizes, corresponding to sampling probabilities from p = 1/100 to p=1/16, 000.
For each sample size, we generated 30 samples. The distribution over the samples
of the interest clustering coefficient is provided by a boxplot for each value of
p. Note that a K22 of the TS appears in a sample with a probability of only
p4, and of p3 for an open K22. The clustering coefficient of a sample is thus an
estimate of p · icc.
We observe that, the clustering coefficient is well estimated using any sample for
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(a) Estimation of the interest cluster-
ing coefficient for different sample sizes
with Edge Sampling Method.

(b) Estimation of the interest clus-
tering coefficient with Monte Carlo
Method.

Fig. 2: Estimation of the interest clustering coefficient with Approximate Counts.

a sampling probability of 1/1000 or larger. Indeed, for this range of probabilities,
the distribution over all samples is very concentrated and around the exact value
of the icc. Note that, for p = 1/1000, a K22 is present in the sample with a
probability of only 10−12. The expectation of the number of nodes with an edge
is only 23 million nodes (over 500 million) and the number of edges is also around
23 million. Thus, in the TS, a small sample (5% of the nodes and 0.1% of edges)
allows to do an efficient estimation of the icc.
For smaller values of p, the variance increases. The median estimates well the
icc for a range of p between 1/8000 and 1/1000, but samples of these sizes may
have error of 100% of the value. Lastly, for p = 1/16000, most of the time there
is no surviving K22 in the sample, leading to a value of zero for the icc. The
icc thus cannot be estimated correctly.
In conclusion, a sample with sampling probability 1/1000 is enough to efficiently
estimate the interest clustering coefficient, with a computation time of around
1 minute (instead of days for the whole TS) on a machine of the cluster.

Monte Carlo Method. The difficulty to estimate the clustering coefficients
using Monte Carlo Method is that the probability to observe a (closed or open)
K22 or a triangle is very small. In the case of triangles, this difficulty can be easily
circumvented by knowing the node degrees. This allows to select an open triangle
uniformly at random. In the case of K22s, this information is not sufficient to
select an open K22 uniformly at random. In fact, achieving this goal is very
costly. We thus present a new method in which, by picking only forks (as we do
for triangles), we can compute the interest clustering coefficient. The idea is to
select a vertex v as a root according to the square of its in-degree (as in the
case of triangles), but without knowing its number of open K22s (first step). We
then select two arcs u1v and u2v uniformly at random (second step). We then
compute the number of K22s and open K22s with the selected fork (u1v, u2v)
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#closed #open cc

icc 2.6 · 1016 3.1 · 1018 3.3%
tcc 2.5 · 1012 1.3 · 1014 1.9%
ccc 7.2 · 1011 1.3 · 1014 1.7%
ucc 6.2 · 1011 1.6 · 1015 0.11%
mcc 3.2 · 1011 8.9 · 1012 10.7%

Table 1: Clustering coefficients in the TS. The first (resp. second) column repre-
sents the number of closed (resp. open) K22s or triangles in the Twitter Snapshot.
Each line corresponds to a clustering coefficient defined in Section 1.

(third step). The formal justification of this new method is developed in [16].
We present here the results of the experiments.
Experiments.We carried out two runs with 10 million iterations. It took about
2min30 for one run (60.000 iterations per second). The value of the estimator of
the icc for the two runs is plotted as a function of the number of iterations in
Figure 2b. We see that the estimator converges as expected to the value of the icc
of TS represented by a straight horizontal line (and which was computed exactly
in the previous section). We also plotted the estimated standard deviation as a
function of the number of iterations. To obtain it, we did one billion iterations.
We then estimated the standard deviation σ, and plotted σ√

n
. We see that large

jumps or discontinuity happen, but only at the beginning. They correspond to
the draw of a fork with a lot of K22s and open K22s corresponding to a user who
does not have the same icc as the global network. Then, the convergence is
quick. After 300 iterations, the standard deviation is below 10% and after 1000
iterations, we do not experience a value of the runs less precise than 10%.

4 Results: Clustering coefficients in real Datasets

Twitter. To compute the number of K22s, open K22s, directed triangles, and
undirected triangles in the Twitter Snapshot, we used a cluster with a rack of 16
Dell C6420 dual-Xeon 2.20GHz (20 cores), with 192GB RAM, all sharing an NFS
Linux partition over Infiniband. It took 51 hours to compute the exact numbers
of K22s and open K22s, corresponding to 265h of cumulative computation times
on the cluster. We reported the results in Table 1.
Number of K22s and triangles. We see that the numbers of K22s and open
K22s are huge, 2.6× 1016 and 3.1× 1018, respectively. It has to be compared
with the number of triangles which are several orders of magnitude smaller: e.g.,
2.5× 1012 and 1.3× 1014 for transitive triangles.
Clustering coefficient in the mutual graph. The mutual graph captures the
friendship relationships in the social network. The mutual clustering coefficient
thus is high (mcc = 10.7%), as cliques of friends are frequent in Twitter.
Clustering coefficients in the whole graph. We observe that icc = 3.3% >
tcc = 1.9% > ccc = 1.7% > ucc = 0.11%. Directed metrics better capture the
interest relationships in the TS as ucc is very low. The highest parameter is the
icc. It confirms the hypothesis of this paper that common interests between two
users are better captured by the notion of K22 than by a direct link between these
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icc tcc ccc ucc

Twitter 3.1% 0.51% 0.24% 0.057%

Table 2: Clustering coefficients without the mutual structures.

