
1

Energy-Efficient Service Function Chain
Provisioning

Nicolas Huin, Andrea Tomassilli, Frédéric Giroire, Brigitte Jaumard

Abstract—Network Function Virtualization (NFV) is a promis-
ing network architecture concept to reduce operational costs.
In legacy networks, network functions, such as firewall or TCP
optimization, are performed by specific hardware. In networks
enabling NFV coupled with the Software Defined Network (SDN)
paradigm, Virtual Network Functions (VNFs) can be imple-
mented dynamically on generic hardware. This is of primary
interest to implement energy efficient solutions, in order to adapt
the resource usage dynamically to the demand. In this paper, we
study how to use NFV coupled with SDN to improve the energy
efficiency of networks. We consider a setting in which a flow has
to go through a Service Function Chain, that is several network
functions in a specific order. We propose an ILP formulation,
an ILP-based heuristic, as well as a decomposition model that
relies on joint routing and placement configuration to solve the
problem. We show that virtualization provides between 22% to
62% of energy savings for networks of different sizes.

I. INTRODUCTION

With the large yearly increase of Internet traffic and the
growing concern of the public and governments towards
greenhouse gas emissions, future networks will have to be
more energy efficient [1]. In the past few years, this has
been the focus of extensive research work [2]. One of the
classic methods to reduce the energy consumption of networks
is to try to aggregate network traffic on a small number
of network equipment in order to put to sleep the unused
hardware. However, an additional challenge is given by the
fact that today’s traffic must pass through a certain number
of network functions. Examples of network functions include
deep packet inspection (DPI), firewall, load balancing, and
WAN optimization. The network functions often need to be
applied in a specific order, e.g., in a security scenario, the
firewall has to be applied before carrying out a DPI, as
the latter is more CPU intensive than the former. In this
context, a Service Function Chain (SFC) is a list of network
functions, that need to be applied to a flow in a particular
order. These functions are carried out by specific hardware,
which are installed at specific locations of the network. The
paths followed by demands are thus very constrained, reducing
the opportunities to aggregate traffic.

With the emergence of techniques of Network Function
Virtualization (NFV), the functions can now be executed by
generic hardware instead of dedicated equipment. Coupled

N. Huin’s, A. Tomassilli’s and F. Giroire’s affiliation is Université Côte
d’Azur, Inria, CNRS, I3S, UNS, Sophia Antipolis, France. Emails: nico-
las.huin@inria.fr, andrea.tomassilli@inria.fr, frederic.giroire@cnrs.fr

B. Jaumard is with the department of Computer Science and Software
Engineering, Concordia University, Montreal (QC) Canada, Email: bjau-
mard@cse.concordia.ca

with the Software Defined Network (SDN) paradigm, NFV
brings a great flexibility to manage network flows. Indeed,
with the centralized control allowed by SDN, the flow can
be managed dynamically from end-to-end and the service
functions can be installed only along paths for which and
when they are necessary. These new paradigms thus bear the
opportunity for energy savings in networks.

In this work, we explore the potential energy savings of
using NFV for Service Function Chains. We consider the
problem of reducing network energy consumption while plac-
ing service functions using generic hardware along the paths
followed by flows. A difficulty is that the network functions
have to be executed in a specific order and can be repeated
several time in the same chain.
In summary, the contributions of this work are the following

– We show how virtualization can be used to improve the
energy efficiency of networks, when demands have to go
through a chain of services. To the best of our knowledge,
we are the first to propose such a method.

– We propose a way of modeling this problem based on
Integer Linear Programming (ILP). The ILP can solve
optimally instances of small sizes.

– To handle instances of larger sizes, we thus propose and
validate a heuristic algorithm, GREENCHAINS,

– and we formulate a Column Generation model.
– We provide enhancements of the model with the use

of cuts, as the our problem is a difficult optimization
problem. As a matter of fact, it contains a sharp On-Off
phenomena, as a network device consumes a large portion
of its energy as soon as it is used, even if very lightly
used. Cuts allow the reduction of the integrality gap.

– This allows us to carry out extensive simulations on
networks of different sizes. We study three different
scenarios: a legacy scenario which serves as baseline
for comparison, a hardware scenario in which the rout-
ing can be changed dynamically by a centralized SDN
controller, but in which network functions are executed
by specific hardware, and finally, an NFV scenario in
which the network functions are virtualized and can be
placed dynamically. We show that from 22% to 62% of
energy can be saved during the night while respecting the
constraints of the service chains.

– Finally, we propose a latency analysis to evaluate the
impact on delays of switching off some network elements
to save energy.

The article is organized as follows. In Section II, we review
the current works on energy efficiency and Service Function

2

Chaining. The problem is presented in Section III along with
the power model and the layered graph model used in our
mathematical formulations. We present in Sections IV, V
and VI the ILP formulation, GREENCHAINS and column
generation scheme, respectively. We then compare the models
and assess their quality in Section VII.

II. RELATED WORK

A. Service Chains

Several works study the problem of service function chain
placement, but taking other metrics or other scenarios into
account. Savi et al. [3] proposes a different ILP model to
solve the problem. They study the impact of the positions of
the network functions on the processing costs. Gupta et al. [4],
[5] explores the joint placement and routing of traffic in order
to minimize the network bandwidth consumption. In Martini
et al. [6], a layered ILP model close to the one we propose in
the paper is proposed, but with latency minimization as opti-
mization task. [7] explores the problem of joint optimization of
maximum link, CPU core and maximum delay in the network
while placing the VNFs. Last, Riggio et al. [8] considers a
cloud environment in which the load has to be load-balanced
in order to minimize the computation and the communication
overheads. However, these works do not consider the problem
of minimizing network energy consumption with a dynamic
traffic.
Energy-Aware Routing. Several works have proposed algo-
rithms to obtain energy aware routing, see e.g., Chiaraviglio
et al. [9]. However, these works are hard to be put in practice
as operators of legacy networks are reluctant to change their
network configurations.

