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a b s t r a c t 
Software Defined Networking (SDN) is gaining momentum with the support of major manufacturers. 
While it brings flexibility to the management of flows within the data center fabric, this flexibility comes 
at the cost of smaller routing table capacities. Indeed, the Ternary Content-Addressable Memory (TCAM) 
needed by SDN devices has smaller capacities than CAMs used in legacy hardware. 

In this paper, we investigate compression techniques to maximize the utility of SDN switches for- 
warding tables. We validate our algorithm, called Minnie , with intensive simulations for well-known data 
center topologies, to study its efficiency and compression ratio for a large number of forwarding rules. 
Our results indicate that Minnie scales well, being able to deal with around a million of different flows 
with less than 10 0 0 forwarding entries per SDN switch, requiring negligible computation time. 

To assess the operational viability of Minnie in real networks, we deployed a testbed able to emulate 
a k = 4 Fat-Tree data center topology. We demonstrate on the one hand, that even with a small number 
of clients, the limit in terms of number of rules is reached if no compression is performed, increasing the 
delay of new incoming flows. Minnie , on the other hand, reduces drastically the number of rules that 
need to be stored, with no packet losses, nor detectable extra delays if routing lookups are done in the 
Application-Specific Integrated Circuits (ASICs). 

Hence, both simulations and experimental results suggest that Minnie can be safely deployed in real 
networks, providing compression ratios between 70% and 99%. 

© 2017 Elsevier B.V. All rights reserved. 
1. Introduction 

In classical networks, routers compute routes using distributed 
routing protocols such as OSPF (Open Shortest Path First) [1] to 
decide on which interfaces packets should be forwarded. In SDN 
(Software Defined Network), one or several controllers take care 
of route computations and routers become simple forwarding de- 
vices. When a packet arrives with a new destination for which no 
routing rule exists, the router 1 contacts a controller that provides 
a route to the destination. Then, the router stores this route as 
a rule in its SDN table and uses it for next incoming matching 
packets. This separation of the control plane from the data plane 
allows a smoother control over routing and an easier management 
of the routers. 

∗ Corresponding author at: Université Côte d’Azur, CNRS, I3S, UMR 7271, 06900 
Sophia Antipolis, France. 

E-mail address: frederic.giroire@cnrs.fr (F. Giroire). 
1 In the following, we make no distinction between routers/switches, pack- 

ets/frames and routing/forwarding tables using these terms in their general sense. 

Also, SDNs aim at applying flow-based forwarding rules instead 
of destination-based rules (as in legacy routers) to provide a finer 
control of the network traffic. For instance, in OpenFlow 1.0, 2 
forwarding decisions can be made taking into account from zero 
up to a maximum of 12 fields of a TCP or UDP packet. When any 
of the 12 fields should be ignored when forwarding a packet, such 
a field is set to “don’t care bits”. Due to the complexity of SDN 
forwarding rules, SDN forwarding devices need TCAMs (Ternary 
Content-Addressable Memories) to store their routing table (as 
classical CAM can only perform binary operations). However, 
TCAMs are more power hungry, expensive and physically bigger 
than binary CAMs available in legacy routers. Consequently, the 
available TCAM memory in routers is limited. Indeed, a typical 
switch supports between around a couple of thousands to no more 
than 25 thousands of 12-tuples forwarding rules, as reported in [2] . 

Undoubtedly, emerging switches will support larger forwarding 
tables [3] , but TCAMs still introduce a fundamental trade-off
between forwardingtable size and other concerns like cost and 

2 https://www.opennetworking.org/images/stories/downloads/sdn-resources/ 
onf-specifications/openflow/openflow-spec-v1.0.0.pdf . 
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power. The maximum size of routing tables is thus limited and 
represents an important concern for the deployment of SDN tech- 
nologies. This problem has been addressed in previous works, as 
discussed in Section 2 , using different strategies, such as routing 
table compression [4,5] , or distribution of forwarding rules [6] . 

In this work, we examine a more general framework in which 
table compression using wildcard rules is possible. Compression of 
SDN rules was discussed in [4] . The authors propose algorithms 
to reduce the size of the tables, but only by using a default rule. 
We consider here a stronger compression methodology in which 
any packet header field may be compressed. Considering multiple 
field aggregation is an important improvement as it allows a more 
efficient compression of routing tables, leaving more space in 
the TCAM to apply advanced routing policies, like load-balancing 
and/or to implement quality of service policies. In the following, 
we focus on compression of rules based on sources and destina- 
tions. However, our solution also applies if other fields are consid- 
ered, such as ToS (Type of Service) field or transport protocol. 

We consider the problem, formally defined in Section 3 , of 
routing a set of flows with a limited number of SDN rules using 
compression. The problem is NP-complete, as even compressing a 
single multifield table is NP-complete (even for two fields), see [7] . 

A short version of this work has been presented in [8] . In 
our previous publication, we presented our any-field compression 
approach and provided a brief description of our compression 
algorithm and preliminary results about its compression and 
scalability properties. However, the previous proposition lacked 
compression capabilities at the access switches, reducing its us- 
ability spectrum, which is not the case of the solution provided in 
the present document. Moreover, in [8] we only considered Fat- 
Trees topologies with only 128 servers and low bandwidth rates. 

In this paper, we complement our previous work by compress- 
ing on all switches and extending our experiment’s spectrum. In 
brief, our added contributions are the following: 
– We provide a detailed description of our compression al- 

gorithm, Minnie , in Section 3 , which routes the traffic and 
compresses routing tables to satisfy link capacity and routing 
table size constraints of the different forwarding devices. The 
compression can be done on different flow fields allowing 
advanced routing policies. 

– Routing is done dynamically, meaning that routing and com- 
pression decisions are taken online when a new flow arrives. 
We show that compressing tables at the right moment can 
lead to significant gains in Section 4.2 . 

– We first validate the algorithm by extensive simulations on sev- 
eral well-known data center topologies described in Section 4 . 
We demonstrate that Minnie scales well and can deal with 
around a million of different flows with less than 10 0 0 entries 
in the routing tables and with negligible compression time. 

– We further validate Minnie with a testbed composed of a 
high-end SDN-capable dedicated router - HP5412zl SDN switch - 
(referred to as a hardware router in this document) , described 
in Section 5.1.1 . We study different metrics, namely the delay 
introduced by the communications with the controller, the 
potential increase of loss rate due to handling of dynamic 
routing and compression, and the load of the controller with 
and without compression. 

– Our results ( Section 5.2 ) show that Minnie is able to minimize 
the number of entries in the switches, while successfully handling 
client’s dynamics and maintaining network stability. 

– Section 6 summarizes the results obtained via simulation and 
with our testbed and discusses extensions to our solution. 
A table of contents of the results obtained through simulations 

and experiments is presented in Table 1 . 

2. Related work 
To support a vast range of network applications, SDN has been 

designed to apply flow-based rules, which are more complex than 
destination-based rules in traditional IP routers. As explained in 
the previous section, the complexity of the forwarding rules are 
well supported by TCAMs. However, as TCAMs are expensive and 
power-hungry, the on-chip TCAM size is typically limited. 

Many existing studies in the literature have addressed this 
limited rule space problem. For instance, the authors in [9] and 
[10] try to compact the rules by reducing the number of bits 
describing a flow within the switch by inserting a small tag in the 
packet header. This solution is complementary to ours, however, 
it requires a change in: ( i ) packet headers and ( ii ) in the way the 
SDN tables are populated. Also, adding an identifier to each incom- 
ing packet is hard to be done in the ASICs (Application-Specific 
Integrated Circuits) since this is not a standard operation, causing 
the packets to be processed by the central CPU of the router (a.k.a. 
the slow-path) strongly penalizing the performance and the traffic 
rate. Another approach is to compress policies on a single switch. 
For example, the authors in [11–13] have proposed algorithms to 
reduce the number of rules required to realize policies on a single 
switch. 

Several works have proposed solutions to distribute forwarding 
policies while managing rule-space constraints at each switch 
[6,14–17] . However, no compression mechanisms are added to 
those solutions. For example, in [16] , the authors propose OFFICER . 
It creates a default path for all communications, and later, some 
deviations are introduced from this path using different policies 
to reach the destination. According to the authors, the Edge First 
(EF) strategy, where the deviation is performed to minimize the 
number of hops between the default path and the target one, 
offers the best trade-off between the required Quality of Service 
(QoS) and forwarding table size. Note however, that applying this 
algorithm could unnecessarily penalize the QoS of flows when 
the routers’ forwarding tables are rarely full. In [17] , the authors 
propose CacheFlow which introduces a CacheMaster module and 
a shared section of software switches per TCAM (available in 
hardware switches only). The CacheMaster constructs the depen- 
dency tree of the rules to be installed and then distributes the 
rules between the TCAM and the software switches, placing the 
most popular rules in the hardware switch, thus enabling fast 
forwarding for the biggest possible amount of traffic. When a 
packet needs a forwarding rule not available in the TCAM, such a 
packet is forwarded to the software switches, which send back the 
packet to the hardware switch in a predetermined input port, to 
be resent at a specific output port. If the software switches do not 
have a matching rule, the SDN controller is called. The weaknesses 
of CacheFlow relies in its inherent architecture, as this solution 
requires the installation of a software switch for every hardware 
switch, which might need a reorganization of the network cabling 
and additional resources to host software switches. Secondly, the 
optimal number of needed software switches can be difficult to 
determine, due to the fact that for performance reasons, software 
switches must only keep forwarding rules (whose number de- 
pends on the traffic characteristics) in the kernel memory space, 
which is limited. Lastly, the two-layer architecture of CacheFlow 
(i.e. software switches over a hardware switch) increases the delay 
to contact the controller and install missing rules. 

To the best of our knowledge, the closest papers to our work 
are [4,5,18] . In [5] the authors introduce XPath which identifies 
end-to-end paths using path ID and then compresses all the rules 
and pre-install the necessary rules into the TCAM. We compare 
our results with the ones of XPath in Section 4.2.5 . Minnie uses 
fewer rules even in the case of an all-to-all traffic as XPath codes 
the routes for all shortest paths between sources and destinations. 
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Table 1 
Summary of the obtained results in the different sections. 

Compression Compression Rule # Delay Execution time of Minnie Additional 
ratio frequency on packets in average (ms) results 

Simulations Section 4.2.3 Routing Compression Comparison 
Section 4.2.2 Section 4.2.2 Fig. 4 Section 4.2.6 Section 4.2.6 with XPath 
Fig. 2 Fig. 3 Section 4.2.4 Fig. 5 a Fig. 5 b Section 4.2.5 

Table 3 Fig. 6 Table 4 
Experiments First Subsequent Compression 

Scenario 1 (LLS) Table 6 Table 7 Table 5 Fig. 12 Fig. 14 Fig. 10 SDN control path 
Section 5.2.1 Fig. 9 Fig. 13 Fig. 15 Section 5.2.1 Fig. 11 

Software 
Scenario 2 (HLS) Table 8 Fig. 17 Fig. 16 a Fig. 16 b vs. hardware 
Section 5.2.2 Fig. 18 Section 5.2.3 Fig. 19 

Table 2 
Examples of routing tables: (a) without compression, (b) compression by the source, (c) compression by the destination, (d) default rule only, and 
(e) routing table with minimum number of rules given by Integer Linear Program. The order of the rules reads top to bottom. 

