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a b s t r a c t

A routing R of a connected graph G is a collection that contains simple paths connecting
every ordered pair of vertices in G. The edge-forwarding index with respect to R (or simply
the forwarding index with respect to R) π (G, R) of G is the maximum number of paths in
R passing through any edge of G. The forwarding index π (G) of G is the minimum π (G, R)
over all routings R’s of G. This parameter has been studied for different graph classes (Xu
and Xu, 2012; Bouabdallah and Sotteau, 1993; Fernandez de la Vega and Gordone, 1992;
de la Vega and Manoussakis, 1992). Motivated by energy efficiency, we look, for different
numbers of edges, at the best spanning graphs of a square grid, namely those with a low
forwarding index.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A routing R of a given connected graph G of order N is a collection of N(N −1) simple paths connecting every ordered pair
of vertices of G. The routing R induces on every edge e a load that is the number of paths going through e. The edge-forwarding
index (or simply the forwarding index) π (G, R) of Gwith respect to R is the maximum number of paths in R passing through
any edge of G. It corresponds to the maximum load over all edges of the graph when R is used. Therefore, it is important to
find routings minimizing this index. The forwarding index π (G) of G is the minimum π (G, R) over all routings R’s of G.

The forwarding-index was introduced by Chung & Al in 1987 [9]. Due to its importance, this parameter has been studied
quite extensively: on one side results have been given for different graph classes (e.g. random graphs [12], transitive
and Cayley graphs [21,31], graphs with small numbers of vertices [3] and well-connected graphs [10]). On the other side
deep relations with other expansion-related graph invariants have been established: Laplacian, Cheeger constant (see the
survey [25]), Sparsest cut [22] and the ‘‘geometry of graphs’’ [23]. This notion has also been used to prove that someMarkov
chains mix fast using either canonical paths (routings) or ‘‘resistance’’ [30]. See the recent survey [35] for a global view on
the known results.

We call a connected spanning subgraph of a graph G, a spanner of G. More precisely, it is a connected subgraph that has
the same set of vertices as G. Our goal is to find, for a given bound on the number of edges, the best spanner of G, namely the
one with the minimum forwarding index. The problem can also be viewed as: for a given bound U on the forwarding index,
find a spanner F of Gwith minimum number of edges such that π (F ) ≤ U .

Knowing how to solve this problem is very interesting in practice for network operators willing to reduce the energy
consumed by their networks. In fact, most of the network links consume a constant energy independently of the amount of
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traffic they are flowing [5], [26]. Therefore, it was proposed to reduce the energy used by the network links by turning some
of them off, or more conveniently, putting them into an idle mode. Outside the rush hours, several studies [2,8,16,17], show
that a good choice of the links to turn off can lead to significant energy savings, while keeping the same communication
quality. In the case where the flows from every node to every other node are of the same order, and where the capacities
also lie in the same small range, a good choice of those links is reduced to the problem of finding spanners of the network
with low forwarding indices.

In this paper, we consider the case in which the initial graph is a square grid. Backbone networks are generally not
modeled as a grid, as showed with the typical models found in SNDLib (http://sndlib.zib.de/) and studied, e.g. in [15].
However, a large number of networks are modeled by a grid in the literature. We may cite: wireless network [13],
such as, wireless adhoc sensor networks [24], or random wireless networks [34], RFID reader antenna network [27,33],
mobile ad hoc networks [28], urban mesh access networks [4], femto cell networks [6], wireless backhaul networks [7],
cellular networks [1], interconnection networks [32], optically interconnected arrays [19], stochastic geometry and random
graphs [20].More importantly, wewanted to understandwell the difficulty of the problemon simple graphs.We thus choose
to study the square grids, as they are a classical family of graphs. They are also a simple case of planar graphs. Solving the
problem for square grids give hints to solve the more general case of planar graphs with bounded degrees, as they can be
embedded in a grid [29]. So the case of the grid is to be considered as a paradigm or a typical planar graph rather than an
actual example of an existing network.