B. SDN and Network Energy Efficiency

Recently, researchers have started to explore how the intro-
duction of the SDN paradigm with a centralized control and
a live report of metrology data may enable dynamic routing.
In particular, it would allow the implementation of energy-
aware routing algorithms, as discussed in Giroire et al. [10].
However, these papers did not consider the constraints of
network functions. Some particular works considered some
specific class of network functions, like compression [11], but
not the general problem of ensuring that flows are treated by
the network functions.

C. Network Virtualization and Network Energy Efficiency

Only two papers explore the potential of network virtual-
ization for energy efficiency. In Bolla et al. [12], the authors
present an extension of an open source software framework,
the Distributed Router Open Platform (DROP), to enable a
novel distributed paradigm for NFV. DROP includes sophisti-
cated power management mechanisms, which are exposed by
means of the Green Abstraction Layer. In [13], authors esti-
mate the energy savings that could result from the three main
NFV use casesVirtualized Evolved Packet Core, Virtualized
Customer Premises Equipment and Virtualized Radio Access
Network. However, both papers do not consider the constraints
of service chains.

A B C D

H I J K

E F G

(a)

G

A B C D

H I J K

E F

(b)

IDPS FWVOC

Fig. 1: Example of Energy efficient Service Function Place-
ment. Greyed links and nodes are inactive.

III. STATEMENT OF THE PROBLEM: SFC AND VNF
PLACEMENT

A. Notations.

We assume the network to be represented by a directed
graph G = (V,L), where V is the set of nodes (indexed by
v), and L is the set of links (indexed by `). Each node u ∈ V
has a set of computing, storage and network resources denoted
by Cu to host network functions. Within this study, we assume
that the resources are described by a given number of CPU
cores.

Traffic is described by a set of requests D, in which each
request d is defined by a 4-tuple (vs, vd, c,D

c
sd), where vs is

the source of the request, vd its destination, Dc
sd its bandwidth

requirement, and c the requested service chain. Indeed, each
request d is associated with a given application, which is
required to pass through a given SFC. Let F be the overall
set of virtual functions arising in the service chains, indexed
by f , and C be the set of service chains, indexed by c. Each
service chain c corresponds to a sequence of nc functions
f c1 , . . . , f

c
i , . . . , f

c
nc

, where f ci denotes the ith function of chain
c. Note that some functions may appear more than once in
a given chain. Each virtual function f has its one resource
requirement, and we denote by ∆f the number (fraction) of
cores required by the function f per bandwidth unit.

The Energy Efficient Service Function Chain Provisioning
(EE-SFCP) problem consists in jointly provisioning a set D of
requests coupled with service function chains C and placing
virtual functions arising in the chains, in order to minimize
the network energy consumption, subject to link and node
capacities.

Figure 1 shows examples of a Energy Efficient Service
Function Chain provisioning problem. We have three requests

3

and two types of services. Demand D1 = (A D) requires
1 unit of bandwidth and the execution of a firewall (FW)
and a packet inspector (IDPS). Flows D2 = (H K) and
D3 = (G F) need 1 unit of bandwidth, and the execution
of a firewall followed by a video optimizer (VOC). An instance
of a firewall uses ∆FW = 0.33 core per unit of bandwidth, an
instance of a video optimizer requires ∆VOC = 1 core, and an
instance of a packet inspector uses ∆FW = 2 cores. Each link
has a capacity of 3 units of bandwidth, and each node hosts
2 cores.

In Figure 1a, flows are routed according to the shortest
path between their source and destination. We need to place
a firewall function instance on three different nodes (namely
A, G, and H) to cover the three demands. Flows D2 and D3

get their video optimizer on nodes F and I , respectively. The
packet inspector of flow D1 is installed on node B. In this last
configuration, five links can be shut down ((A,E), (H,E),
(E,F), (G,D), (G,K)) and node E can be put to sleep. A
total of 7 cores are active (1 on nodes A, F , G, H , and I ,
and two on node B).

However, there exists another routing that minimizes the
energy consumed by the network. It allows the shutdown of
one more link and the reduction of the number of active cores
by two units. Indeed, if we consider the routing given in
Figure 1b, we can group all the firewall instances on node
F . Since nodes only host 2 cores, we need to put one video
optimizer instance on node F , in charge of D2; D3 is served by
the instance on node G. We now only use 5 cores in total, and
we can now shutdown links (A,B), (B,C), (C,D), (H, I),
(I, J), and (J,K).

B. Power Model

Campaigns of measures of power consumption (see, e.g.,
[14]) show that a network device consumes a large amount
of its power as soon as it is switched on and that the energy
consumption does not depend much on the load. Following
this observation, on/off power models have been proposed
and studied. Later, researchers and hardware constructors have
proposed more energy proportional hardware models [15]. To
encompass those different models, we use a hybrid power
model in which the power of an active link ` is expressed
as

P` = P ON
` +

BW`

CLINK
`

P MAX
` ,

where P ON
` represents the energy used when the link ` is

switched on, BW` the bandwidth that is carried on `, and
P MAX
` the additional energy consumed by ` when it is fully

capacitated, i.e., when the amount of carried bandwidth equals
the transport capacity (CLINK

`) of link `.
We assume that links can be put into sleep mode, by putting to
sleep both endpoint interfaces. Two links in opposite direction
between a pair of nodes are assumed to be in the same state
(active or in sleep mode), as the send and receive elements
of a unidirectional fiber are usually controlled by the same
interface. Routers cannot be put into sleep mode, as there
are the sources/destinations of network traffic. However, cores
may be put into sleep mode and the power used by node v is

equal to
Pv = P UNIT

v ×#cores

with P UNIT
v being the energy consumption of a single core.