(a) Without Compression (b) Minnie : Source table (c) Minnie : Destination table (d) Minnie : Default only (e) Optimal solution (ILP) 
Flow Output port Flow Output port Flow Output port Flow Output port Flow Output port 
(0, 4) Port-4 (0, 4) Port-4 (1, 4) Port-6 (0, 5) Port-5 (1, 5) Port-4 
(0, 5) Port-5 (1, 5) Port-4 (1, 5) Port-4 (0, 6) Port-5 (2, 6) Port-6 
(0, 6) Port-5 (2, 4) Port-4 (0, 6) Port-5 (1, 4) Port-6 (1, ∗) Port-6 
(1, 4) Port-6 (2, 5) Port-5 ( ∗ , 4) Port-4 (1, 6) Port-6 ( ∗ , 4) Port-4 
(1, 5) Port-4 (0, ∗) Port-5 ( ∗ , 5) Port-5 (2, 5) Port-5 ( ∗ , ∗) Port-5 
(1, 6) Port-6 ( ∗ , ∗) Port-6 ( ∗ , ∗) Port-6 (2, 6) Port-6 
(2, 4) Port-4 ( ∗ , ∗) Port-4 
(2, 5) Port-5 
(2, 6) Port-6 

This is at the cost of less path redundancy which is useful for 
load-balancing and fault tolerance. Network operators should 
consider this trade-off when choosing which method to use. 
In [18] the authors suggest SDN rule compression by following 
the concept of longest prefix matching with priorities using the 
Espresso [19] heuristic and show that their algorithm leads to 
17% savings only. We succeed in reaching better compression 
ratios using Minnie . Last, Giroire et al. [4] address the problem 
of compressing routing tables using default rule only in case of 
Energy-Aware Routing. We extend this solution by considering 
other types of compression. 
3. Modeling of the problem and description of MINNIE 
algorithm 

We represent the network as a directed graph G = (V, A ) . 
A vertex is a router and an arc represents a link between two 
routers. Each router u has a maximum rule space capacity S u 
given by the size of its routing table and expressed in number of 
rules. Each link ( u, v ) ∈ A has a maximum capacity C uv . A flow is 
a identified as a triplet ( s, t, d ), in which s ∈ V is the source of the 
flow, t ∈ V its destination, and d ∈ R + , its load. 

We define a routing rule as a triplet ( s, t, p ) where s is the 
source of the flow, t its destination and p the outgoing port of 
the router for this flow. To aggregate the different rules, we use 
wildcard rules that can merge rules by source (i.e., ( s , ∗, p )), by 
destination (i.e., ( ∗, t, p )) or both (i.e., ( ∗, ∗, p ), the default rule). 
Table 2 shows an example of a routing table and its compressed 
version using different strategies. Table 2 (a) gives the routing 
table without compression, Table 2 (d) the table using default port 
compression and Table 2 (e) the minimal routing table using a mix 
of compressions by sources and by destinations. 

Note that, as we are doing multifield compression, a flow may 
match several rules. As an example, in the solution with the mini- 
mum number of rules ( Table 2 (e)), the flow (1, 4) is matched both 
by the rule (1, ∗, 6) and the rule ( ∗, 4, 4) in the table. We thus have 
to ensure that a flow is matched by the right rule. To this end, 

the rules are ordered in the table in the order of decreasing priority. 
For example, the rule (1, ∗, 6) is placed in the table with a higher 
priority than rule ( ∗, 4, 4). This way, the flow (1, 4) is routed 
through Port-6, which is coherent with the routing of the table 
without compression Table 2 (a). We discuss in Section 5.1.6 how 
to implement the priorities in practice. 
Problem. Given a set of flows D, the problem we consider is to 
find sets of routing rules (aggregated or not) such that each flow 
is well routed from its source to its destination while respecting 
the link capacity constraints and the table size constraints. 

To solve the problem, we propose an algorithm called Minnie . 
Minnie is composed of two modules: the compression module 
which compresses the routing tables using wildcard rules, and the 
routing module which finds paths (and routing rules) for the flows 
using a shortest-path algorithm with an adaptive metrics to spread 
flows over the network and to avoid overloading a link or a table. 

Minnie , presented in Algorithm 1 , works as follows. For every 
flow to be routed, Minnie iteratively finds a path using the routing 
module described in Algorithm 3 ( Algorithm 1 , line 4). For every 
node in the path, it then adds a forwarding rule if no matching 
wildcard rule already exists. Minnie calls the compression module, 
described in Algorithm 2 , on any table that reached its rule space 
capacity ( Algorithm 1 line 10). We refer to this table compression 
as a compression event . The total load of flows on each link of the 
path is then updated to account for the new flow ( Algorithm 1 , 
line 10). We now provide more details about the compression and 
routing modules. 
3.1. MINNIE : compression module 

Since the compression of a single table is NP-Hard [20] , we 
use the following greedy algorithm ( Algorithm 2 ). It first com- 
putes three compressed routing tables (aggregation by source 
(lines 1–22), by destination (lines 23–44) and by the default rule 
(lines 45–52)) and then chooses the smallest one, as explained 
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Algorithm 1. MINNIE algorithm 

in more details below. The theoretical basis of this algorithm was 
studied in [20] and was proved to be efficient, as it provides a 
3-approximation of the compression problem. We show in this 
paper that it is also efficient in practice. 

Given a routing table such as the one given in Table 2 (a), the 
algorithm first considers an aggregation by source ( Table 2 (b)) 
using (s, ∗, p ∗s ) rules. The main principle is simple, but there is a 
small technicality to break ties. We first consider the sources one 
by one and choose (one of) the most occurring port(s) in the rules 
with this source. It corresponds to the port allowing to compress 
the most rules using a rule of aggregation by source. Then, we use 
the default rule to reduce the number of aggregated rules. 

There is a small technicality to break ties, when there are sev- 
eral most occurring ports. As a matter of fact, the choice taken of 
aggregation ports for each source affects the default port chosen. 
We thus postpone the choice of the source aggregation port in 
case of ties in order to choose the default port compressing the 
largest number of aggregation rules, as explained in details below. 

For each source s , we need to find the port p ∗s such that we can 
aggregate using the rule (s, ∗, p ∗s ) , and the port p ∗ to aggregate 
with the default rule ( ∗, ∗, p ∗). First, we compute the set of most 
occurring ports for each source s , noted P ∗s . The default port p ∗
is thus the most occurring port in all sets P ∗s . If multiple ports 
can be chosen, one is selected at random. Then, for each source 
s , the port p ∗s is equal to p ∗ if p ∗ ∈ P ∗s . Otherwise we choose at 
random among P ∗s . Once the ports for the aggregated rules are 
chosen, we build the compressed table. First, we add rules that 
cannot be aggregated (line 12), i.e., (s, t, p ̸ = p ∗s ) . Then, we add 
all the aggregation rules by source that do not use the default 
port p ∗ (line 15), i.e., (s, ∗, p ∗s ̸ = p ∗) . Finally, we add the default 
rule ( ∗, ∗, p ∗) (line 16). The order of insertion in the routing gives 
the order for the matching, i.e., non aggregated rules, then source 
aggregation rules and then default rule. 

For example, the sets of the most occurring ports of sources 0, 
1, and 2 in Table 2 (a) are {Port-5}, {Port-6}, {Port-4, Port-5, Port-6}, 
respectively. Since Port-5 and Port-6 appear two times each, we 
choose at random Port-6 to be the default port. The ports used 
for the aggregation by source for 0, 1, 2 are then Port-5, Port-6, 
Port-6, respectively. Port-6 is chosen for the source 2, because it 
is the default port. We can now build the compressed table by 
adding all rules that have ports different than their corresponding 
aggregate rules: (0, 4, 4), (1, 5, 4), (2, 4, 4), (2, 5, 5). Then, we add 
all aggregate rules with a port different from the default port: (0, 
∗, 5). Finally, we add the default rule ( ∗, ∗, 5). This gives us the 
compressed table in Table 2 (b). 

Algorithm 2. Compressing a table. 

For the second compressed routing table ( Table 2 (c)), we do 
the same compression considering the aggregation by destination 
with (∗, t, p ∗t ) rules. As for the third table ( Table 2 (d)) a single ag- 
gregation using the best default port is performed, i.e., one of the 
most occurring port in the routing table becomes the default port 
(tie broken uniformly at random). We then choose the smallest 
routing table among the three computed ones. 
3.2. MINNIE : routing module 

We propose an efficient routing heuristics using a weighted 
shortest-path algorithm with an adaptive metrics. When several 
routes are possible for a flow, we select the one using the less 
loaded equipments, links and routers, as measured by our metrics. 
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Algorithm 3. Finding a path for a flow. 

The intuition is two-fold:( i ) we want to avoid sending new flows 
to a router with a very loaded routing table, if there exists an 
alternative path using routers with less loaded routing tables 
( ii ) load balancing the traffic over the multiple possible paths is 
currently done in data centers to avoid overloading links. 

For every flow ( s, t, d ), we first build a weighted directed 
graph (digraph) G st = (V, A st , w ) , where, for every ( u, v ) ∈ A st , w uv 
is the weight of link ( u, v ). G st represents the residual network 
after having routed the previously routed flows: 
– G st is a subgraph of G where an arc ( u, v ) is removed if its 

capacity is less than d or if the flow table of the router u is full 
and does not contain any wildcard rule for ( s, t, p v ) (where p v 
represents the output port of u towards v ). Note that, when a 
table is full and compressed, a node u has only one outgoing 
arc (to the node v ), corresponding to the first existing rule of 
the form ( s , ∗, p v ), ( ∗, t, p v ) or to the default rule ( ∗, ∗, p v ). 
As more tables get full, the number of nodes with only one 
outgoing arc increases, reducing the size of the graph. 

– The weight w uv of a link depends on the overall flow load 
on the link and the table’s usage of router u . We note w c u v 
the weight corresponding to the link capacity and w r u v the 
weight corresponding to the rule capacity. They are defined as 
follows: 
w c u v = F u v 

C u v 
where C uv is the capacity of the link ( u, v ) and F u v the total 
flow load on ( u, v ). The more the link is used, the heavier the 
weight is, which favors the use of lower loaded links allowing 
load-balancing. And 
w r u v = { | R u | 

S u if ̸ ∃ wildcard rule for (s, t, v ) 
0 otherwise 

where R u is the current set of rules for router u . Recall that 
S u is the maximum number of rules which can be installed in 
the routing table of router u . The weight is proportional to the 
usage of the table. Note that w c u v ∈ [0 , 1] and w r u v ∈ [0 , 1] . They 
measure the percentages of usage of link uv and the routing 
table of router u . 