users. As expected, the second parameter is the one using transitive triangles.
Indeed, they capture a natural way for a user of finding a new interesting user,
that is, considering the followings of a following, especially after having seen
retweets. A bit surprisingly, the ccc is not very low. In fact, a large fraction of
the cyclic triangles are explained by corresponding triangles in the mutual graph
(triangles of bi-directional links).
We believe bidirectional links contain a part of the social aspect of Twitter.
Indeed, two friends will tend to follow each other, while a celebrity have little
chance to follow back a person she does not know. A way to artificially take off
the social influence in order to focus exclusively on the directed interest part
of the graph is to remove the (open and closed) triangles and K22s contained
in the mutual graph from the total count. Indeed, each undirected triangle of
the mutual graph induces two cyclic triangles and six transitive triangles, and
each undirected open triangle induces two open triangles. In the same way, each
undirected K22 induces two K22s and each undirected open K22 induces two
open K22s. The obtained results are shown in Table 2. If we take off those mutual
triangles, both the tcc and the ccc values drop to 0.51% and 0.24%, respectively,
while the icc stays about the same at 3.1%. This tends to confirm the hypothesis
that the directed triangle clusterings somehow measure the friendship part of the
TS more than the interest part. We also looked at the distributions of K22, open
K22 and icc for each node, using definitions adapted from the triangle ones [19].
We obtain a value of 7.7% for the local icc. More details can be found in [16].

Other networks. We computed the different metrics on four other directed
networks: two social networks, a web network and a citation network. The main
dataset characteristics (more details in [16]) as well as their clustering coefficients
are reported in Table 3. The main takeaways are the following:
- A high value of icc indicates the presence of clusters of interests such as
research communities or interest fields.
- A high value of tcc is the sign of an important local phenomena of neighbors’
recommendations and/or of a high hierarchical structure in the dataset.
- The ccc has no real social meaning. If its value can be high in a directed graph,
this is only due to the presence of bidirectional arcs and triangles.
- Directed networks have a high mcc. Indeed, their bidirectional parts (mutual
graph) have strong social communities, leading to a high clustering coefficient.
- The ucc is usually significantly lower, showing that the directed part of the
network is better understood using directed clustering coefficients.
- Directed social networks have similar mixes of values of their undirected and
directed clustering coefficients, however, with some notable differences, due to
their diverse usages and information.
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Is a SN N |E| |E|m
|E| icc tcc ccc mcc ucc

Instagram Yes 4.5× 104 6.7× 105 11% 12.0% 15.4% 3.7% 22.6% 4.1%
Flickr Yes 2.3× 106 3.3× 107 62% 12.4% 12.2% 9.3% 13.9% 10.8%
Web (.edu) No 6.9× 105 7.6× 106 25% 46.3% 59.6% 18.8% 78.5% 0.69%
Citations No 3.8× 106 1.7× 107 0% 22.3% 9.1% 0% (none) 6.7%

Table 3: Information and clustering coefficients of the directed datasets. SN
means Social Network. N is the number of nodes, |E| the number of edges, and
|E|m
|E| the fraction of edges implied in a bidirectional link.

Additional work. As a complement of this study, we also proposed two appli-
cations using the K22s, which can be found in [16]:
- Recommendations. We propose to use the K22s to carry out link recom-
mendation, as we advocate that the interest clustering coefficient is a good
measure of common user interests. The principle is to recommend links clos-
ing a large number of K22s (instead, classically, of triangles). We discuss the
strengths/weaknesses of this method for a set of Twitter users.
- Models with addition of K22s.We propose a new directed random growing
model, based on the one introduced by Bollobas et al. [3], with addition of K22s.
This way, the model is able to build random networks with a high icc, in order
to represent the high values of icc found in real-world networks as presented
in this paper. We prove that the in- and out- degree distributions of this model
follow power-laws, as most of real-world networks, and show empirically the high
value of the icc.

5 Conclusion, Discussion, and Future Work
In this paper, we introduce a new metric, the interest clustering coefficient, to
capture the interest phenomena in a directed graph. Indeed, the classical undi-
rected clustering coefficient apprehends the social phenomena that my friends
tend to be connected. However, it is not adequate to take into account directed
interest links. The interest clustering coefficient is based on the idea that, if
two people are following a common neighbor, they have a higher chance to have
other common neighbors, since they have at least one interest in common. We
computed this new metric on a network known to be at the same time a social
and information media, a snapshot of Twitter from 2012 with 505 million users
and 23 billion links. The computation was made on the total graph, giving the
exact value of the interest clustering coefficient, and using sampling methods.
The value of the interest clustering coefficient of Twitter is around 3.3%, higher
than (undirected and directed) clustering coefficients introduced in the literature
and based on triangles, which we also computed on the snapshot.
Since both icc and classical cc represent a probability to close a structure,
comparing their values with each other makes sense. However, an additional
comparison with random models would be good to quantify what a "high value"
means. In a network built with the G(n, p) model, both directed cc and icc are
equal to p. For the Twitter Snapshot, p ∼ 10−7, way smaller than the found
values. An interesting study would be to compute those metrics on preferential
attachment models; we keep this for a future work.
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The icc is defined here for unweighted networks: it would be interesting to
generalize it to weighted ones as a future work. We also would like to further
investigate link recommendation based on the K22 structure defined for the in-
terest clustering coefficient. Indeed, as there are several order more K22s than
triangles in social networks, it could lead to a more diverse recommendation
system, than the ones based on triangles. It would be interesting to carry out
a real-world user case study to investigate if users are more satisfied by such
recommendations.
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