We consider the asymptotic case with n large. We have two main contributions.
On one side, it is well-known that the forwarding index of the n × n grid Gn is n3

2 (see Proposition 1 [14]). An important
remark is, that the load of the associated routing on the 2(n − 1)2 ∼ 2n2 edges is lower in the corner than in the middle of
the grid. Using this fact, we show how to build spanners of Gn with much fewer edges (only 13/18 ≈ 72% of the edges) and
the same forwarding indices as Gn. We then demonstrate that our spanners are close to optimum, in the sense that we prove
that it is impossible to build spanners with fewer than 4/3n2 edges (66% of the edges).

On the other side, the smallest possible spanner of the n × n grid Gn is a spanning tree. The forwarding index of the best
spanning tree is asymptotically 3n4

8 , see Proposition 2 [14]. When we consider spanners with a larger number of edges, the
load on the edges decreases, and so does the forwarding index. In this paper, we study how the forwarding index decreases,
whenwe increase the number of edges. The following table summarizes our results. One interesting fact is that, with n2

+a2

edges (i.e. a2 extra edges), the forwarding index has order Θ( n
4

a ). This is due to the planarity of the grid.

Spanning tree Spanners
For an integer a, 2 ≤ a ≤ n

Grid

Forwarding index 3
8 n

4 1
2a n

4 1
2 n

3 1
2 n

3

Lower bound on number of edges n2
− 1 ≃ n2

+
4
9 (0.1a)

2 12
9 n2

Number of edges in constructions n2
− 1 n2

+
4
9 a

2 13
9 n2 2n2

Proposition 1 ([14]). The forwarding index of Gn is asymptotically n3
2 .

Proposition 2 ([14]). For n ≥ 3, the spanning tree of Gn with the minimum forwarding index is a tree with centroid of degree 4
and 4 branches of almost equal sizes. Its forwarding index is asymptotically 3n4

8 .

2. Spanners with the forwarding index of the grid, n3
2 , but much fewer edges

In this section, we first show that a spanner with the forwarding index of the grid has at least 4n2
3 =

12n2
9 edges. We then

provide spanners with 13n2
9 edges. But, before, we present some notations that will be used throughout the paper.

Notations.Wenote by Gn = (Vn, En) the n×n square grid, where Vn is the set of vertices and En is the set of edges. A square
grid can always be seen as n rows intersecting n columns. We name v(r, c) the vertex at the intersection of row r ∈ [n] with
column c ∈ [n], where [n] denotes the interval of the integer numbers between 1 and n. An edge joining v(r, c) to v(r, c +1)
is named eh(r, c) and an edge joining v(r, c) to v(r + 1, c) is named ev(r, c).

Proposition 3. For any F spanner of Gn such that π (F ) ≤
n3
2 , F must have, asymptotically, at least 4n2

3 edges.

Proof. Consider F a spanner of Gn and let R be a routing of F such that π (F , R) ≤
n3
2 . For an integer l ∈ [n], we call load on line

l, the sum of the load on the edges ev(l, j) ∈ E(F ), for j ∈ [n]. The load on line l is 2l(n− l)n2 as there are ln vertices over line l
and (n − l)n vertices below. If F has n − xl edges on line l, there exists at least one of these edges with load at least 2l(n−l)n2

n−xl
.

As π (F , R) ≤
n3
2 , we should have

2l(n − l)n2

n − xl
≤

n3

2
.

http://sndlib.zib.de/
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That is

n − xl ≥
4l(n − l)

n
.

Thus, F should have at least
∑n

l=1
4l(n−l)

n vertical edges. The same argument independently holds for the horizontal edges.
Hence, a spanner of the grid, with load lower than n3

2 on all edges, has at least

2
n∑

l=1

4l(n − l)
n

edges.