C. Layered Graph.

Following an idea similar to [16], we use a layered graph GL

that is defined as follows. We add max
c∈C

nc layers to the original
graph G and each layer contains a copy of G. For every node
u ∈ V , let vi be the corresponding node in the ith layer
(i = 0, 1, . . . , nc). Every (i− 1, i) layer pair is connected by
(vi−1, vi) links. Provisioning of a chain and node placement
of its functions amounts to find a path from node vs on the first
layer, i.e. v0s , to node vd on the ncth layer, i.e., vnc

d . Placement
of a function on a node is given by the endpoints of the link
used to switch between layers.

IV. COMPACT FORMULATION

We now present the ILP formulation for the EE-SFCP
problem. Let us first introduce the set of variables.
• x` ∈ {0, 1} where x` = 1 if link ` is active, 0 otherwise
• fsd,ci` ∈ {0, 1} where fsd,ci` = 1 if the flow for the request

(vs, vd, c,D
c
sd) uses the link ` in layer i. We consider here

un-splittable routing.
• asd,civ ∈ {0, 1} where asd,civ = 1 if the ith function

of the chain c is executed on node v for the request
(vs, vd, c,D

c
sd).

• kv ∈ N, number of CPU cores used in node v.
• f` ∈ R, flow passing through link (u, v). This variable

is linked and is added to the ILP for clarity of the
presentation.

The formulation is given as follows.
Objective

min
∑
`∈L

(
P ON
` × x` + P MAX

` × f`
CLINK

`

)
+
∑
u∈V

Pvku (1)

Flow Conservation

∑
`∈ω+(v)

fsd,ci` −
∑

`∈ω−(v)

fsd,ci` + asd,civ − asd,ci−1v = 0

(vs, vd) ∈ SD, c ∈ Csd, u ∈ V, 0 < i < nc (2)∑
`∈ω+(v)

fsd,c0` −
∑

`∈ω−(v)

fsd,c0` + asd,c0v =

{
1 if u = vs,

0 else

(vs, vd) ∈ SD, c ∈ Csd, u ∈ V (3)∑
`∈ω+(v)

fsd,cnc`
−

∑
`∈ω−(v)

fsd,cnc`
− asd,cnc−1v =

{
−1 if u = vd,

0 else

(vs, vd) ∈ SD, c ∈ Csd, u ∈ V. (4)

Link Capacity

f` =
∑

(vs,vd)∈SD

∑
c∈Csd

nc∑
i=0

Dc
sd × f

sd,c
i` ≤ CLINK

` × xuv

` ∈ A. (5)

4

Number of CPU cores used∑
(s,t)∈D

nc−1∑
i=0

(
∆fc

i
Dc

sd

)
× asd,civ ≤ kv u ∈ V. (6)

Node Capacity

kv ≤ CNODE
v u ∈ V. (7)

V. SOLVING LARGE INSTANCES WITH GREENCHAINS

As the ILP proposed in the previous section cannot provide
solutions for large networks, we propose here an ILP-based
heuristic algorithm called GREENCHAINS to solve the EE-
SFCP problem. The problem can be decomposed into three
sub-problems.

- First, the energy saving problem tries to put into sleep
mode as many links and cores as possible to decrease
the energy consumption of the network.

- Second, the routing problem computes a path for each
request, respecting the link capacity constraints.

- Last, the goal of the service chain placement problem is
to find a placement of the NVF respecting the capacities
of the nodes and the order defined by the service chains,
according to the path computed for each request.

A. Energy Saving Module.

The goal of this module is to put links into sleep mode.
It first launches the routing module and then places the

network functions on the requests’ paths. If both modules
succeed, it creates a list U of all links according to their
usage (volume of traffic). It then chooses the less loaded link
`min as a candidate to be put in sleep mode. It now considers
the graph G′ = (V,L \ {`min}). It launches the routing and
placement modules again. If they succeed, `min is put in sleep
mode. The list U is actualized with the new routing, as well
as the less loaded link. If at least one of the two modules
fails, GREENCHAINS considers that `min cannot be into sleep
mode and the link is kept active for the final solution. The
second element of U is then considered. The algorithm goes
on till all links have been tried and set either as definitely in
sleep mode or active. The goal of this module is to reduce the
energy used by the links by putting in sleep mode as many
links as possible.

B. Routing Module

We consider the requests one by one and compute a
weighted shortest path on a residual graph for each one of
them. To favor links with a lower load, the weight of the link
in the residual graph is equal to the inverse of its residual
capacity. When we assign a path to a request, we decrease
the capacity of the residual graph by the amount of charge
requested. Furthermore, when considering a new demand to
be routed, we remove links with a residual capacity smaller
than the demand.

C. Service Chain Placement Module.

This module is in charge of choosing the execution location
of the chains functions. We propose the following ILP that
aims at minimizing the total number of cores used.

Given a path Psd,c for every request (vs, vd, c,D
c
sd), we

need to find the execution location of each function of the
chain c. Each node of the path is indexed by i, i.e., P i

sd,c is
the ith node of Psd,c.

We introduce the following two sets of variables.
• asd,civ ∈ {0, 1} where asd,ci,v = 1 if f ci for request

(vs, vd, c,D
c
sd) is executed on node v

• kv ∈ N, #cores used in node v.