The weight w uv of a link ( u, v ) is then given by: 
w u v = 1 + 0 . 5 w c u v + 0 . 5 w r u v . 
The additive term 1 is used to provide the shortest path in 
terms of number of hops when links and routers are not used 
(i.e., when w c u v = 0 and w r u v = 0 for all ( u, v ) ∈ A st ). This term 
could be replaced by the delay to traverse link ( u, v ) to obtain 
the shortest paths in terms of delay. When the links and 
routers are used, we take into account their usage. Moreover, 
we wanted to give the same importance to network link load 
and table load. Thus, we choose an equal weight of 0.5 for 
w c u v and w r u v . Note that w uv ≤ 2. This ensures that l ( p ) ≤ 2 ×
l ( p ∗), where p is the path found by the routing module, p ∗ is 
the unweighted shortest path and l ( p ) the number of hops of 
path p (indeed, l ( p ) ≤ w ( p ) as w uv ≥ 1, w ( p ) ≤ w ( p ∗) as p was 
selected, and w ( p ∗) ≤ 2 l ( p ∗), where w ( p ) is the sum of the 
weights of the links of path p ). This means that no path longer 
than twice the current available shortest path is selected. 
When ( G st , w ) is built, we compute a route for the flow by 

finding a shortest path between s and t in the digraph minimizing 
the weight w . 

In the current version of Minnie , when the algorithm can no 
longer compress a table, it uses the default action to forward the 
new traffic to the controller. This could be enhanced to evict the 
least recently used rule from the table. It should be noted that 
based on our results ( Section 4.2 ) all flows can be forwarded using 
a rule space capacity of 10 0 0 rules. Thus, using advanced eviction 
rules seems unnecessary. 
4. Simulations on data center topologies 

In this section, we study the behavior of Minnie through 
simulations for a wide variety of data center architectures. We 
first present the different scenarios, performance metrics and data 
center architectures in Section 4.1 . We then demonstrate that 
Minnie works well for topologies of different sizes and structures 
in Section 4.2 . A table of content of the results obtained through 
simulations and experiments is available in Table 1 . 
4.1. Simulation settings 

We present in this section the different scenarios studied via 
simulations, the traffic patterns and metrics that will be evaluated. 
All simulations were carried out on a computer equipped with a 
3.2 GHz 8 Core Intel Xeon CPU and 64GB of RAM. 
4.1.1. Scenarios 

We ran simulations under three different scenarios: 
• Scenario 1: No compression . We only use the routing module 

of Minnie and fill up the routing tables without compressing 
them. This scenario serves as a baseline for measuring the 
efficiency of Minnie . 

• Scenario 2: Compression at the end of the simulation . We 
compress the routing tables of every switch once at the end of 
the simulation, when all the forwarding rules have been stored 
assuming an unlimited capacity of the routing table. We use it 
to test the efficiency of the compression module of Minnie . 

• Scenario 3: MINNIE (Dynamic compression at a fixed thresh- 
old) . We validate Minnie with a threshold of 10 0 0 rules, which 
represents the routing table limit. This scenario aims at testing 
Minnie in a scenario closer to real life. The capacity of 10 0 0 
rules has been chosen as it corresponds to the number of 
entries supported by the TCAM of typical switches such as 
Apollo 2 and Triumph 2 [21] . The actual number ranges around 
couple of thousands to tens of thousands [2] . 
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Fig. 1. Example of topologies studied. 
4.1.2. Traffic patterns 

For all scenarios, we consider an all-to-all traffic in which every 
single server establishes a connection to all other servers. Each 
flow is constantly sending traffic. We consider this situation to test 
Minnie in the most extreme scenario in terms of number of flows, 
and thus, in terms of number of rules. Each flow is represented by 
a unique source-destination pair. 
4.1.3. Data center architectures 

To test the efficiency of Minnie , we considered state-of-the-art 
data center architectures: Fat-Tree [22] , VL2 [23] , BCube [24] and 
DCell [25] . For each family of architecture, we considered topolo- 
gies of different sizes hosting from few units to about 30 0 0 end 
points. These end points can be either servers or IP subnets, 
grouping thousands of different machines. In the following, for 
simplicity, we often use the term server for both cases. The number 
of flows routed in the topologies can thus reach a few millions. 

The architectures considered during these simulations can be 
classified into two different groups: 
• Group 1 , in which servers only act as end hosts includes 

Fat-Tree and VL2. 
• Group 2 , in which servers also act as forwarding devices 

(similarly to switches) includes BCube and DCell. 
We detail below how we chose the different set of parameters 

to build these topologies like the number of switches or level of 
recursion. 

Fat-Tree. The Fat-Tree is one of the most well-known archi- 
tectures. The switches are divided into three categories: core, 
aggregation and access (or ToR for Top of the Rack) switches. A 
k Fat-Tree is composed of k pods of k switches and k 2 /4 core 
switches. Every switch possesses k ports. Inside a pod, aggregation 
and edge switches form a complete bipartite graph. Each core 
switch is connected to every pod via one of the k /2 aggregation 
switches. Every ToR switch has a rack composed of k /2 servers. A 
k = 4 Fat-Tree is shown as example in Fig. 1 a. 

For our simulations, to build Fat-Trees with up to 30 0 0 servers, 
we considered k values between 4 and 22. 

VL2. The VL2 architecture is also composed of three layers 
of switches: intermediate, aggregation and ToR switches. The 
intermediate and aggregation switches are connected together 
to form a complete bipartite graph. Each ToR is connected to 
two different aggregation switches. Three parameters control the 
number of switches of each layer and the number of servers of the 
architecture: D a represents the number of ports of an aggregation 
switch, D i the number of ports of an intermediate switch and T 
the number of servers in the rack of a ToR switch. Fig. 1 b shows 
a V L 2(D a = 6 , D i = 6 , T = 2) . The topology has D a /2 (3 in the 
example) aggregation switches, D i (6 in the example) intermediate 
switches, D a D i /4 (9 in the example) ToR switches and TD a D i /4 (18 
in the example) servers. 

For our simulations, we chose the parameters of the topologies 
to ensure that every switch has the same number of ports, that is 
VL2 (2 k , 2 k , 2 k − 2) for k between 2 and 11. 

DCell. The DCell architecture is a topology in which both 
servers and switches act as forwarding devices. The topology is 
built recursively. The basic block is the level-0 DCell, DCell(n,0), 
where n servers are connected to a unique switch. From a DCell(n, 
l-1), composed of s (n, l − 1) servers, a DCell(n, l) can be built by 
connecting each server of a DCell(n, l-1) to a different DCell(n, 
l-1). This builds a DCell(n, l) containing (s (n, l) + 1) DCell(n, l-1). 
For example, a DCell(2, 0) is composed of 2 servers ( s (n, 0) = n ) 
and to create a DCell(2, 1), as shown in Fig. 1 c, 3 DCell(2, 0) are 
interconnected. 

In our simulations, we compare topologies with one level 
of recursion (referenced as DCel l (l = 1) ), with n between 1 and 
54, and topologies with two levels of recursion (referenced as 
DCell(l = 2)), with n between 1 and 7. 

BCube. BCube is another architecture in which the servers also 
act as forwarding devices. Again, it is a recursive construction. The 
building block is a BCube ( n , 0), composed of n servers connected 
to a single switch. The level l being composed from multiple l − 1 
levels. Unlike in the construction of DCell, in which the recursion 
connect servers together, the construction of BCube is done by 
connecting the servers via new switches. The number of switches 
added to make a BCube of level l is equal to the number of servers 
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in a BCube of level l − 1 . Each switch is then connected to one 
server of every BCube of level l − 1 and each servers to l + 1 
switches – see the BCube(3, 1) in Fig. 1 d. 

Like for DCell topologies, the same number of servers can be 
obtained with different levels of recursion. We consider levels of 
recursion up to 3. 
4.2. Simulation results 

In this section, we validate Minnie through simulations over 
the set of topologies described in Section 4.1.1 . We demonstrate 
in this section that Minnie works well for different topologies and 
different sizes of data centers. We first analyze the compression 
rates that can be obtained by compressing large tables. Then, we 
show that if tables are compressed all along the simulation as 
soon as the limit is reached, then the compression module is much 
more efficient and the compression ratio reaches 90% for some 
topologies. We then investigate the efficiency of Minnie when 
considering around 10 0 0 servers in multiple topologies. We show 
the efficiency of our method by comparing the results of Minnie 
with XPath [5] . Finally, we present the routing and compression 
time of these different topologies. 
4.2.1. Metrics 

To assess the efficiency of Minnie , we measure the following 
metrics: 
– Average compression ratio of compressed tables: compression 

ratio = 1 − number of rules of a switch 
number of flows passing through the switch . 

Note that the compression ratio measures the efficiency of 
the compression algorithm. We thus do not consider tables, 
on which no compression event was performed (in particular 
empty tables), when we compute the average compression 
ratio. 

– Number of compression events performed by a switch during 
the simulation. 

– Number of flows passing through a switch (maximum and 
average over all switches). 

– Number of rules per switch (maximum and average over all 
switches). 

– Computation time for compressing a table and for routing a 
flow. 

– Maximum number of servers which can be installed on a data 
center topology without going beyond a forwarding table size 
of 10 0 0 rules. 
For each family of topologies, we present the results for the 

three scenarios described in Section 4.1.1 , referenced respectively 
as No compression, Compression at the end and Minnie . 
4.2.2. Efficiency of the compression module 

The efficiency of the compression module of Minnie can be 
assessed from Fig. 2 where we look at the average compression 
ratios of the Compression at the end scenarios. In this figure we 
observe that DCell, BCube and VL2 topologies follow a similar 
phenomenon. They all feature a sharp increase of the compression 
ratio when the number of servers is between 0 and 100: for 
example, the ratio raises from 62% to 84% for DCell(l = 2). Then, 
for larger number of servers, the compression ratio levels off. 
On the other hand, Fat-Tree topologies have a different behavior 
and do not experience the increase phase ; the curve is almost 
flat all along the simulation. The higher ratio shown on DCell 
topologies is explained by the aggregation of flows on the few 
switches available in the topology. Combined with a few number 
of outgoing ports, the compression module can attain a very high 
compression ratio. 

Fig. 2. Compression ratio for the different topologies in scenario 2. 

Fig. 3. Number of compression executed for different topologies. 
In the flat phase, compression ratios are between 60% and 

80% for the three families BCube, VL2 and Fat-Tree, and even 
reach values between 85% and 99.9% for DCell. In summary, the 
compression module of MINNIE features a minimum of 60% 
savings in memory. 