We have

2
n∑

l=1

4l(n − l)
n

=
8
n

(
n

n∑
l=1

l −
n∑

l=1

l2)

)
=

8
n

(
n2(n + 1)

2
−

n(n + 1)(2n + 1)
6

)
.

Thus, such spanner has at least

4
3
(n2

− 1) ≈
4n2

3
edges. □

Theorem 1. There exists Fn a spanner of Gn such that π (Fn) ∼
n3
2 and its number of edges is asymptotically equal to 13n2

9 .

Proof. Let us first explain the intuition behind the construction of the spanner of the grid, Fn. We know from the proof of
Proposition 3 the ratio of edges needed in every row or column in order to satisfy the lower bound.We cut the grid into small
squares. Then, according to the position of the square, we use only the number of needed horizontal edges and vertical edges
in each square according to the lower bound. It turns out that adding only few edges to ensure the connectivity is enough to
get a spanner Fn with a routing R such that π (Fn, R) ∼

n3
2 . The twomain ingredients of the proof are that: (i) Most of the load

is due to ‘‘long’’ paths. Therefore the load due to the ‘‘end’’ or ‘‘start’’ of the paths is not significant. Similarly, the load due to
local paths is not substantial. (ii) The load remains approximately balanced on the vertical edges of a row (resp. horizontal
edges of a column).

Construction of Fn. Let k be an integer number such that 1 ≪ 4k3 ≤ n. Notice that this implies k ≪
√
(n). We divide

Gn into small square grids of size k × k. We do so by partitioning vertices of Gn into ( nk )
2 sets S(i,j) with i ∈ [

n
k ] and j ∈ [

n
k ]:

S(i,j) = {v(r, c) ∈ Vn; i − 1 < r
k ≤ i, j − 1 < c

k ≤ j}. We call a vertex in S(i,j) that has a neighbor in Gn outside S(i,j) a border
vertex.

Let us now describe a spanner Fn that verifies our theorem. An example of it is shown in Fig. 1 in the case of n = k2 = 72.
Let t be the function defined on integers by t(x) = ⌈4xk(n − xk)k/n2

⌉. It represents the number of needed columns
(respectively rows) for a square that is on the xth position horizontally (respectively vertically). We build Fn starting from a
subgraph that has all vertices of Gn and no edges. For every S(i,j), i, j ∈ [

n
k ], we choose edges to connect vertices in S(i,j) in the

following way:

- we add to Fn all edges ev(r, c) such that (r mod k) ∈ {1, . . . , t(i)} (red edges in Fig. 1) and
- all edges eh(r, c) such that (c mod k) ∈ {1, . . . , t(j)} (blue edges in Fig. 1);
- then we add to Fn simple paths just to connect the remaining independent vertices (green edges in Fig. 1).
- We then add all edges that do not have both endpoints in the same set S(i,j) (black edges in 1).We show in the following

that adding all of them is not strictly necessary.

Description of the routing R. We now give a routing of the spanner Fn, R. For every ordered pair of vertices (v(ra, ca),
v(rb, cb)) ofVn, we describe the path connecting v(ra, ca) to v(rb, cb) in R.We distinguish two types of ordered pairs of vertices:

• Type-1 pairs: ⌈ra/k⌉ = ⌈rb/k⌉ or ⌈ca/k⌉ = ⌈cb/k⌉. Notice that this type includes ordered pairs with vertices that belong
to the same set S(i,j).

• Type-2 pairs: All the ordered pairs that do not belong to the first type.

For the Type-1 pairs, R uses the shortest path routing. For Type-2 pairs, R uses a three-segment path. An example of such
path is shown in Fig. 1. We name ia = ⌈ra/k⌉, ib = ⌈rb/k⌉, ja = ⌈ca/k⌉ and jb = ⌈cb/k⌉:

• Step-1: Let im = min(ia, ib, n/k − ia, n/k − ib) and jm = min(ja, jb, n/k − ja, n/k − jb). The first segment is the shortest
path from v(ra, ca) to one of the two border vertices of S(ia,ja) that are on row k(ia − 1)+ t(jm). Among the two vertices,
we choose v(rx, cx), which has the smallest distance to S(ia,jb) (as the first black vertex on the route in Fig. 1).