The formulation is as follows.
Objective function

min
∑
u∈V

ku. (8)

Execution constraints∑
v∈Psd,c

asd,civ = 1 (vs, vd) ∈ SD, c ∈ Csd, 1 ≤ i ≤ nc. (9)

Order constraints

asd,c
i,Pk

sd,c

≤
k∑

j=1

asd,c
i−1,P j

sd,c

(vs, vd) ∈ SD, c ∈ Csd,

1 ≤ k ≤ LEN(Psd,c), 1 ≤ i ≤ nc. (10)

Number of cores used∑
(vs,vd)∈SD

∑
c∈C

nc∑
i=1

(
∆fc

i
Dc

sd

)
× asd,civ ≤ kv u ∈ V. (11)

Node Capacity constraints

ku ≤ Cu u ∈ V. (12)

VI. DECOMPOSITION MODELS

As the ILP does not scale, we propose a column generation
scheme to help validate our heuristic for larger networks. We
first present here a model using Column Generation, CG-
simple. We then introduce two variants of the models, CG-cuts,
and CG-cut+. Indeed, problems dealing with energy-efficiency
frequently lead to large integrality gap and bad precision. This
is due to the On-Off phenomena of power models, which
translates into large steps of the objective function. We thus try
to improve the precision of the model by introducing different
sets of constraints. We discuss the precision of the models in
Section VII-C.

A. Column Generation Formulation

We propose a column generation formulation that relies on
the concept of Service Path: each Service Path p is associated
with a 4-uplet (vs, vd, c,D

c
sd) and defines: (i) a potential route

for the request (vs, vd, c,D
c
sd) between vs and vd, (ii) node

placement of the functions of chain c along the potential route.
A route is described by parameters δp` , equal to the number
of occurrences of the link ` in the path p. Node placement is

5

given by apvi, equal to 1 if the ith function of the chain c is
located at node v, 0 otherwise. We denote by P c

sd the overall
set of Service Path for each request (vs, vd, c,D

c
sd).

We now define the set of variables. First set of decision
variables: x` = 1 if link ` is on (active), 0 otherwise. Note
that links are powered off by pair, i.e., x`=(v,v′) = x`′=(v′,v).
Second set of decision variables: ypd = 1 if demand d is routed
using configuration p, 0 otherwise. Integer variables: kv = #
required cores in node v.

The objective, i.e., the minimization of the energy, can be
written

min
∑
`∈L

P ON
` x`︸ ︷︷ ︸

link switch
on energy

+
∑
`∈L

∑
p∈P c

sd

δp`

 ∑
d=(vs,vd,c)∈D

Dc
sd

CLINK
`

Pmax
`

 ypd︸ ︷︷ ︸
link bandwidth energy

+
∑
u∈V

Pv kv︸ ︷︷ ︸
node resource energy

(13)

The constraint set decomposes into three sets of constraints.

One path per demand∑
p∈P c

sd

ypd = 1 (us, ud) ∈ SD, c ∈ Csd ∈ D. (14)

Link capacity∑
d=(vs,vd,c)∈D

∑
p∈P c

sd

Dc
sd δ

p
` y

p
d ≤ x` C

LINK
` ` ∈ L. (15)

Node capacity

∑
d∈D

∑
p∈P c

sd

Dc
sd(

nc∑
i=1

∆fia
p
vfi

)ypd ≤ kv ≤ C
NODE
v

u ∈ V. (16)

As we faced issues with large integrality gaps, we enhanced
model (13)-(16) with different sets of cuts, through the next
two models.

CG-cuts model. The first set of cuts in (17) states that,
for each node, at least one incident link should always be
on. Moreover, the second inequality given by Equation (18)
enforces that at least n − 1 links should be active to have a
connected network (or different if not all-to-all).

∑
`∈ω+(v)

x` ≥ 1 u ∈ V (17)

∑
`∈L

x` ≥ n− 1. (18)

CG-cut+ model. We further enhance the CG-cuts model with:

x` ≥
∑

p∈P c
sd

γp` y
p
d ` ∈ L, (us, ud) ∈ SD, c ∈ Csd (19)

where γp` = 1 if the link ` belong the path p. Using (14), it
follows that

∑
p∈P c

sd

γp` y
p
d ≤ 1. It avoids the use of a big M

formulation at the expense of a large number of constraints.

B. Solution Scheme

To solve the model of Section VI-A efficiently, we need to
recourse to column generation for solving the linear relaxation,
and then to derive an ILP value, using the last restricted master
problem. For additional details on linear programming and
column generation schemes see, e.g., [17].

There is a configuration generator, i.e., pricing problem, for
each request (vs, vd, c,D

c
sd). Two sets of decision variables are

required. First set is made of variables ϕi
` such that ϕi

` = 1
if the provisioning of demand d uses link ` in layer i of the
layered graph GL, 0 otherwise. Second set contains variables
aiv such that aiv = 1 if the ith function (f ci) of chain c for
request (vs, vd, c,D

c
sd) is placed on NFV node v, 0 otherwise.

