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The surveillance game [4] models the problem of web-page prefetching as a pursuit evasion 
game played on a graph. This two-player game is played turn-by-turn. The first player, 
called the observer, can mark a fixed amount of vertices at each turn. The second one 
controls a surfer that stands at vertices of the graph and can slide along edges. The 
surfer starts at some initially marked vertex of the graph, its objective is to reach an 
unmarked node before all nodes of the graph are marked. The surveillance number sn(G)

of a graph G is the minimum amount of nodes that the observer has to mark at each 
turn ensuring it wins against any surfer in G . Fomin et al. also defined the connected 
surveillance game where the observer must ensure that marked nodes always induce a 
connected subgraph. They ask what is the cost of connectivity, i.e., is there a constant 
c > 0 such that the ratio between the connected surveillance number csn(G) and sn(G) is 
at most c for any graph G . It is straightforward to show that csn(G) ≤ � sn(G) for any 
graph G with maximum degree �. Moreover, it has been shown that there are graphs G
for which csn(G) = sn(G) + 1. In this paper, we investigate the question of the cost of the 
connectivity.
We first provide new non-trivial upper and lower bounds for the cost of connectivity in 
the surveillance game. More precisely, we present a family of graphs G such that csn(G) >
sn(G) + 1. Moreover, we prove that csn(G) ≤ √

sn(G)n for any n-node graph G . While the 
gap between these bounds remains huge, it seems difficult to reduce it. We then define the 
online surveillance game where the observer has no a priori knowledge of the graph topology 
and discovers it little-by-little. This variant, which fits better the prefetching motivation, 
is a restriction of the connected variant. Unfortunately, we show that no algorithm for 
solving the online surveillance game has competitive ratio better than Ω(�). That is, while 
interesting, this variant does not help to obtain better upper bounds for the connected 
variant. We finally answer an open question [4] by proving that deciding if the surveillance 
number of a digraph with maximum degree 6 is at most 2 is NP-hard.
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1. Introduction

In this paper, we study two variants of the surveillance game introduced in [4]. This two-player game involves one Player 
moving a mobile agent, called surfer, along the edges of a graph, while a second Player, called observer, marks the vertices 
of the graph. The surfer wins if it manages to reach an unmarked vertex. The observer wins otherwise.

Surveillance game. More formally, let G = (V , E) be an undirected simple n-node graph, v0 ∈ V , and k ∈ N
∗ . Initially, the 

surfer stands at v0 which is marked and all other nodes are not marked. Then, turn-by-turn, the observer first marks k
unmarked vertices and then the surfer may move to a neighbour of its current position. Once a node has been marked, 
it remains marked until the end of the game. The surfer wins if, at some step, it reaches an unmarked vertex; and the 
observer wins otherwise. Note that the game lasts at most �n

k � turns. When the game is played on a directed graph, 
the surfer has to follow arcs when it moves [4]. A k-strategy for the observer from v0, or simply a k-strategy from v0, is a 
function σ : V × 2V → 2V that assigns the set σ(v, M) ⊆ V of vertices, |σ(v, M)| ≤ k, that the observer should mark in the 
configuration (v, M), where M ⊆ V , v0 ∈ M , is the set of already marked vertices and v ∈ M is the current position of the 
surfer. We emphasize that σ depends implicitly on the graph G , i.e., it is based on the full knowledge of G . A k-strategy 
from v0 is winning if it allows the observer to win whatever be the sequence of moves of the surfer starting in v0. The 
surveillance number of a graph G with initial node v0, denoted by sn(G, v0), is the smallest k such that there exists a 
winning k-strategy starting from v0.

Let us define some notations used in the paper. Let � be the maximum degree of the nodes in G and, for any v ∈ V , 
let N(v) be the set of neighbours of v . More generally, the neighbourhood N(F ) of a set F ⊆ V is the subset of vertices of 
V \ F which have a neighbour in F . Moreover, we define the closed neighbourhood of a set F as N[F ] = N(F ) ∪ F .

As an example, let us consider the following basic strategy: let σB be the strategy defined by σB(v, M) = N(v) \ M for 
any M ⊆ V , v0 ∈ M , and v ∈ M . Intuitively, the basic strategy σB asks the observer to mark all unmarked neighbours of the 
current position of the surfer. It is straightforward, and it was already shown in [4], that σB is a winning strategy for any 
v0 ∈ V and it easily implies that sn(G, v0) ≤ max{|N(v0)|, � − 1}.