• Step-2: Similarly, two border vertices of S(ib,jb) are on column k(ib −1)+ t(im). Among these two vertices, v(ry, cy) is the
one that has the smallest distance to S(ia,jb) (as the third black vertex on the route in Fig. 1). The second segment will
be linking v(rx, cx) to v(ry, cy) by using the path [v(rx, cx)v(rx, cy)v(ry, cy)], which is the shortest path from v(rx, cx)
to v(rx, cy) composed of the two direct paths [v(rx, cx)v(rx, cy)], following row rx, and [v(rx, cy)v(ry, cy)], following
column cy.

• Step-3: The third and last segment will be the shortest path from v(ry, cy) to v(rb, cb).
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Note that k may be an arbitrary integer between 1 and n. We choose a k such that 1 ≪ k ≪
√
n. For instance, we may

choose k = n1/3.
Number of edges of Fn. Let us compute the number of edges in the spanner, Fn. First the edges used in the subgraph

induced by S(i,j) are all the edges on a row from 1 to t(i), all edges on a column from 1 to t(j), to which we add the edges that
connect the rest of vertices through a spanning tree. Hence the number of edges in S(i,j) is:

≈ t(i) · k + t(j) · k + (k − t(i))(k − t(j))

≈ k2 + t(i)t(j) (1)

≈ k2
(
1 +

16ijk2(n − ik)(n − jk)
n4

)
≈ k2

(
1 +

16ijk2

n2 +
16i2j2k4

n4 −
16i2jk3

n3 −
16ij2k3

n3

)
.

The sum of those edges considering all the subsets S(i,j) (with i ∈ [
n
k ] and j ∈ [

n
k ]) is :

≈ k2
n/k∑
i=1

n/k∑
j=1

(
1 +

16ijk2

n2 +
16i2j2k4

n4 −
16i2jk3

n3 −
16ij2k3

n3

)

≈ k2

⎡⎣n2

k2
+

16k2

n2

(∑
i

i

)2

+
16k4

n4

(∑
i

i2
)2

− 2 ·
16k3

n3

(∑
i

i2
)(∑

i

i

)⎤⎦
≈ k2

[
n2

k2
+

16k2

n2 ·
n4

4k4
+

16k4

n4 ·
n6

9k6
− 2 ·

16k3

n3 ·
n5

6k5

]
≈ k2

[
n2

k2
+

4n2

k2
+

16n2

9k2
−

32n2

6k2

]
=

13
9

n2
+ o(n2).

The number of the remaining edges is ≈ 2 n2
k = o(n2), as k ≫ 1. Therefore, as stated in the theorem, the number edges of Fn

is asymptotically equal to 13n2
9 + o(n2).

Load of the edges of Fn. Lets now verify that every edge has an asymptotic load which is not greater than n3
2 + o(n3).

Consider an edge eh(r, c) whose incident points are in S(i,j). The number of Type-1 pairs that may use eh(r, c) is bounded by
the number of pairs having one endpoint in S(i,ja) and S(i,jb) for some ja, jb ∈ [

n
k ] and those having one end point in S(ia,j) and

S(ib,j) for some ia, ib ∈ [
n
k ]. The number of these pairs is bounded by 2k2n2

= o(n3) (as k2 = o(n)).
Then, for Type-2 pairs, we can start by the load induced by the segments of paths described previously in step-1 and

step-3. This load is clearly bounded by the number of pairs having one endpoint inside S(i,j) and another endpoint outside
S(i,j). The number of these pairs is bounded by: 2k2(n − k)2 = o(n3) (as k2 = o(n)).