The formulation of the Service Path generator is given as
follows.

min−u(14)
sd

+
∑
`∈L

nc∑
i=0

ϕi
` ×

(
Pmax
`

Dc
sd

CLINK `
+ u(15)

` Dc
sd

)

+
∑
u∈V

nc−1∑
i=0

aiv ×
(
u(16)
v ∆fiD

c
sd

)
. (20)

Path computation (flow conservation constraints):

∑
`∈ω+(v)

ϕi
` −

∑
`∈ω−(v)

ϕi
` + aiv − ai−1v = 0

u ∈ V, 0 < i < nc (21)

∑
`∈ω+(v)

ϕ0
` −

∑
`∈ω−(v)

ϕ0
` + a0v =

{
1 if v = vs

0 else

u ∈ V (22)

∑
`∈ω+(v)

ϕnc

` −
∑

`∈ω−(v)

ϕnc

` − a
nc
v =

{
−1 if v = vd

0 else

u ∈ V. (23)

Link capacity: Dc
sd

nc∑
i=0

ϕi
` ≤ CLINK

` ` ∈ L. (24)

Node capacity: Dc
sd

nc∑
i=0

∆fia
i
v ≤ CNODE

v u ∈ V. (25)

1) Speeding up the Pricing Problem: The Pricing Prob-
lem corresponds to a constrained shortest path with negative

6

weights on the layered graph, and we can use CPLEX to solve
it. However, if we discard the capacity constraints, the problem
becomes the shortest path with negative weights problem. It
can be solved much faster than the original problem using
the Bellman-Ford shortest path algorithm. Since we remove
the capacity constraints, the set of solutions considered is a
superset of the initial set of solutions. It is possible to find
a path that might use more resources than available. In this
case, we fall back the ILP solver to obtain a valid path. The
weight of the inter-layer arcs is thus given by

wiv = Pmax
`

Dc
sd

CLINK `
+ u(15)

` Dc
sd 0 ≤ i < nc, u ∈ V.

and the weight of intra-layer arcs by

wi` = u(16)
v ∆fiD

c
sd 0 ≤ i ≤ nc, ` ∈ L.

2) Particularities of CG-cut+: By introducing the con-
straints (19) into the model, we also need to introduce a new
set of variable γl into the Pricing Problem that indicates if the
link ` is used in the path. The objective function becomes

min −u(14)
sd +

∑
`∈L

nc∑
i=0

ϕi
` ×

(
Pmax
`

Dc
sd

CLINK `
+ u(15)

` Dc
sd

)

+
∑
u∈V

nc∑
i=0

aiv ×
(
u(16)
v ∆fiD

c
sd

)
+
∑
`∈L

γlu
(19)
sd,c,l. (26)

and the link capacities constraints become

Dc
sd

nc∑
i=0

ϕi
` ≤ CLINK

` × γ` ` ∈ L. (27)

Moreover, adding enhanced cuts creates negative cycles in
the layered graph used for the Pricing Problem. We choose
not to get rid of the cycles by enumerating them all. Instead,
we check if the solution provided by the solver contains any
negative cycles. If that is the case, we add the corresponding
constraints in the formulation and call the solver again. We
repeat this process until the obtained solution no longer
contains any negative cycles or the reduced cost is no longer
negative. Removing the cycle has a negligible impact on the
performance of the column generation scheme as it is executed
only a few times at the start of the algorithm.

VII. NUMERICAL EXPERIMENTS

In this section, we investigate the energy savings obtained
by the Column Generation model. We compare the results
with the ones of GREENCHAINS heuristic algorithm. We
first present the data sets we use for the experiments. We
then take a look at the precision of the solutions obtained
by the Column Generation model and GREENCHAINS. We
investigate different improvements of the model presented in
Section III. We then present the energy savings achieved for
network topologies of different sizes. Last, we discuss the
impact of the solutions on link usage and path lengths.

A. Data sets

In networks, each type of flows has to go through a different
chain of network services. In our experiments, we consider
four of the most frequent types of flows, as presented in
Table I: Video Streaming, Web Service, Voice-over-IP (VoIP),
and Online Gaming. The traffic percentages are from [18]. For
each one, we give the ordered set of functions required and
the bandwidth used. In total, we have six different functions,
and each function requires a different amount of cores to be
executed.

We tested the CG models and GREENCHAINS on three
topologies of different sizes from SNDlib [19]: pdh (11 nodes
and 64 directed links), atlanta (15 nodes and 44 directed links),
and germany50 (50 nodes and 176 directed links).

To obtain realistic looking traffic matrices, we generate,
for each network, a set of demands from the traffic matrices
provided in SNDlib: we divide each aggregate flow from
a source to a destination into four demands corresponding
to the four different types of traffic. We consider that the
flows provided in the SNDlib data set represent aggregated
flows of miscellaneous services. Thus, we can subdivided them
into four different services. The original load of the flow is
conserved, and each sub-flow load is given by the distribution
of the last column of Table I. For example, a flow with a charge
of 1 is split into a Web Service, a VoIP, a Video Streaming
and an Online Gaming sub-flows with a load of 0.182, 0.118,
0.699 and 0.001, respectively.

We tested the solution on a daily traffic to see how much
energy can be saved during the day or at night. The variations
of traffic come from a trace of a typical France Telecom link
shown in Figure 2. Previous work [20] indicates that using a
small number of configurations during the day is enough to
obtain most of the energy savings. In our case, we considered
five different levels of traffic called D1 to D5. D1 represents
the period with the lowest amount of traffic and D5 the one
with the highest.

Traditionally, ISP networks use shortest path routing and
operate their network with an overprovisioning factor of 2 or
3 [21], [22], in order to be able to cope with failures and
traffic growth. This means that links typically are used at
only between 30 and 50% of their capacity. We set capacities
accordingly at the beginning of the simulation. For each
network, we solve the legacy scenario by routing requests
on the shortest paths between each location of the service’s
functions. Each function location is chosen at random in the
legacy scenario. We then choose the link capacities such that
each link is at most used at 33% of its capacity. Finally, we
considered equal values for the energy consumption of the
links and nodes.