Compression event frequency. In Fig. 3 , we observe the total 
number of compression events executed for the different topolo- 
gies. Group 1 topologies reach a maximum of 516 compressions 
for the k = 18 Fat-Tree (and 301 for VL2(20, 20, 18)). This rep- 
resents an average of about 1 compression event per switch for 
the Fat-Tree topology and less than 6 compression events for 
VL2. However, Group 2 shows a higher number of compression 
events, with a maximum of almost 60 0 0 compression events for 
a BCube (53, 1) (in average, 54 compression events per forwarding 
device). This difference is due to the near saturation of most of the 
switches in Group 2 topologies. In these nearly saturated tables, 
the compression leaves a table that is close to the 10 0 0 limit and 
thus, the table is compressed only after few new flows are added. 
4.2.3. Efficiency of MINNIE 

Minnie is composed of a routing and a compression module. 
When the number of rules reaches the 10 0 0 limit, Minnie trig- 
gers the compression module. This dynamic behavior allows to 
efficiently route traffic without overloading the routing tables on 
topologies where the number of servers increases. Fig. 4 presents 
the maximum number of rules on a device (a router or a server de- 
pending on the family of topology) as a function of the number of 
servers for the different families of topologies. We remark that the 
curve for Minnie first follows the No compression one until reach- 
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Fig. 4. Maximum number of rules on a forwarding device as a function of the number of servers for different data center architectures. 
ing the 10 0 0 limit. Indeed, during this first phase, Minnie performs 
no compression at all as the limit is not attained. Then, Minnie 
triggers compression regularly and manages to keep all routers’ 
table below the limit of 10 0 0. When performing compression, Min- 
nie has introduced wildcard rules in the routing tables, and the 
new incoming flows will follow these paths in priority. Therefore, 
Minnie deals with the same number of flows as No Compression 
with less than 10 0 0 entries while No Compression needs between 

10 4 and 10 6 entries. Note that some points for Minnie are not 
depicted. Indeed, in Fig. 4 , we present only the results in which 
all the flows are routed without overloading the routing tables. As 
soon as one request cannot be routed and when the routing tables 
cannot be further compressed, the simulations are stopped. 

This phenomenon can be clearly seen for DCell(l = 1) topolo- 
gies in Fig. 4 a. Without compression, only 72 servers can be 
deployed in a DCell(8,1) without overloading tables while Minnie 
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Table 3 
Comparison of the behavior of MINNIE for different families of topologies with around 10 0 0 servers each. For the Fat-Tree topologies, we tweak the number 
of clients per server to obtain 1024 “servers”. 

Topology servers # switches # links # Avg ports # # flow Rule w/ comp # Average Computation time 
per switch Comp. in average (ms) 
Max Average Max Average Ratio Paths Comp. 

Group 1 
k = 4 Fat-Tree (64) 1024 20 1056 54.4 454,244 216,268 999 446 ∼99.60 0.17 13 
k = 8 Fat-Tree (8) 1024 80 1280 19.2 649,044 61,030 999 323 ∼99.61 0.21 7 
k = 16 Fat-Tree (1) 1024 320 3072 16 630,998 15,897 999 303 ∼98.42 0.30 5 
VL2(16, 16, 14) 896 88 384 16 261,266 42,906 10 0 0 673 ∼97.90 0.15 4 
VL2(8, 8, 64) 1024 28 612 ∼41.1 423,752 161,499 10 0 0 799 ∼99.45 0.19 11 
VL2(16, 16, 16) 1024 88 1152 ∼17.5 276,575 56,040 10 0 0 648 ∼98.39 0.18 4 
Group 2 
DCell(32, 1) 1056 33 1584 ∼2.91 63,787 4893 10 0 0 113 ∼97.23 0.09 2 
DCell(5, 2) 930 186 1860 ∼3.33 11,995 5716 994 642 ∼87.84 0.19 2 
BCube(32, 1) 1024 64 2048 ∼3.77 37,738 3734 999 329 ∼86.04 0.19 2 
BCube(10, 2) 10 0 0 300 30 0 0 ∼4.62 10,683 4153 998 653 ∼80.85 0.25 2 
BCube(6, 3) 1296 864 5184 4.8 7852 5184 991 831 ∼83.18 0.49 4 

allows to deploy 1056 servers with a DCell(32,1). This represents 
a 15 fold increase compared to No compression . The number of 
servers which can be deployed with DCell topologies having two 
levels of recursion ( Fig. 4 b) is similar: 930 with a DCell(5, 2) when 
running Minnie and less than 200 with No compression . 

Another key observation is that MINNIE can reach or even 
outperforms Compression at the end without exceeding the 
limit of number of rules. Indeed, if we consider for example Fat- 
Tree topologies in Fig. 4 c, without compression, the largest Fat-Tree 
which can be deployed with a rule limit of 10 0 0 is a k = 8 Fat-Tree 
with 128 servers and 992 rules. With compression at the end, the 
number of servers which can be deployed would be around 256. 
However, we see that Minnie succeeds in deploying a k = 18 Fat- 
Tree with 1458 servers without having overloading issues. This is a 
6 fold increase compared to Compression at the end . This is due to 
the fact that by compressing online, i.e., when flows are intro- 
duced, MINNIE impacts the routing of the following flows . Be- 
cause of the metrics used in the routing module, the algorithm will 
prefer to select shortest paths using wildcards as they do not in- 
crease the number of rules. This allows better compression ratios. 

The phenomenon also appears for BCube topologies ( Fig. 4 d–f) 
and with a striking intensity for VL2 topologies ( Fig. 4 g). When 
compressing at the end, up to 96 servers can be deployed without 
reaching the table size limit (and only 36 without compression). 
With Minnie , this number can be pushed up to 1800 servers 
which represents 36 fold increase . 

Difference of behavior inside a family of topologies. We 
notice in Figs. 2 and 4 a difference of behavior inside a family of 
topologies. For a given family of data centers, different topologies 
can host a similar number of servers. For example, DCell(32,1) 
and DCell(5,2) host around 10 0 0 servers, as well as BCube(32,1), 
BCube(10,2) and BCube(6,3). But the behavior of these topologies 
is significantly different: for example, the average number of rules 
is 113 for a DCell(32,1) compared to 642 for a DCell(5,2). We see 
that the compression ratio of the family DCell(l = 1) is higher 
(more than 95% when the number of servers is greater than 200) 
than the one of DCell(l = 2) (more than 85% when the number of 
servers is greater than 200). Hence, the choice of the best set of 
parameters for a given family of topologies is very important. 
In order to answer this question, we study in the following section 
all these topologies with similar number of servers (around 10 0 0). 
4.2.4. Comparison of MINNIE effect on topologies with 10 0 0 servers 

Table 3 sums up the effect of Minnie on the different topolo- 
gies with a similar number of servers (around 10 0 0), hence a 
similar number of flows to route. We detail below the different 
parts of the table, highlighting the key conclusions to draw. 

Topology characteristics. The first part of the table provides 
basic information about the topologies. Even with a similar 
number of servers, the topologies are very different in terms of 
number of switches (between 20 and 903), links (between 1056 
and 5184) and average number of ports per switch (between 2.9 
and 54.4). 

Flows in the network. The second part of the table reports the 
number of flows introduced in the network during the simulation. 
These topologies behave very differently in terms of number of 
flows per device: the average number of rules ranges from 3734 
to 216,0 0 0 and the maximum number of rules ranges from 7800 
to 650,0 0 0. Two explanations can be given for these differences. 
First, the topologies have very different numbers of switches (from 
20 to 864). Secondly, in the topologies of Group 2, servers also 
act as switches, and thus also host some rules, leading to a lower 
average number per device. 

Compressing with MINNIE . The third part of the table repre- 
sents the effect of using Minnie on the number of rules, average 
compression ratio and computation time. MINNIE succeeds to 
route the traffic on all the topologies without exceeding the 
limit of 10 0 0 rules per device (maximum number of rules 
between 989 and 10 0 0). 

We also observe that with 10 0 0 servers MINNIE allows to 
attain an average compression ratio higher than 80% . This 
shows that considering the state of the forwarding table when 
routing increases the compression done by the wildcard rules. 
Compared with the Compression at the end scenario, we see a 
ratio increase between 20% and 30% for the Fat-Tree and VL2 
topologies, and a smaller increase between 5 and 10% for BCube. 
This difference comes from the smaller amount of shortest path 
available in BCube compared to the Group 1 topologies. DCell 
topologies display close to no differences since flows were already 
highly aggregated in the other scenario. 

As for the computation time we notice that MINNIE dynam- 
ically computes the route with a sub-millisecond delays as 
the maximum average routing computation time is 0.49 ms 
for BCube(6,3). And finally, we can observe that compressing 
the rules with MINNIE will cost less than 13 ms delay in all 
topologies . 
4.2.5. Comparison with XPath 

We compare Minnie with another compression method of the 
literature, XPath [5] . XPath combines re-labeling and aggregation 
of paths. Each path is assigned an ID. Two paths can share the 
same ID if they are either convergent or disjoint but not if they 
are divergent. The assignment of IDs is then based on prefix 
aggregation. This method requires that, for every request in the 
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Table 4 
Comparison of the maximum number of rules on a switch between XPath and Minnie (between servers or ToRs). 

(a) Comparison with MINNIE for paths 
between servers (b) Comparison with MINNIE: for paths between servers and paths 

between level 1 switches 
DCNs Number of rules DCNs Number of rules 

ToR to ToR Server to Server 
XPath MINNIE XPath MINNIE MINNIE 

BCube(4, 2) 108 56 k = 8 Fat-Tree 116 27 272 
BCube(8, 2) 522 443 k = 16 Fat-Tree 968 116 6351 

k = 32 Fat-Tree 7952 482 113,040 
k = 64 Fat-Tree 64,544 1925 –

VL2(20, 8, 40) 310 135 138,354 
VL2(40, 16, 60) 2820 1252 –

VL2(80, 64, 80) 49,640 22,957 –

(a) Average routing time over all flows (b) Average compression time per forwarding device

Fig. 5. Computation time for the compression and routing phases for different topologies. 
data center, an application contacts the controller to acquire the 
corresponding ID of the path to its destination. 

In Table 4 , we compare the maximum number of rules installed 
on a forwarding device between XPath and Minnie for a larger 
variety of topologies. Numbers reported in the table for XPath are 
directly extracted from [5] . In Minnie , we consider all the flows 
between servers even if they act only as end hosts but in XPath, 
only the path between ToRs are considered for the standard archi- 
tecture (VL2, Fat-Tree). So for an accurate comparison, we apply 
the same principle to Minnie by only considering flows between 
ToRs. Since in [5] , they also consider a bigger table size of 144,0 0 0 
entries, the limit is set to 144,0 0 0 for Minnie too. Minnie requires 
a lower number of rules to be installed than XPath on every ar- 
chitecture while both dealing with all possible (source,destination) 
flows. This can be explained by the fact that XPath installs rules 
for all possible paths for every source/destination pair before 
compressing while Minnie only considers one path per flow. 
4.2.6. Execution time of MINNIE 

Finally, we study the execution time of Minnie in order to 
assess if it is a viable solution in practice. We discuss here the 
software running time. It represents the time of execution of 
the algorithm in the controller. In Section 5 , we then study the 
additional network delay induced by our method for a flow using 
our testbed experiment. 