For Step-2, as the construction of the spanner Fn has the needed density of edges, the average load over a line or a column
is kept below n3

2 +o(n3) So, we only need to show that the flow iswell balanced among links in S(i,j). Indeed, if we consider the
set Lc(i,j) = {eh(r, c) ∈ S(i,j); r ∈ {1, . . . , n}}, then the total load on all these links is |Lc(i,j)|

n3
2 + o(n3). Thanks to the symmetries

of the problem, and because, in Step-1 of the routing, we carefully choose the exit row to be k(ia − 1) + t(jm), it is enough
to prove that the number of rows in S(i,j), t(j) is such that t(1) = 1 and t(j + 1) − t(j) ≤ 1 ∀j ∈ {1, . . . , n/(2k)}. Both of
these relations hold, as we choose k such that 4k3 ≪ n. The same argument holds for the black edges between two adjacent
subsets S(ia,ja) and S(ib,jb). This ends the proof. □

3. Spanners with forwarding indices in the range [
n3
2 , 3n4

8 ] and lower bounds

We first provide spanners with forwarding indices in the range [
n3
2 , 3n4

8 ] in Proposition 4. We then prove that these
spanners have a number of edges of the optimum order, see Proposition 5.

3.1. Spanners’ constructions

Proposition 4. Let a be an integer such that, 2 ≤ a ≤ n. There exists a spanner Fn(a) of Gn with asymptotically n2
+

4
9a

2 edges
and π (Fn(a)) ≤

n4
2a .

Proof. We build a spanner of Gn, Fn(a), in the following way. We divide the grid into a2 sectors. A point is in Sector (i, j) if
its coordinates in the grid (x,y) are such that n

a i ≤ x < n
a (i + 1) and n

a j ≤ y < n
a (j + 1). Each of these sectors has (n/a)2
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Fig. 1. Construction of the spanner Fn of Theorem 1, for n = 72 , and an example of path of the routing R of Fn (from the yellow vertex to the pink vertex).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

vertices. We call center of the sector (i, j) the vertex ((i + 1/2)n/a, (j + 1/2)n/a). We consider the a × a subgrid linking all
the sectors’ centers. We then connect all the remaining vertices of a sector to its center with a spanning tree. This way, we
get Fn(a). Fig. 2 provides a sketch of the construction of the spanner.

We now build a routing R for Fn(a). The demand between two vertices of the same sector is routed on the tree spanning
their sector using the unique shortest path between them. The demand between two vertices of different sectors is first
routed to their centers, and then is routed in the a × a grid.

Let us compute the load of the routing R. We first consider the edges of the a× a subgrid. We know that an a× a grid has
a routing with load a3/2 (Proposition 1). Thus, we know that it also has a w-routing of load wa3/2. Each vertex of the a × a
grid receives the load of the (n/a)2 vertices connected to it. Thus, we take w = (n/a)2 and we obtain a w-routing of the a× a
grid of load a3

2 ( na )
4

=
n4
2a .

We then consider an edge that does not belong to the a × a grid. The only paths that can use this edge are paths going
from any vertex of the grid to a vertex of its sector. Thus, its load is smaller that (n/a)2n2

=
n3

a2
. This load is smaller than the

maximum load on the a × a grid as soon as a2 ≥ 2awhich means as soon as a ≥ 2.
Therefore π (Fn(a), R) =

n4
2a .