B. Compact formulation evaluation

We compare the results obtained by the heuristic algorithm,
GREENCHAINS, with the optimal results given by the integer
linear program on a small network, pdh, with 11 nodes and 64
links. We consider instances with an increasing complexity:
the number of demands varies from 4 to 40. Note that we
consider multiples of 4 demands, as the traffic between a pair

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Tr
af

fic
 [n

or
m

ali
ze

d]

Daily time (h)

D1

D2

D3

D2

D4 D4

D5

D3

D3

0.3

0.4

0

0.6

0.8

1.0

0 5 10 15 20 24

Fig. 2: Normalized daily variation of traffic of a France
Telecom network link and multi-period approximation

Service Chained VNFs Rate traffic
Chains (%)

Web NAT-FW-TM-WOC-IDPS 100 kbps 18.2Service

VoIP NAT-FW-TM-FW-NAT 64 kbps 11.8

Video NAT-FW-TM-VOC-IDPS 4 Mbps 69.9Streaming

Online NAT-FW-VOC-WOC-IDPS 50 kbps 0.1Gaming

TABLE I: Service Chain Requirements [3]

0 4 8 12 16 20 24 28 32 36 40

Number of demands

10-2
10-1
100
101
102
103
104
105
106

E
xe

cu
ti

o
n

 t
im

e
 (

s)

GreenChains

ILP

(a) Execution time

0 4 8 12 16 20 24 28 32 36 40

Number of demands

0

500

1000

1500

2000

2500

3000

E
n

e
rg

y
U

se
d

GreenChains

ILP

(b) Energy used

Fig. 3: Comparison between the compact formulation and GREENCHAINS

of nodes is divided into four different demands corresponds
to different categories of traffic.

We compare the execution times of the ILP model and the
algorithm in Figure 3a. The experiments are made on a Intel
Xeon E5620 with 24GB of RAM. We see that the ILP model
can be used to solve the problem with a reasonable amount of
time for a maximum number of 16 demands. In this case,
it takes around 45 minutes to return the optimal solution.
The increase is exponential: for 20 demands, the execution
time is almost 3 hours. On the other hand, GREENCHAINS is
much faster as it can find a solution in less than 1 second for
20 demands (0.38 s). It solves an instance with 40 demands
in 0.78 s and the all-to-all instance (with 440 demands),
considered in the following, in less than 7 s. We see that the
ILP cannot be used in practice to solve instances with a large
number of demands, and thus we use the GREENCHAINS for
the experiments on larger networks in the following.

The results regarding energy savings are given in Figure 3.
GREENCHAINS finds results within a precision ranging be-
tween 0% and 16% for the different number of demands. We
consider this as good results given the difficulty of the EE-
SFCP problem. Moreover, it means that the potential energy
savings of using dynamic traffic and virtualization are in fact
even greater than the one presented in the following.

C. Quality of the Column Generation models

We now compare the performance of the three different CG
models (CG-simple, CG-cuts, and CG-cut+) with respect to
their accuracy as given by ε = (z̃ILP − z?LP)/z

?
LP, where z?LP

represents the optimal value of the relaxation of the Restricted
Master Problem, and z̃ILP the integer solution obtained at the

end of the column generation algorithm. In Figure 4, 5, and 6,
we compare the solutions found by the three CG models for
all three networks and for the 5 different levels of traffic. We
first observe in Figure 4, in which error bars represent the gap
between the relaxed and integer solutions, that CG-simple and
CG-cuts provide similar solutions. However, ε dramatically
varies, as shown in Figure 5. Cuts significantly improves ε: for
CG-simple, it varies between 12% and 113% for pdh, 10% and
97% for atlanta, and 37% and 330% for germany50. For CG-
cuts, ε is between 7 to 15% for pdh, 6 and 12% for atlanta, and
24 and 30% for germany50. The ratio is further improved with
CG-cut+: between 4 and 8% for pdh, 1 and 6% for atlanta.
However, no solutions were found in a reasonable amount
of time for the germany50 topology. As the energy savings
are similar for the three models, it shows that the three CG
models provide rather accurate solutions, as confirmed by the
solutions and accuracy of the CG-cuts and CG-cut+ models.

Finally, in Figure 6, we compare the execution times of the
models. We observe that CG-cut+ execution time (between
17 s and 5 h) is orders of magnitude higher that the one of CG-
simple (between 50 ms and 440 s) and CG-cuts (between 70 ms
and 670 s). This is greatly due to the fact that we speed up the
resolution of the two previous model using the Bellman-Ford
shortest path algorithm for the Pricing Problem. The second
factor is that CG-cut+’s cuts slow the convergence time of the
column generation drastically.

We now focus on the CG-cuts model, as it offers the best
compromise in terms of accuracy (w.r.t. CG-simple model)
and computation time requirements (w.r.t. CG-cut+ model) to
solve large networks.

8

CG-simple CG-cuts CG-cut+

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100
E

n
e
rg

y
u

se
d

(a) pdh

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

(b) atlanta

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

(c) germany50

Fig. 4: Performance of all three CG models on the (a) pdh, (b) atlanta and, (c) germany50 network topologies. 100 represents
the energy used by the legacy scenario.