Routing time. When a new flow arrives, the controller has to 
compute its path in the network and the set of rules to be installed 
in the switches along the path. We plot in Fig. 5 a the average 
time for this operation. Recall that, to compute the paths we used 
Dijkstra algorithm with the metrics w uv and residual graph G st 

described in Section 3 . The longest average time is about 0.42 ms 
which corresponds to the k = 18 Fat-Tree (with 1458 servers and 
405 switches), whereas the shortest routing time happens for VL2, 
DCell(l = 1) and BCube(l = 1) which have a small number of 
shortest paths between two routers. On the contrary, the Fat-Tree 
and BCube(l = 3) experience a longer routing time explained by 
the large number of possible paths between two servers. Note 
that even if Fat-Tree and VL2 have a similar shape, the latter 
topology has significantly fewer switches and edges, which explain 
the smaller number of possible paths and therefore the smaller 
routing time. Nevertheless, for all of the studied topologies, the 
routing time is small and we will see in Section 5.2 that the 
delays of the packets are not significantly impacted. 

Moreover, we observe a surprising behavior for some topolo- 
gies. In most cases, the computation time is globally increas- 
ing with the size of the topologies. However, DCell(l = 1), 
BCube(l = 1), and BCube(l = 2) experience a drop in computation 
time: For example, the computation time for BCube(l = 1) topolo- 
gies increases to 0.18 ms for 1024 servers, then drops to 0.10 ms 
for 1350 servers to increase again to 0.22 ms for 2800 servers. 
This behavior is caused by the saturation of a large number of 
switches of the topology when the number of flows becomes high 
during the simulation. A switch is saturated when the compression 
module can no longer reduce the size of the table below the 10 0 0 
limit. However, a saturated switch can still forward a new flow 
(say between server s and server t ) using the first wildcard rule 
in the routing table of the form ( s , ∗, p ), ( ∗, t, p ), or ( ∗, ∗, p ). The 
degree of this switch is one in the residual graph used by Minnie 
to compute Dijkstra. This decreases the computation time and the 
routing becomes very fast when the number of saturated switches 
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Fig. 6. Scatter plot of the time to compress a table as a function of the number of flows passing through the forwarding device. 
is large (as the number of possible paths is then small). This is 
helpful as it may decrease the routing time of large topologies 
with high number of flows. 

Compression time. After having determined the path of a new 
flow and installed the rules along the path, we check if the size 
of one of the corresponding routing tables reaches the limit of 
10 0 0 rules. If so, Minnie carries out a compression of the routing 
table. We plot in Fig. 5 b the average time to compress a routing 
table during the simulations for each group of topology. We see 
that even for the simulations of the largest topologies (pushed 
to their maximum with an all-to-all traffic of 6 million flow), the 
average compression time is below 16 ms. This corresponds to 
large (uncompressed) routing tables dealing with 20,0 0 0 flows. A 
topology with around 10 0 0 servers (1 million of flows in total) 
experiences an average compression time between 2 and 4 ms. 
As a typical example, we provide in Fig. 6 the time needed to 
compress a switch for a BCube(32,1) and a k = 12 Fat-Tree (432 
servers) in function of the number of flows passing through it. 
For the k = 12 Fat-Tree, the average compression time is 1.29 ms. 
For any switch, the first compression is done when reaching 10 0 0 
flows corresponding to 10 0 0 forwarding rules (as aggregation 
rules are only introduced at the first compression). We then see 
that the second compression for a switch is done for around 2500 
flows followed by compression when reaching 30 0 0 to 40 0 0 flows. 
These compression results show that previous compressions were 
efficient and that a large number of new flows are routed via 
aggregated rules. As for the two exceptions observed of tables 
compressed with around 18,0 0 0 flows, 3 they correspond to one or 
two switches on which the paths are concentrated. 

These time results allow to assume that the impact of MINNIE 
on the controller load and on the flow delay will be limited for 
these sizes of topologies. Note also that, when a new flow arrives, 
we choose to apply the compression module when the routing 
table size reaches the rule limit, but only after the new flow is 
routed. Thanks to this strategy, the delays experienced by the 
packets of the flow are not impacted by the compression carried 
out by the controller. These results are furthermore validated by 
running Minnie on a data center testbed in the following sections. 
5. Experimental results using an SDN testbed 

In this section, we demonstrate the effectiveness of Minnie 
using an SDN testbed. The characteristics of our experimental 

3 Beware to distinguish the number of flows in the network from the number of 
rules. Here the number of rules per router is always below 10 0 0 while the number 
of flows can be way higher. 

network is described in Section 5.1 . More specifically, we explain 
how with a single hardware switch and OVS switches we deploy 
a full k = 4 Fat-Tree topology with enough clients to exceed the 
routing table size of the hardware switch, as well as the traffic 
pattern that fits the needs of our cases of study. A few details 
about the implementation of Minnie within a Beacon controller 
is also provided. The obtained results are shown in Section 5.2 , 
where we discuss the impact of Minnie over the traffic delay, loss 
rate and the impact of using software rather than hardware rules. 
A table of content of the results obtained through simulations and 
experiments is available in Table 1 . 
5.1. Experiment settings 
5.1.1. TestBed description 

Our testbed consists of an HP 5400zl SDN capable switch with 
4 modules, each with 24 GigaEthernet ports, and 4 DELL servers. 
Each server has 6 quad-core processors, 32GB of RAM and 12 Gi- 
gaEthernet ports. On each server, we deployed 4 virtual machines 
(VMs) with 8 network interfaces each. Each VM is connected to a 
dedicated Open vSwitch (OVS) switch. Each OVS switch is further 
connected using one physical port (of the server’s 12 ports) to the 
HP switch. 

The topology of our data center network is a full k = 4 Fat-Tree 
topology (see Fig. 7 ), which consists of 20 SDN hardware switches. 
To emulate those 20 SDN hardware switches, we configured 20 
VLANs on the physical switch (referred to as Vswitches). Since each 
VLAN possesses an independent OpenFlow instance, each VLAN 
behaves as an independent SDN-based switch with its proper iso- 
lated set of ports and MAC addresses. The VLAN configuration and 
the consequently port isolation prevents the physical switch from 
routing traffic among VLANs through the backplane. The Vswitches 
are then interconnected on the HP switch using Ethernet cables. 

Each access switch ( Fig. 7 ) interconnects a single IP subnet 
with 16 clients, the latter emulated by two VMs, featuring up to 8 
Ethernet ports each one. We detail in Section 5.1.3 the reason for 
choosing 16 clients per subnet. 

The HP SDN switch can support a maximum of 65,536 (soft- 
ware + hardware) rules to be shared among the 20 emulated SDN 
switches. Software rules are handled in the RAM and processed 
by the general-purpose CPU (slow path) while hardware rules are 
stored in the TCAM (fast path) of the switch. The number of hard- 
ware rules that can be stored per module in our switch being equal 
to 750, the total switch capacity is equal to 30 0 0 hardware rules 
maximum. Those 65,536 (software + hardware) available entries 
are not equally distributed among the 20 switches as the concept 



196 M. Rifai et al. / Computer Networks 121 (2017) 185–207 

Fig. 7. Our k = 4 Fat-Tree architecture with 16 OVS switches, 8 level 1, 8 level 2, and 4 level 3 switches. 
of first flow arrived-first served policy is used where the SDN rules 
are going to be installed on the HP switch in the order of arrival. 

In one of the physical servers, we also deployed an additional 
VM hosting a Beacon [26] controller to manage all the switches 
(HP Vswitches or OVS switches) in the data center. According to 
[27] , Beacon features high performance in terms of throughput 
and ensures a high level of reliability and security. To prevent the 
controller from becoming the bottleneck during our experiments, 
we configured it with 15 vCPUs (i.e., 15 cores) and 16GB of RAM. 

In the next section, we justify our choice of 16 clients per 
access (level 1) switch and why we have decided to add virtual 
OVS switches between clients and level 1 switches. 
5.1.2. The need of level-0 OVS 

OVS switches are used to make the controller aware of every 
new flow arriving in the fabric. Their routing tables are never 
compressed. 

Without those switches, compressing at access switches with 
Minnie may lead to possibly wrong routes. This phenomenon 
can be explained by considering the case where clients would 
be directly connected to access switches and Minnie would be 
used at those switches. Suppose that a correct routing imposes 
at one of the access switches that to reach destinations d 1 and 
d 2 , packets must be forwarded to port p 1 while for destination 
d 3 , they should flow through port p 3 . Without compression, we 
have three rules. Now suppose that Minnie imposes compression 
when the rules for destination d 1 and d 2 are present but the one 
for d 3 has not been installed yet. This leads to entries ( s 1 , d 1 , p 1 ) 
and ( s 1 , d 2 , p 1 ) being replaced by ( s 1 , ∗, p 1 ). When packets from 
s 1 to d 3 are sent later, they will match the compressed forwarding 
rule and will reach d 3 using a longer path (or no path at all), as 
they will be forwarded to port p 1 and not p 3 . In order to avoid 
this behavior, the controller should be contacted for every new 
flow to take the best routing decision for this flow. This is the 
role of the OpenFlow enabled OVS switches that we introduced. 
They enable the controller to perform compression with an exact 
knowledge of the set of active flows. The net result of using those 
OVS switches is to enable us to perform compression starting from 
the access switches, giving us more opportunity to use hardware 
rules at these switches. In the short version of this paper [8] , we 
did not use level-0 OVS switches, and dealt with this problem by 
not compressing at access switches, leading to lower compression 
ratios, and overloading of these switches. 

Here, one could think that we just migrated the problem from 
the edge devices to the physical server. We believe however that 
this architecture represents an important step towards the solution 
of limited TCAM space because of the following reasons: 
1. While for physical SDN-capable devices, the TCAM size is a 

real problem, placing one OVS switch per server, even without 
compressing the flow table, should not introduce major perfor- 
mance problems. Indeed the number of rules to be processed 
by each OVS switch should remain modest 4 while an OVS 
switch can handle 10 0 0 rules at the kernel space, and up to a 
maximum of 20 0,0 0 0 rules [29] . 

2. Virtualization is a common service in modern data centers. 
Hence, virtual switches are routinely used to provide network 
access to the virtual machines. OpenVSwitch is natively sup- 
ported by Xen 4.3 and newer releases. VMware offers support 
to OpenVSwitch through the NSX service for Multi-Hypervisor, 
which is the natural choice for large data centers. KVM, due 
to its native integration in Linux environments, can easily be 
deployed using OVS switches. 