Web-page prefetching, connected and online variants. The surveillance game has been introduced because it models the 
web-page prefetching problem. This problem can be stated as follows. A web-surfer is following the hyperlinks in the 
digraph of the web. The web-browser aims at downloading the web-pages before the web-surfer accesses it. The number of 
web-pages that the browser may download before the web-surfer accesses another web-page is limited due to bandwidth 
constraints. Therefore, designing efficient strategies for the surveillance game would allow to preserve bandwidth while, at 
the same time, avoiding the waiting time for the download of the web-page the web-surfer wants to access.

By nature of the web-page prefetching problem, in particular because of the huge size of the web digraph, it is not 
realistic to assume that a strategy may mark any node of the network, even nodes that are “far” from the current position 
of the surfer. For this reason, [4] defines the connected variant of the surveillance game. A strategy σ is said connected if 
σ(v, M) ∪ M induces a connected subgraph of G for any M , v0 ∈ M ⊆ V (G). Note that the basic strategy σB is connected. 
The connected surveillance number of a graph G with initial node v0, denoted by csn(G, v0), is the smallest k such that there 
exists a winning connected k-strategy starting from v0. By definition, csn(G, v0) ≥ sn(G, v0) for any graph G and v0 ∈ V (G). 
In [4], it is shown that there are graphs G and v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1. Only the trivial upper bound 
csn(G, v0) ≤ � sn(G, v0) is known and a natural question is how big the gap between csn(G, v0) and sn(G, v0) may be [4]. 
This paper provides a partial answer to this question.

Still the connected surveillance game seems unrealistic since the web-browser cannot be asked to have the full knowl-
edge of the web digraph. For this reason, we define the online surveillance game. In this game, the observer discovers the 
considered graph while marking its nodes. That is, initially, the observer only knows the starting node v0 and its neigh-
bours. After the observer has marked the subset M of nodes, it knows M and the vertices that have a neighbour in M and 
the next set of vertices to be marked depends only on this knowledge, i.e., the nodes at distance at least two from M are 
unknown. In other words, an online strategy is based on the current position of the surfer, the set of already marked nodes 
and knowing only the subgraph H of the marked nodes and their neighbours (a more formal definition is postponed to 
Section 3). By definition, the next nodes marked by such a strategy must be known, i.e., adjacent to an already marked ver-
tex. Therefore, an online strategy is connected. We are interested in the competitive ratio of winning online strategies. The 
competitive ratio ρ(S) of a winning online strategy S is defined as ρ(S) = maxG,v0∈V (G)

S(G,v0)
sn(G,v0)

, where S(G, v0) denotes 
the maximum number of vertices marked by S in G at each turn, when the surfer starts in v0. Note that, because any 
online winning strategy S is connected, csn(G, v0) ≤ ρ(S) sn(G, v0) for any graph G and v0 ∈ V (G).

1.1. Related work

The surveillance game has mainly been studied in the computational complexity point of view. It is shown that the 
problem of computing the surveillance number is NP-hard in split graphs [4,5]. Moreover, deciding whether the surveil-
lance number is at most 2 is NP-hard in chordal graphs and deciding whether the surveillance number is at most 4 is 
PSPACE-complete. Polynomial-time algorithms that compute the surveillance number in trees and interval graphs are de-
signed in [4]. All previous results also hold for the connected surveillance number. Finally, it is shown that, for any graph G
and v0 ∈ V (G), max� |N[S]|−1 � ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken over every subset S ⊆ V (G) inducing 
|S|
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a connected subgraph with v0 ∈ S . Moreover, both previous inequalities turn into an equality in case of trees. [4] asks for 
an example where the inequalities are strict.