CG-simple CG-cuts CG-cut+

D1 D2 D3 D4 D5

Time periods

10-2

10-1

100

101

ε
ra

ti
o

(a) pdh

D1 D2 D3 D4 D5

Time periods

10-3

10-2

10-1

100

ε
ra

ti
o

(b) atlanta

D1 D2 D3 D4 D5

Time periods

10-1

100

101

ε
ra

ti
o

(c) germany50

Fig. 5: Accuracy, ε, of all three CG models on the (a) pdh, (b) atlanta and, (c) germany50 network topologies

CG-simple CG-cuts CG-cut+

D1 D2 D3 D4 D5

Time periods

1ms

100ms
1s

1min

10min

T
im

e
 (

s)

(a) pdh

D1 D2 D3 D4 D5

Time periods

1ms

100ms
1s

1min

10min

T
im

e
 (

s)

(b) atlanta

D1 D2 D3 D4 D5

Time periods

1ms

100ms
1s

1min

10min

T
im

e
 (

s)

(c) germany50

Fig. 6: Execution times of all three CG models on the (a) pdh, (b) atlanta and, (c) germany50 network topologies

D. Energy Savings

We now compare the energy savings obtained by GREEN-
CHAINS and CG-cuts. We consider three scenarios in the
experiments:

- Legacy scenario. This scenario corresponds to the one of
a legacy network, whose operator does not try to reduce
the energy consumption of its network. Its goal is to
minimize the total bandwidth used while respecting the
link capacity and the chain constraints. This scenario is
used as a baseline for comparison for the energy-aware
algorithms.

- Hardware scenario. The hardware scenario corresponds
to one of an SDN (non-virtualized) network in which
an operator tries to reduce its energy consumption by

adapting the routing to the demands. In this scenario,
the network functions are carried out by some specific
hardware placed at given positions in the network.

- NFV scenario. The NFV scenario is the one of a vir-
tualized SDN network in which generic hardware nodes
can execute any virtual network functions. This is the
scenario solved by the solutions provided in Sections IV,
V and VI.

We provide in Figure 7 the energy used for the five levels
of demands for pdh, atlanta, and germany50. The values are
normalized: 100 corresponds to the legacy scenario. We also
present in Figure 8 the corresponding energy savings during
the day. We see that we obtained important savings using
virtualization: between 25 and 61% for pdh, 5 and 22% for
atlanta, and 15 and 30% for germany50.

9

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100
E

n
e
rg

y
u

se
d

CG

Heuristic

(a) pdh

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

CG

Heuristic

(b) atlanta

D1 D2 D3 D4 D5

Time periods

0
10
20
30
40
50
60
70
80
90

100

E
n

e
rg

y
u

se
d

CG

Heuristic

(c) germany50

Fig. 7: Energy used for GREENCHAINS and the CG model on the three topologies.

0 6 12 18 24

Hours

0

10

20

30

40

50

60

70

E
n

e
rg

y
sa

vi
n

g
s

(%
)

(a) pdh

0 6 12 18 24

Hours

0

10

20

30
E

n
e
rg

y
sa

vi
n

g
s

(%
)

(b) atlanta

0 6 12 18 24

Hours

0

10

20

30

40

E
n

e
rg

y
sa

vi
n

g
s

(%
)

(c) germany50

Fig. 8: Saved energy for GREENCHAINS for the three network topologies.

1) Validating GREENCHAINS with CG-cuts: We now com-
pare the solutions provided by both GREENCHAINS and CG-
cuts in Figure 7. Error bars on the CG-cuts solutions represent
the lower bounds given by z?LP. For the lowest traffic periods
(D1, D2 and in D3), both methods provide similar solutions for
pdh and germany50. The CG model provides slightly better
solutions when the traffic is higher, with a difference of 3
and 1% for pdh, of 5,and 2 for atlanta, and of 2 and 3%
for germany50 respectively in the D5 period. Observe that,
even if CG only provides slight improvement of the heuristic’s
solutions, it shows (c.f. ε accuracy value) that the heuristic
gives good results, regardless of the traffic period.

2) Link load: To reduce the amount of energy used by the
network, we reroute some of the flows to be able to put links
into sleep mode. This means that the remaining active links
are more loaded. In Figure 9, we look at the link load given
by GREENCHAINS for the highest and lowest traffic periods.
First, we see that, unsurprisingly, the percentage of links with
no traffic is higher when the traffic is low, around 40% of the
links for atlanta and germany50. When the network is at its
highest utilization, it drops to around 15% for both networks.
The pdh network, due to its higher link density, can have more
links put into sleep mode. Indeed, between 44% and 71% of
the links have no traffic. Moreover, at the lowest traffic period,
no links are used at 100% for pdh, atlanta and are at most used
up to 57%, 52% of their capacity, respectively. At rush hour,
pdh and atlanta have at most links at 98 and 99% capacity
while germany50 has only one link at full capacity.

3) Impact on Delay: When some links are put into sleep
mode, paths tend to become longer. However, we show in

Figure 10 that the maximum delay of every path stays below
the usual 50 ms latency value in Service Level Agreements:
experienced delay is less than 5.4, 10.8 and 16.2 ms on pdh,
atlanta and germany50 respectively. Moreover, the median of
the delay stays constant for pdh, atlanta at 3.6 and 5.4 ms,
respectively. For germany50, it only increases from 7.2 for
D5 (no link into sleep mode) to 9 ms for D1.

VIII. CONCLUSIONS

In this work, we investigate the potential of network virtu-
alization to reduce the energy consumption of networks. We
introduce a Column Generation model to solve the problem of
minimizing network energy consumption while satisfying the
SFC requirements. We also propose GREENCHAINS, an ILP-
based heuristic that we validate using our Column Generation
model. We then compare three different scenarios correspond-
ing to a continuous deployment of the SDN and NFV paradigm
for energy efficiency. We show that an operator, using SDN
control, can save energy by choosing the paths of the flows
dynamically according to the variations of demands during the
day. Indeed, this allows the turning off of a large portion of
network equipment. Indeed, compared to a legacy scenario,
SDN can provide between 18 and 51% energy savings during
the night. We also demonstrated that the deployment of VNF in
an SDN network leads to additional energy savings between
4 and 12%. As a matter of fact, choosing dynamically the
locations of network functions according to the variations of
the demands allows a greater flexibility for the choice of the
network paths and leads to the use of less network equipment.