5.1.3. Number of clients chosen for the experimentations 
In our Fat-Tree architecture, we can easily deduce the number 

of rules corresponding to a valid routing assuming that each VM 
talks to all other VMs not in its IP subnet. Considering no com- 
pression at all, one rule is needed for every flow passing through 
each switch along the path from a source to a destination. The set 
of flows that a switch “sees” depends on its level in the Fat-Tree. 
Note that here, a flow is identified by the couple IP source and 
IP destination addresses. Hence, for every pair of nodes A and B 
there are two unidirectional flows: A → B and B → A , i.e. two 
rules per switch on the path from A to B. 

For any flow between two servers, the path goes first through 
the access switches to which the servers are connected. Assuming 
n servers per access switch ( n = 2 in Fig. 7 ), then each of the n 
servers connected to an access switch communicates with the 
other 7 × n servers in other subnets via outgoing and incoming 

4 As reported in [28] , a typical rack of 40 servers generate around 1300 flows 
per second. Therefore, each server is generating on average around 32.5 flows per 
second. Assuming a worst case where every per flow rule is unique and that the 
expiration interval for unused rules is the default value of 10 s of inactivity, then, an 
OVS switch in a single server will need to store 325 forwarding rules roughly (plus 
the default route to reach the local VM). This value is pretty small as compared to 
the 10 0 0 rules in the fast path of an OVS switch. 
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Fig. 8. Total number of rules installed as a function of the number of servers, in a 
k = 4 Fat-Tree configuration. 
flows. Overall, this represents 14 n 2 flows going through any access 
switch. 

Using the same argument to find the number of flows for 
switches at the higher levels, we have a total of 13 n 2 flows at 
each aggregation switch and 12 n 2 flows for a core switch. In total, 
264 n 2 rules are needed for the entire network. 

In Fig. 8 , we compare the total number of rules with no com- 
pression at all, and with compression (obtained via simulation) 
on all switches. Without compression, only 15 clients per subnet 
can be deployed without running out of space in the forward- 
ing table of our entire data center (65536 entries), while up to 
36 clients can be deployed with the compression at the end. 
Therefore, Fig. 8 explains our choice of installing 16 clients per 
subnet. Indeed, it is the first value for which the number of rules 
exceeds our total limit of number of rules ( 67 , 584 rules) when no 
compression is achieved. 
5.1.4. Experimental scenarios 

We aim at assessing the performance of Minnie with a high 
number of rules and with a high load. Those two objectives are 
contradictory in our testbed. Indeed, stressing the SDN switch in 
terms of rules, i.e., getting close to the limit of 65,536 entries, 
imposes to have software rules. As software rules are handled, 
by definition, by the general purpose CPU of the switch (the 
so-called slow path), a safety mechanism has been implemented 
by HP to limit the processing speed to only 10,0 0 0 packets/s per 
VLAN. Assuming an MTU of 1500 bytes, we could not go beyond 
120 Mb/s, shared between all ports in a VLAN. This is why we 
designed a second scenario where only hardware rules are used. In 
this scenario, we can fully use the 1 Gb/s link but we are limited 
to the 30 0 0 hardware rules that have to be shared among the 20 
switches. We thus built two scenarios to assess the performance 
and the feasibility of deploying Minnie in real networks: 
• Scenario 1: Low load with (large number of) software rules 

(LLS) . This scenario enables to test the behavior of the switch 
when the flow table is full. 

• Scenario 2: High load with (small number of) hardware 
rules (HLS) . This scenario enables us to demonstrate that the 
impact of Minnie remains negligible even when the switch 
transfers a load close to the line rate. 
For each scenario, we consider three compression cases, which 

are similar to the simulation scenarios presented in Section 4.1.1 : 
• Case 1: No compression. We fill up the routing tables of the 

switches and we never compress them. This test provides 
the baseline against which we compare results obtained with 
Minnie . 

• Case 2: Compression at the end (after installing the whole set 
of forwarding rules or when the forwarding table is full). This 
scenario illustrates the worst case and provides insights about 
the maximum stress introduced by Minnie in the network. 
Indeed, in this case, we have the highest number of rules to 
be removed and installed after the compression executed by 
Minnie which should be done as fast as possible. 

• Case 3: Minnie (Dynamic compression at a fixed threshold). 
We set a threshold to the table size and compress whenever 
we reach this value. We extend the third scenario of the 
simulations by considering three thresholds values for LLS , 
namely 50 0, 10 0 0 and 20 0 0 entries, and also three values for 
HLS : 15, 20 and 30 entries. 
While LLS allows to test the scalability of Minnie in terms 

of number of rules in real SDN equipments, this scenario might 
introduce, by default, an important jitter in the network because 
of the usage of the general-purpose CPU to process the traffic. 
HLS helps to better understand the impact of the compression 
and forwarding table replacement over the traffic. Since the traffic 
rate fills up to 75% of the access links, which is not enough to 
introduce congestion, and packets are processed by the ASIC, we 
expect to have a low jitter. Hence, any sudden increase of this last 
will immediately suggest an important impact of the compression 
mechanisms over the network stability. 
5.1.5. Traffic pattern 

We detail in this section how the two scenarios introduced in 
the previous section are actually implemented in our testbed. 

Low Load with software rules Scenario - LLS 
In this scenario, the traffic is generated as follows: each client 

pings all other clients in every other subnet. This means that for 
each access switch, each of the 16 clients pings 112 other clients. 
There are no pings between hosts in the same subnet as we 
focus on the compression of classical IP-centric forwarding rules, 
which is used to route packets between different subnets, and not 
MAC-centric forwarding rules, as in legacy L2 switches. 

We start with an initial client transmitting 5 ping packets to 
one other client. This train of 5 ICMP requests forms a single flow 
from the SDN viewpoint. We wait for this ping to terminate before 
sending 5 other different ping packets to another client, and so on, 
until all the 112 clients are pinged. When the first client finishes 
its pings series, a second client (hosted in the same VM) starts 
the same ping operation. Hence, the traffic is generated during all 
the experiment in a round-robin manner, among the 8 clients of 
each VM. Moreover, VMs do not start injecting traffic at the same 
time. We impose an inter-arrival period of 10 min between them. 
Hence, VM 1 starts sending traffic at time zero, while VM 2 starts 
at minute 10, VM 3 at minute 20, and so on. This smooth arrival of 
traffic in the testbed is motivated by the fact that we do not wish 
to overload the physical switch with OpenFlow events. Indeed, as 
stated in [30] , commercial OpenFlow switches can handle up to 
200 events/s. Since in our testbed we have 20 switches, each one 
handling its own flow_mod (message for sending rules), packet_out 
(message with packet to be sent) and other events, the critical 
number of events can be easily reached. 

The experiment of this scenario ran for almost 3.5 h. All the 
rules are installed in the first 2 h and 45 min. 

High Load with hardware rules Scenario - HLS 
In this scenario, we used 1 client per VM so that the total 

number of rules installed (1056 total rules) is less than the hard- 
ware limit (30 0 0 rules). Each VM starts a 50 Mbps ICMP traffic 
with the other clients in a round robin manner. After starting the 
first client machine, we wait for 75s and then start the outgoing 
connections for the second VM and so on, until all the machines 
establish connections with one other client. In this scenario, we 
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Table 5 
Average number of SDN rules installed in a virtual switch at each level. 

Level No Comp Comp 500 Comp 10 0 0 Comp 20 0 0 Comp full 
access 3452 752 761 790 802 
aggregation 3233 618 649 672 717 
core 3014 97 97 97 97 
total 65,535 11,346 11,667 12,087 12,542 

Table 6 
Average percentage of SDN rules savings at each level. 

Level Comp 500 Comp 10 0 0 Comp 20 0 0 Comp full 
access (8 switches) 79% 78.75% 77.95% 77.61% 
aggregation (8 switches) 81.43% 80.51% 82.14% 78.45% 
core (4 switches) 96.84% 96.84% 96.84% 96.83% 
total (20 switches) 83.21% 82.19% 81.55% 81.44% 

have chosen 50 Mbps per connection in order to have a maximum 
of 800 Mbps load on a 1 Gbps link when all connections are 
established. 

Each experiment of this scenario ran for 1 h and all the rules 
are installed in the first 20 min. As mentioned earlier, all the 
rules were installed in hardware in order to reach high loads. 
5.1.6. MINNIE in SDN controller 

When the controller compresses a table, the Minnie SDN 
application 5 will first execute the routing phase and then the 
compression phase. Hence, in a dynamic setting, when a new flow 
must be routed with a new entry in the router, and when the 
threshold of X rule will be reached, the X th entry is first pushed 
to the switch (to allow the new flow to travel to the destination), 
and right after that, the compression is executed. Once the com- 
pression module is launched at the controller, a single OpenFlow 
command is used to remove the entire routing table from the 
switch. Then the new routes are sent immediately to limit the 
downtime period, that we define as the period between the re- 
moval of all old rules and the installation of all new compressed 
rules. When two or more switches need to be compressed at the 
same time, the compression is executed sequentially. 

After Minnie compresses an SDN switch rules, the controller 
must install all the SDN rules in the switch in the order specified 
by Minnie . When implementing this action in the controller two 
problems need to be considered: ( i ) How to make sure that the 
SDN device is following the rule order given by Minnie ? ( ii ) How 
to install the rules in the SDN switch quickly? 

As stated in Section 3 , the order given by the Minnie algo- 
rithm is the order that should be used to match a packet. We 
leverage the usage of SDN rule priority to enforce the exact rule 
order given by Minnie . SDN rules have a 16 bit priority field that 
enables 65,535 priority numbers. When a packet matches multiple 
rules which have different priorities, the switch will forward the 
packet based on the highest priority rule. 

In its current version, Minnie compresses the table based on 
the source only or destination only. Minnie routing table will thus 
end up with 3 types of rules: ( i ) Normal forwarding rules which 
match on source and destination ( ii ) Aggregated forwarding rules 
that match either on source or on destination ( iii ) Default rule. 
It should be noted here that the final routing table cannot have 
at the same time aggregated forwarding rules by source and by 
destination. Hence, with all these constraints in mind, we need to 
use 3 priorities when installing compressed rule tables. 

In order to minimize the downtime when compressing and 
pushing its compressed table to an SDN device, we decided to 

5 Available at: https://sites.google.com/site/nextgenerationsdndatacenters/ 
our-project/minnie . 

Fig. 9. Total number of rules installed in the whole network. 
delete all the rules and install the new rules instead of updating 
existing rules. This decision was motivated by the fact that up- 
dating the SDN rules in TCAM is time consuming and an update 
operation is considered as two operations (delete + insert) [31] . 
Our methodology leads to a single delete action for the whole 
table and then a batch of rule insertions. These rules are going to 
be inserted without waiting for the barrier reply message in order 
not to provoke high delay (see [31] for details). In case one rule 
was not installed in the SDN switch, the controller will be notified 
of this problem and it will then reinstall the required rule. As we 
will see in a later section, this strategy did not have any negative 
impact on the network traffic delay or packet loss ( Section 5.2 ). 
5.2. Experimental results 
5.2.1. Scenario 1: compression with LLS 

Number of rules with/without compression As explained 
in Section 5.1.3 , in this scenario and without compression, the 
limit of 65536 entries in our HP switch is reached. On the other 
hand, compressing the table with Minnie allows to install all the 
required rules without reaching the limit when compressing at 
a given threshold (50 0, 10 0 0 or 20 0 0 entries) or when the flow 
table is full. Indeed, as shown in Table 5 , the total number of in- 
stalled rules does not exceed 13,0 0 0 in all compression cases. This 
represents a total saving higher than 80% of the total forwarding 
table capacity ( Table 6 ) with a saving larger than 96% at the third 
level and a minimal saving over 76%. 