Let us now consider the number of edges of the spanner Fn(a). The number of edges necessary to connect all the nodes is
n2

− 1. If we choose well these edges, we just have to add a2 edges to obtain the a × a grid (see Fig. 2, additional edges are
in red). Fn(a) thus has n2

+ a2 edges. We can improve the spanner by using the results of Section 2. In Theorem 1, we show
that we can find a spanner of an a × a subgrid with 13

9 a2 edges and a routing R′ with the same load as a full grid with 2a2

edges. By doing so, we get a new spanner Fn(a), with n2
+

4
9a

2 edges and π (Fn, R′) =
n4
2a . □
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Fig. 2. Spanner of Proposition 4 for n = 21 and a = 3. Edges of the a× a grid are in bold. Edges that are not in a spanning tree of Gn are in red. Sectors with
(n/a)2 = 72 vertices are separated by dashed gray lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

We can rewrite the result of Proposition 4 to point out the impact of additional edges in general (Corollary 1) and when
we start from a spanning tree (Corollary 2).

Corollary 1. There exist:

- A spanner of Gn with n2
+ p2 edges, and an asymptotic forwarding index of n4

3p ≃ 0.33 n4
p ;

- A spanner of Gn with n2
+ p edges, and an asymptotic forwarding index of n4

3
√
p ≃ 0.33 n4

√
p .

Proof. Direct by Proposition 4 setting p2 =
4
9a

2 or p =
4
9a

2. □

Corollary 2. There exists a spanner of forwarding index 1
α

3n4
8 , that is a factor α less than the one of the optimum spanning tree,

while using 64
81α

2
≃ 0.79α2 additional edges compared to a spanning tree.

Proof. Recall that an optimum spanning tree has forwarding index 3n4
8 , see Proposition 2. Dividing it by α means getting the

forwarding index 3n4
8α =

n4
2(4α/3) . This is achieved by the spanner Fn(a), with a = 4α/3. The spanner has an additional number

of edges compared to the spanning tree equal to 4
9 (4α/3)2 ≃ 0.79α2. □

3.2. Lower bounds

Proposition 5. There exist no spanners of Gn with n2
+ p2 edges and a forwarding index less than 1

9
√
12

n4
p ≃ 0.032 n4

p .

Proof. Let us consider a spanner of Gn that has n2
+ p2 edges. We build a multigraph in the following way. We start by

assigning to every node a weight of 1. Then, while there is still a vertex with degree 1 or 2, we delete this vertex and the
edges connecting it to the graph and divide its weight evenly among its neighbors; in case the removed vertex was of degree
2, we also connect the two neighbors afterwards. At the end of this process, we get amultigraphH such that the number of its
verticesN ′ and the number of its edgesM ′ are related by the following equation:N ′

+p2 = M ′. Indeed, every time a vertex is
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Table 1
Comparison of the number of edges in the constructions proposed in the pa-
per, with the ones given by the heuristic algorithm Algo and an optimal ILP.
An absence of values (*) means that the computation takes more than 1 h.

n Forwarding index Construction Algo ILP

a = 1
4 128 15 15 15
6 648 35 39 *
12 10368 143 168 *
18 52488 323 * *
a = 2
4 64 16 17 16
8 1024 64 64 *
12 5184 144 169 *
16 16384 256 * *
a = 3
9 1094 84 92 *
12 3456 147 150 *
15 8438 228 230 *
18 17496 327 * *
a = 4
8 512 72 74 *
12 2592 152 155 *
16 8192 264 * *
a = 5
5 1000 115 116 *
15 5063 240 242 *
20 16000 415 * *

removed in the process leading to H , the number of edges is decreased by 1. Since all the vertices in H have a degree strictly
greater than 2, we have 3

2N
′
≤ M ′. This implies with the previous equation that 3

2N
′
≤ N ′

+ p2. Hence, we have N ′
≤ 2p2.