10

0% 20% 40% 60% 80% 100%

Link usage

0

20

40

60

80

100
%

 o
f

li
n

k
s

D1

D5

(a) pdh

0% 20% 40% 60% 80% 100%

Link usage

0

20

40

60

80

100

%
 o

f
li

n
k
s

D1

D5

(b) atlanta

0% 20% 40% 60% 80% 100%

Link usage

0

20

40

60

80

100

%
 o

f
li

n
k
s

D1

D5

(c) germany50

Fig. 9: Link load for GREENCHAINS for the three network topologies.

D1 D2 D3 D4 D5

Time periods

0

5

10

15

20

D
e
la

y
(m

s)

(a) pdh

D1 D2 D3 D4 D5

Time periods

0

5

10

15

20

D
e
la

y
(m

s)

(b) atlanta

D1 D2 D3 D4 D5

Time periods

0

5

10

15

20

D
e
la

y
(m

s)

(c) germany50

Fig. 10: Delay in milliseconds for GREENCHAINS for the three network topologies.

REFERENCES

[1] D. Matsubara, T. Egawa, N. Nishinaga, V. P. Kafle, M.-K. Shin, and
A. Galis, “Toward future networks: a viewpoint from itu-t,” IEEE
Communications Magazine, vol. 51, no. 3, pp. 112–118, 2013.

[2] W. Vereecken, W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo,
W. Joseph, D. Colle, L. Martens, and P. Demeester, “Power consumption
in telecommunication networks: overview and reduction strategies,”
IEEE Communications Magazine, vol. 49, no. 6, 2011.

[3] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN), Nov. 2015, pp. 191–197.

[4] A. Gupta, M. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee,
“On service chaining using virtual network functions in network-
enabled cloud systems,” in IEEE International Conference on Advanced
Networks and Telecommuncations Systems (ANTS), 2015, pp. 1–3.

[5] A. Gupta, B. Mukherjee, B. Jaumard, and M. Tornatore, “Service chain
(SC) mapping with multiple SC instances in a wide area network,” in
IEEE Global Telecommunications Conference - GLOBECOM, 2017, pp.
1–6.

[6] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” in 1st IEEE
Conference on Network Softwarization (NetSoft), 2015, pp. 1–6.

[7] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan,
and T. Wood, “Virtual function placement and traffic steering in flexible
and dynamic software defined networks,” in 21st IEEE Intl. Workshop
on Local and Metropolitan Area Networks, 2015, pp. 1–6.

[8] R. Riggio, A. Bradai, T. Rasheed, J. Schulz-Zander, S. Kuklinski,
and T. Ahmed, “Virtual network functions orchestration in wireless
networks,” in Intl. Conf. on Network and Service Management (CNSM),
2015, pp. 108–116.

[9] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing ISP network
energy cost: formulation and solutions,” IEEE/ACM Transactions on
Networking (TON), vol. 20, pp. 463–476, April 2012.

[10] F. Giroire, J. Moulierac, and K. Phan, “Optimizing rule placement in
software-defined networks for energy-aware routing,” in IEEE Global
Telecommunications Conference - GLOBECOM, Austin, USA, Decem-
ber 2014, pp. 2523–2529.

[11] F. Giroire, J. Moulierac, T. K. Phan, and F. Roudaut, “Minimization of
network power consumption with redundancy elimination,” Computer
communications, vol. 59, pp. 98–105, 2015.

[12] R. Bolla, C. Lombardo, R. Bruschi, and S. Mangialardi, “DROPv2: en-
ergy efficiency through network function virtualization,” IEEE Network,
vol. 28, no. 2, pp. 26–32, 2014.

[13] R. Mijumbi, “On the energy efficiency prospects of network function
virtualization,” CoRR, vol. abs/1512.00215, 2015. [Online]. Available:
http://arxiv.org/abs/1512.00215

[14] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright,
“Power awareness in network design and routing,” in IEEE Annual
Joint Conference of the IEEE Computer and Communications Societies
- INFOCOM, April 2008, pp. 1130–1138.

[15] L. Niccolini, G. Iannaccone, S. Ratnasamy, J. Chandrashekar, and
L. Rizzo, “Building a power-proportional software router,” in USENIX
Annual Technical Conference (USENIX ATC), Boston, MA, USA, 2012,
pp. 89–100.

[16] A. Dwaraki and T. Wolf, “Adaptive service-chain routing for virtual
network functions in software-defined networks,” in Workshop on Hot
topics in Middleboxes and Network Function Virtualization (HotMId-
dlebox), 2016, pp. 32–37.

[17] V. Chvatal, Linear Programming. Freeman, 1983.
[18] I. C. V. Networking, “Cisco visual networking index: Forecast and

methodology 2015-2020,” White paper, CISCO), 2015.
[19] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–

Survivable Network Design Library,” Networks, vol. 55, no. 3, pp. 276–
286, 2010.

[20] J. Araujo, F. Giroire, J. Moulierac, Y. Liu, and R. Modrzejewski, “Energy
efficient content distribution,” The Computer Journal, vol. 59, no. 2, pp.
192–207, Feb. 2016.

[21] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and S. Diot, “Packet-level traffic measurements from the sprint
IP backbone,” IEEE network, vol. 17, no. 6, pp. 6–16, 2003.

[22] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate
link overload as observed on an IP backbone,” in IEEE Annual Joint
Conference of the IEEE Computer and Communications Societies -

INFOCOM, vol. 1, 2003, pp. 406–416.