Fig. 9 depicts how the number of rules evolves over time with 
and without compression. Please, note that this figure takes into 
account the total number of forwarding rules in the network, 
including both Open vSwithes and the HP switch. The number 
of rules increases at the same pace in all 3 scenarios during the 

https://sites.google.com/site/nextgenerationsdndatacenters/our-project/minnie
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Fig. 10. Average duration of compression period. 
first 30 min. When the compression is triggered, the number of 
rules decreases. Later, for compression at 500 and 1000 entries, 
the number of rules increases at a lower pace than in the non 
compression case. This is because ( i ) the controller has installed 
some wildcard rules and so no new rules at level 1, 2 or 3 need 
to be installed for new flows, and ( ii ) other compression events 
are triggered. We further notice here that the presence of wild- 
card rules also explains the difference between the compression 
when the forwarding table is full and the compression with fixed 
thresholds. This is inline with the results of Section 4.1.3 where we 
observed that the presence of wildcard rules in the routing tables 
influences the routing as the new incoming flows will follow these 
paths in priority. Even though the difference between dynamic 
compression and compression at the end is more pronounced 
for networks with larger number of servers (see Fig. 4 ), the 
phenomenon can already be observed in the testbed. 

Compression time Fig. 10 shows the compression time seen 
by the controller, which consists of the computation time of 
compressed rules (already analyzed in Section 4.2.6 ), the removal 
of the current forwarding table, the formatting of the compressed 
rules to the OpenFlow standards, and the injection of the new 
rules to the switch. 

We notice that the compression time per switch remains in 
the order of a few milliseconds. Indeed, compression takes about 
5 ms (resp. 7 ms) for compression at 500 and 10 0 0 entries (resp. 
20 0 0 entries). Even the worst case – compressing when the table 
is full – represents less than 18 ms for most of the switches 
with a median at 9 ms. Moreover, in this latter case, sequentially 
compressing all switches requires no more than 152 ms. This 
compression period is mainly due to the time needed to delete all 
the routing table using one delete request and install all the new 
rules in the switch. Indeed, the time needed to compute the com- 
pressed routing table is negligible as noted in Section 4.2.6 ( Fig. 5 ). 
It is important to note here that the code used to compute the 
compressed tables is the same in our simulations and experiments. 
These results are inline with the results shown in [31] ( Fig. 3 ). 
The reason why we have smaller delays is the fact that, as stated 
before, we do not wait for the barrier reply before sending the 
next flow insertion rule (hence we ignore barrier reply message 
time); moreover we delete all the rules using a single action 
instead of deleting each rule one by one. 

SDN control path In the SDN paradigm, the controller-to- 
switch link is a sensitive component as the switch is CPU bounded 
and cannot handle events at a too high rate. Fig. 11 represents 
the network traffic between the switch and the controller in the 
different scenarios. We can observe that the load increases highly 
when the switch limit in terms of number of software+hardware 
rules is reached and we do not compress the routing tables. 
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Fig. 11. Network traffic between the switches and the controller. 
After time t = 2:30, the limit is reached and for every packet 
of every new flow, each switch along the path has to ask the 
controller for the output port. These traffic peaks vanish when we 
compress the routing tables for the 10 0 0 and 20 0 0 limits or for 
the case of compression when full. As for the compression at 500 
scenario, we notice the occurrence of high peaks after the first 
hour. They result from successive compression events (over 16,0 0 0 
in our experiments as can be seen in Table 7 ) that are triggered 
by any new packet arrival. Indeed, in this scenario, most of the 
switches will perform a compression for every new flow, since the 
total number of rules after compression remains higher than the 
threshold. 

To understand the impact of the control plane on the data 
plane, we have to look at three key metrics that we detail in the 
following sections: (i) the loss rate for all scenarios; (ii) the delay 
of the first packet of new flows that should be higher when there 
is no compression (at least after t = 2:30) or at compression at 
500 and (iii) the delay of subsequent packets (packets 2–5) that 
should be larger for the case of no compression when the table is 
full. We ruled out a precise study of the loss rate as the load in 
this section is low. We report in Table 7 the loss rates observed 
for all scenarios. Though there exist some significant differences 
between the different scenarios, the absolute values are fairly 
small. We therefore focus on delays hereafter. 
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Table 7 
Total number of compressions and packet loss rate. 

Threshold No Comp Comp 500 Comp 10 0 0 Comp 20 0 0 Comp full 
# of compressions NA 16,594 95 28 20 
% pkt loss 6 . 25 × 10 −6 0.003 5 . 65 × 10 −4 2 . 83 × 10 −5 3 . 7 × 10 −4 

Fig. 12. First packet delay boxplot. 
New rules installations: Impact on first packet delay The 

first packet delay provides insights on the time needed to contact 
the controller and install the rules when a new flow arrives. 
Indeed, the round trip delay seen by the first packet of a new flow 
includes the network propagation delay, the queuing delay, and 
the time needed by a switch to obtain a new rule. 

We observe in Fig. 12 that for the scenarios with compression 
at 10 0 0 rules and compression at 20 0 0 rules, the first packet 
delay ranges from 25 ms to 35 ms. This increase as compared to 
subsequent packets of the same flow- which can reach a factor of 
10 as we will see in the next section- highlights the price to pay 
to obtain and install a forwarding rule in software. The results can 
significantly worsen if the controller is frequently modifying the 
forwarding rule, like in the compression at 500 rules case. Indeed, 
for that special case, the third quantile reaches up to 600 ms for 
the first packet delay. 

Surprisingly, the cases without compression and compression at 
the table limit lead to similar results. Compressing when the table 
is full should intuitively lead to better performance as in a number 
of cases, a limited number of new rules are needed and can be in- 
stalled as compared to the no compression case. However, in our 
tests, the table becomes full after 2 h and 30 min of experiment 
(out of 3 h). Hence the similarity of results in Fig. 12 . In fact, when 
the table is full, the impact is striking, as can be seen in the time 
series of Fig. 13 a, which shows the evolution of the first packet de- 
lay per new flow when no compression is executed. Indeed, after 
2:30 h - when the table is full- we can observe a jump in the delay 
for no compression while when compressing at the table limit the 
trend is the opposite and the delay decreases ( Fig. 13 e) after com- 
pression. As for the case of compression at 500, the first packet 
delay features a chaotic behavior ( Fig. 13 b) due to its high com- 
pression frequency as expected. Regarding the scenarios of com- 
pression at 10 0 0 ( Fig. 13 c) and compression at 20 0 0 ( Fig. 13 d), the 
benefits of compressing periodically are striking: the first packet 
delay shows a constant trend during the whole experiment. 

Eventually, note that the results obtained here are impacted 
by the fact that we use software rules, which increases the delay 
to install rules. Results of the experiments using hardware (i.e. 
TCAM) rules exclusively are provided in Section 5.2.2 . 

Subsequent packets delay As explained previously, we expect 
to observe higher delays for subsequent packets for the case of no 
compression (when the table is full) and also possibly for the case 
of compression at 500 as the switches have to reinstall new rules 
at a high frequency. 

In our experiments, the delay seen by packets 2–5 of each 
flow is shorter than 4 ms most of the time for scenarios without 
compression, compression at 10 0 0, compression at 20 0 0 and 
compression at the forwarding table size limit, as we can see in 
Fig. 14 . Compression at 500 is slightly different (the third quartile 
reaches up to 5 ms), highlighting the negative impact of the high 
frequency of compression events on the data path of the switches. 

Fig. 14 aggregates all the results together and we have again 
to resort on the time series to observe specific effects. When all 
needed forwarding rules are successfully installed and the com- 
pression frequency is low (which is the case for compression at 
the limit, compression at 10 0 0 and compression at 20 0 0), the de- 
lay of packets 2–5 is consistently comprised between 2 ms and 
6 ms ( Fig. 15 d–f). 

Without compression, while most of the packets experience a 
delay between 2 ms and 6 ms before the table limit is reached, 
all new incoming packets will see a delay equal or higher than 
40 ms afterwards ( Fig. 15 b). As for the case of compression with 
small table limit (500 rules), we remark in Fig. 15 c a time interval 
between 1:45 h and 2:15 h, where the delay increases suddenly 
from 2 ms to 100 ms. This is because some switches are unable 
to reach a forwarding table smaller than 500 rules even after 
compression, and hence, the controller executes a compression 
after every new flow arrival. After time 2:15, the frequency of 
new incoming flows that need to be installed decreases ( Fig. 13 b), 
leading to a stabilization of the delay. 

From all the results shown above, we notice that putting a low 
table limit (e.g. 500) has a bad impact over the traffic passing 
through the network, whereas setting it to 10 0 0 and 20 0 0 pro- 
vided enhances performance for network traffic. This is due to the 
fact that in our scenarios, the compressed table had a size larger 
than 500 while it was always less than 10 0 0. Hence, in order to 
leverage always the benefit of Minnie we advise to set a dynamic 
threshold that will change based on the compressed table size - 
see Section 6 . 
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Fig. 13. First packet average delay with low load. 
5.2.2. Scenario 2: compression with HLS 

We have so far investigated the behavior of Minnie in an 
environment where the flow table can be full. The latter scenario 
involves the use of software rules and thus the slow path of our 
HP switch. 

We now turn our attention to the case where the load on the 
data plane is as high as 80%. This entails using hardware rules 
only and we are limited to 30 0 0 such rules with our HP switch, 
shared among the 20 switches of our k = 4 Fat-Tree topology. The 
experiments in this section are consequently performed with 1 
client per access switch (16 clients in total) and an all-to-all traffic 
pattern with 50 Mb/s per flow. 

As expected, the first packet round trip delay decreases to 
around 1 ms, while packets 2–5 experience a round trip delay 
of around 0.55 ms. 6 The compression duration, in all scenarios, 

6 A direct comparison between these delays and the one for the low load and 
software rules scenario is not straightforward. Section 5.2.3 will present a fair com- 
parison of these two modes. 

is equal to 1 ms only, which is understandable given the small 
total number of flows. More importantly, we noticed no packet 
losses and no drastic effects on delay even during compression 
events, which proves that MINNIE is a viable and realistic 
solution . Indeed, the maximum variation of delay between the 
delays of no compression and all compression scenarios is less 
than 0.1 ms, a value which might be observed even in non-SDN 
networks (see Fig. 16 ). 