Notice that the total weight is equal to n2. We now apply the weighted version of the planar separator theorem [11]
on H: there exists a partition of the vertices of H into three subsets A, S, and B, such that each of A and B has at most a

weight 2n2/3, S has less than
√
6
√
2p2 vertices (The original graph is of a bounded degree 4.) and there are no edgeswith one

endpoint in A and another endpoint in B. This directly gives an edge cut of the original graph which has less than 2
√
6
√
2p2

edges and which partitions the original graph’s vertices into two subsets of size at most 2n2/3. Therefore, any routing of this
spanner will induce, at least on one edge of the cut, a load that is greater than:

1
3
n2

·
2
3
n2

·
1

2
√
6
√
2p2

=
1

9
√
12

n4

p
≃ 0.032

n4

p
. □

4. Simulations and efficiency of the constructions

To show that our method can be applied in practice, we compare, for a range of forwarding indices, the number of edges
of the constructions proposed in Proposition 4 with the ones obtained using classical methods from the literature to find
energy efficient spanners, namely an Integer Linear Program (ILP) and a heuristic algorithm (referenced as Algo) and which
can be found for example in [14]. The ILP takes as input a networkwith capacities and returns the spannerwith theminimum
number of edges. Algo takes the same input and removes greedily the least loaded edges as long as it is possible.

In Table 1, we give the number of edges for the spanners for different values of a and n. We compare them with the best
values found by the ILP and Algo. We used a grid of same size n × n and we set the link capacity to the forwarding index of
the corresponding spanner, computed in Proposition 4 and also given in Table 1. We show that our constructions give very
good results. Their number of edges is close to optimal (when it is possible to compute this value) and always better than or
equal to the one given by Algo. Moreover, they are generic, structured and thus provide solutions for large networks, while
the ILP and the heuristic algorithm only provide particular solutions and have a large running time (on a Quad-Core Intel
Xeon 2.4 GHz with 12 Go of RAM, the ILP cannot solve an instance of size 4 ×4 in one hour and Algo cannot be executed
anymore for sizes larger than 16 ×16).

5. Conclusion

In this paper we addressed the following problem: given a target bound, construct spanners of the n × n grid with a
forwarding index lower than the target-bound and the smallest number of edges. We proposed spanners with a number of
edges of optimum order and in some cases very close to the optimal. More precisely,
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(i) We provided spanners of the grid with n2
+

4
9a

2 edges and forwarding indices n4
2a (for 2 ≤ a < n). On the lower bound

side, we proved that spanners with forwarding index n4
2a and fewer than ≃ n2

+
4
9 (0.1a)

2 edges do not exist.
(ii) Similarly, we constructed spanners with 13

9 n2 edges and with a forwarding index equal to the one of the full grid Gn.
For the lower bound, we proved that spanners with such a forwarding index must have at least 12

9 n2 edges.

Even if our constructions are quite tight, they are not optimal and this leaves two open problems on the theoretical side:
First, decrease the gap between our lower bound and our upper bound. Note, that we believe that closing completely this
gap may be quite difficult, since it possibly implies determining a tight isoperimetric inequality for planar graphs. Second,
determine if spanners with 12

9 n2 edges and forwarding-index n3
2 do exist or not.

Moreover, in this work, we focused on the square grid and aimed at providing close to optimal results. So, we studied in
detail a particular case of a general extremal graph theory problem, in which the goal is to find the best graph (the one with
the fewer edges) given a bound on its forwarding index and some extra constraints (like being planar, a subgraph of the grid,
etc.). We believe that this extremal graph problem is interesting. However, it has not been addressed much and most of the
questions are widely open (see as example [18]).

On the practical side, such spanners are important for energy efficient networks, in which the traffic has to be routed in
the network, while using a minimum number of devices. The unused devices are then turned off to save energy. Note, that
the case considered in the paper is the one of an all-to-all uniform traffic with homogeneous link capacities. However, the
results of the paper establish useful bounds for more general settings: (i) If the traffic is not all to all, the results provided
in the paper (for an all-to-all traffic) give an upper bound of the number of edges needed in the spanner (ii) If the capacities
are not homogeneous, the results of the papers also provide an upper bound on the number of edges, if we set the capacity
to the minimum link capacity of the heterogeneous case (and a lower bound if we set the capacity to the maximum link
capacity). It would be interesting to investigate these more general settings in the future.
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