The compression ratio in Table 8 demonstrates that even with 
a low number of rules, Minnie can achieve a high compression 
ratio, over 70%. Fig. 17 which represents the evolution of the 
forwarding table size for all cases – no compression, compression 
at 15, 20, 30 and when full (after installing all the needed rules)–
highlights that Minnie maintains a similar low number of rules in 
all compression scenarios. 

A last question that we aim at investigating is the impact 
of compression on TCP connections. The high load scenario is 
especially relevant as data centers are in general operated at high 
loads. The variation of the round trip delay of most of the packets 
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Table 8 
Average percentage of SDN rules savings at each level. 

Level Compression 15 Compression 20 Compression 30 Compression when full 
level 1 (8 switches) 76.56% 75.66% 75% 72.76% 
level 2 (8 switches) 75.48% 73.31% 71.87% 69.71% 
level 3 (4 switches) 76.04% 76.56% 74.47% 73.95% 
total (20 switches) 76.04% 74.9% 73.67% 71.78% 

Fig. 14. Average packet’s delay boxplot for packets 2–5. 
is less than 0.1 ms ( Fig. 16 ) for compression at 20 entries with 
the highest variability. For compression at 20 entries and during 
the first 20 min of the experiment (compression events occur dur- 
ing that period), the minimum and maximum round trip delays 
between servers in the same pod is around 0.4 ms and 0.6 ms 
respectively, while the minimum and maximum round trip delays 
between servers in different pods is around 0.55 ms and 0.8 ms 
respectively (see Fig. 18 ). Those observed delays will not produce 
any problem to TCP connections. Indeed, the minimum RTO value 
(the time needed to trigger a TCP timeout and retransmit a non 
Acked packet), is equal to 200 ms in Linux systems (and defined 
to be 1 s in the RFC 2988 [32] ), which is far from our observed 
delays (lower than a millisecond). A recent draft submitted to the 
TCPM Working Group [33] appeals for a decrease of the minimum 
RTO value to 10 ms. Once again, the maximum delay observed 
during the compression events is still far from that proposed 
minimum RTO. Hence compression operations should not lead to 
any spurious TCP time out. Note eventually that results obtained in 
the simulations on the computational time ( Fig. 5 of Section 4.2 ) 
confirm that the impact of Minnie on the delay experienced by 
the packets of the flow should be limited in general. 
5.2.3. Software vs. hardware rules 

So far, we have seen that relying only on the ASICs of the 
switch to forward the traffic provides better results, in terms of 
delay and jitter, than using the general purpose CPU for such a 
task. Hence, one question naturally rises at this point: what is the 
real impact of the slow path on the switch performance? 

Assessing the difference between using hardware and software 
rules by comparing the results of Sections 5.2.1 and 5.2.2 is 
difficult as the number of rules is different from one scenario to 
the other. For this reason, we devised a third scenario where we 
compare the performance of software and hardware rules using 
both, the same number rules and the same traffic load, in all cases. 

In this experiment, we have one client per access switch, and 
each flow is composed by a train of 5 ICMP request / reply packets, 
which is the default behavior of the ping command. With this 
configuration, we can observe in Fig. 19 a that installing rules in 
software increases the first packet delay by a factor of 20 from 

a median of 1 ms to 20 ms as compared to hardware rules. 
The average matching delay of the remaining packets ( Fig. 19 b) 
features a 6-fold increase in software as compared to hardware 
(3 ms compared to 0.5 ms). 

The results obtained with these experiments thus confirm 
the large discrepancy in terms of average delay results between 
Sections 5.2.1 and 5.2.2 . They further justify the necessity of 
using only TCAM, which can be better exploited thanks to the 
compression executed by MINNIE . 
6. Discussion 

The results obtained in Sections 4.2 and 5.2 via simulation 
and experimentation respectively demonstrate the feasibility and 
efficiency of Minnie . We discuss here several practical points and 
possible extensions of our algorithm. 

Dealing with different workloads. We have used an all-to-all 
traffic pattern, which constitutes a worst case in terms of traf- 
fic workload that an application could possibly generate in the 
network. This was however achieved with 16 IPs per server in 
the experimentation part and 1 IP per server in the simulation 
part, which might seem fairly limited. However, in an operational 
network deployment, it is reasonable to admit that SDN rules are 
mainly installed on an IP subnet basis, while flow-based rules 
(created with the matching of all or several fields of the OpenFlow 
standard) might be rarely employed. Our results can thus be inter- 
preted as routing all-to-all traffic between several IP subnets per 
server, as one expects to observe in a typical data center where 
virtualization is used. This means that Minnie is able to deal with 
a worst case traffic scenario involving a large number of end hosts. 

Rule deletion. All scenarios studied in this work considered 
flows with unlimited lifetime in order to obtain a worst case 
scenario regarding the total number of rules involved. However, 
in practice, flows are active for a limited amount of time as they 
come and go. We discuss here a possible extension of Minnie that 
would handle the departure of flows. 

OpenFlow enables the use of idle or hard timeouts to remove 
rules if no more packets are seen (idle) or after a fixed time inter- 
val (hard). Timeouts could be set on the level-0 switches, allowing 
the detection of inactive flows by Minnie . Hard timeouts enable 
the controller to know the exact state of each level-0 switch 
without any feedback from the switch. With idle timeouts, the 
controller can specify (in OpenFlow) when a rule is inserted, that 
the switch must notify the controller when the rule expires. With 
the exact information of the currently active rules, Minnie , which 
keeps an uncompressed version of all the rules in all switches, can 
delete any unused aggregated rules. As more and more rules are 
removed, the compression module could also be called to produce 
a smaller table to insert in place of the current one. 

Impact of compression on rule update. We discussed the 
impact of rule compression on the performance of rule update in 
several parts of the paper. We summarize here the findings. We 
have 3 cases of rule update in the compressed tables: 
– Addition of a new simple rule (assuming the table sizes are 

below the compression threshold). This event is due to the 
arrival of a new flow. In this case, there is no impact of 
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Fig. 15. Average packet delay of pkts 2–5 with low load. 

Fig. 16. Packet delay boxplot under high load. 
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Fig. 17. Total number of rules installed in the network. 
compression on rule update. Note that, thanks to aggregated 
rules, a new flow arrival will require a new entry at the level-0 
OVS switches, but might require no new entries at the access 
switches or higher switch levels, if the new flow is routed by 
already existing aggregated rules. In this case, we do not have 
to update the routing table. 

– Deletion of a rule. This is done in particular when a flow 
finishes. This operation is discussed above and was not tested 
yet. However, the controller knows which flow uses which rule 
(simple or aggregated), and thus may easily know which rule 
to delete (or not) when an entry expires at the level-0 OVS 
switches, which is a quick operation. 

– Compression event. If a table is full, we compress thetable to- 
tally and we send the new compressed table to the correspond- 
ing switch. We then update the switch table by doing, first a 
delete operation to remove the old table, and then, we send the 
new rules to be inserted in the fewest number of packets. 7 We 
measured experimentally the duration of these operations and 
tested its impact on delay and packets losses. We first evaluated 
the time needed to carry out a compression event (compres- 
sion time, time to send a new table to the switch, and time of 
updates). We show that this time is in the order of a few ms, 
as presented in Fig. 10 . Recall that, if a compression event is 
needed when a new flow arrives, we first send the forwarding 
rules for the new flow, and we compress only afterwards. Thus 
avoiding additional delay for a new flow due to a compression 

7 We have observed that several flow_mod operations are encapsulated in only a 
few TCP packets. 

Fig. 18. High load and hardware rules : delay of packets 2–5 - compression at 20 
entries. 

event. We also evaluated the impact of rule compression on the 
network thanks to our experiments. We report packet delay and 
loss rates in our experiments and compare scenarios with com- 
pression and without compression. We show that even with 
high load (1 Gbps) for the High Load Scenario (HLS), the loss 
rate and the delay are not impacted, see e.g. Table 7 and Fig. 16 . 
Dynamic compression limit. Early compression helps main- 

taining the routing tables small. However, the threshold should 
not be set smaller than the actual compressed table size, as 
exemplified by the case of compressing at 500 entries in the 
experimentation part. To work around this potential issue and 
reap the full benefit of compression we advise to set a dynamic 
compression limit. We can start for example from a low limit (for 
example 100 rules) and once a certain percentage of our limit 
is reached (for example 80%), to trigger Minnie to compress the 
routing table. This compression limit is then increased whenever 
the resulting compressed table is higher than the actual limit, e.g., 
to 150% of the current compressed table size. 

Dealing with burstiness of traffic. A dimension that we have 
not explored during our tests is the burstiness of arrival of flows 
that could lead to stress the switch-controller communication, and 
hit the limit of a few hundreds events/s that the switch is able to 
sustain. This could be the case of an application that generates a 
lot of requests towards a large set of servers at high rate. In this 
situation, Minnie could help alleviating the load on the controller. 
Indeed, the sooner one compresses the flow table, the more likely 

Fig. 19. Packet delay boxplot. 
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we are to install rules that will prevent the switch from querying 
the controller for a rule for every new connection. One could argue 
that compressing entails complete modification of the flow table 
at the switch, i.e. a large number of events (deletion, insertion) 
related to the management of the table. However, in OpenFlow, 
those events can be grouped together: all insertions can be sent 
at once to the switch. In summary, MINNIE should also help 
alleviating the stress of the switch-controller channel in case 
of flash-crowds of new connections. 

Security. Eventually, note that Minnie does not alter the secu- 
rity level of the SDN network. Indeed, rules are not compressed 
in the level-0 switches that connect the VMs to the network. This 
means that there is no possibility for a packet that belongs to one 
tenant to be seen or to be inserted in the network of another ten- 
ant, provided that the SDN rules at the edge are correctly written. 
Compressing at the edge could indeed give the opportunity to the 
traffic of one tenant to enter another tenant’s network thanks to 
some wildcard effect. Note however that we do not compress at 
the edge not because of any security concern, but to prevent any 
misbehavior in the routing process. 
7. Conclusion and future work 

SDN enables to formulate complex forwarding rules. However, 
such a flexibility requires expensive and limited in size TCAMs. 
Even if the capacities of TCAMs is expected to increase in the near 
future, we still have to pay a specific attention to the controller- 
switch path that should not lead to overload hardware SDN 
switches that are CPU bounded. There is thus a need to reduce as 
far as possible the number of rules that each switch has to manage. 

In this paper, we have introduced Minnie , which aims at 
routing flows while respecting link and SDN routing table capacity 
constraints, using table compression with aggregation by the 
source, by the destination and by default rule. We have investi- 
gated through numerical experiments the versatility of Minnie on 
a variety of data center topologies and demonstrate that it can 
handle close to a million of flows with no more than 10 0 0 rules 
per switch. 

Numerical results have been complemented with experiments 
on a testbed emulating a 4 Fat-Tree topology. Those experiments 
have confirmed the ability of Minnie to drastically reduce the 
number of rules to manage with no noticeable negative effect on 
delay or losses. 
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