In the literature, there are mainly three types of prefetching: server based hints prefetching [2,1,8], local prefetching [10]
and proxy based prefetching [3]. In local prefetching, the client has no aid from the server when deciding which documents 
to prefetch. In the server based hints prefetching, the server can aid the client to decide which pages to prefetch. Lastly, in 
the proxy based prefetching, a proxy that connects its clients with the server decides which pages to prefetch. Moreover, 
some studies consider that the prefetching mechanism has perfect knowledge of the web-surfer’s behaviour [9,7]. In these 
studies, the objective is to minimize the waiting time of the web-surfer with a given bandwidth, by designing good pre-
diction strategies for which pages to prefetch. In the context of prefetching web-pages, the surveillance game is a model to 
study a local prefetching scheme to guarantee that a web-surfer never has to wait a web-page to be downloaded, whilst 
minimizing the bandwidth necessary to achieve this.

1.2. Our results

In this paper, we study both the connected and online variants of the surveillance game. First, we try to evaluate the 
gap between non-connected and connected surveillance number of graphs. We give a new upper bound, independent from 
the maximum degree, for the ratio csn / sn. More precisely, we show that, for any n-node graph G and any v0 ∈ V (G), 
csn(G, v0) ≤ √

sn(G, v0)n. Then, we describe a family of graphs G such that csn(G, v0) = sn(G, v0) + 2. Note that, contrary 
to the simple example that shows that connected and not connected surveillance number may differ by one, a larger 
difference seems much more difficult to obtain.

As mentioned above, the online variant of the surveillance game is a more constrained version of the connected game. 
We prove that any online strategy has competitive ratio at least Ω(�). More formally, we describe a family of trees with 
constant surveillance number such that, for any online winning strategy, there is a step when the strategy has to mark at 
least �

4 vertices. Unfortunately, this shows that the best (up to constant ratio) online strategy is the basic one.
We finish this paper answering an open question in [4] by proving that deciding if the “classical” surveillance number of 

a graph is at most two is NP-complete even when the graph has maximum degree at most 6.

2. Cost of connectedness

In this section, we investigate the cost of the connectivity constraint. We first prove the first non-trivial upper bound for 
the ratio csn / sn. More precisely, we show that for any n-node graph G , csn(G, v0) ≤ √

sn(G, v0)n. Then, we improve the 
lower bound of [4]. That is, we show a family of graphs where csn(G, v0) > sn(G, v0) + 1. Finally, we disprove a conjecture 
in [4].

2.1. Upper bound

In this section, we give the first non-trivial upper bound (independent from the degree) of the cost of the connectivity 
in the surveillance game.

Theorem 1. Let G be any connected n-node graph and v0 ∈ V (G), then

csn(G, v0) ≤ √
sn(G, v0) · n.

Proof. sn(G, v0) = 1 if and only if G is a path with v0 as one of the extremities. In this case, csn(G, v0) = sn(G, v0) and 
the result holds.

Assume that k = sn(G, v0) > 1 and that n ≥ 2. We describe a connected strategy σ marking at most 
√

kn nodes per 
turn. Moreover, we prove by induction on the number of turns that σ is connected. Let M0 = {v0} and let Mt be the set 
of vertices marked after t ≥ 1 turns. By the induction hypothesis, let us assume that Mt induces a connected graph of G
containing v0 (it is clearly true for t = 0). Let vt be the vertex occupied by the surfer after turn t . The set σ(vt, Mt) of 
nodes marked by the observer at step t + 1 is defined as follows. If |V (G) \ Mt | ≤ √

kn, then let σ(vt , Mt) = V (G) \ Mt . 
Otherwise, let H ⊆ V (G) \ Mt be such that |H | = √

kn, H ∪ Mt induces a connected subgraph and |H ∩ N(vt)| is maximum. 
Then, σ(vt , Mt) = H , i.e., the strategy marks 

√
kn new nodes in a connected way and, moreover, it marks as many unmarked 

nodes as possible among the neighbours of vt . In particular, if |N(vt) \ Mt | ≤ √
kn, then all neighbours of vt are marked 

after turn t + 1. Moreover, the set Mt+1 = Mt ∪ σ(vt , Mt) is connected in both cases.
Hence, σ is connected and marks at most 

√
kn nodes per turn. We need to show that σ is winning.

For purpose of contradiction, let us assume that the surfer wins against σ by following the path P = (v0, . . . , vt , vt+1). 
At its (t + 1)th turn, the surfer moves from a marked vertex vt to an unmarked vertex vt+1.

Therefore, n > t
√

kn, otherwise the observer marking 
√

kn nodes at each turn would have already marked every vertex 
on the graph by the end of turn t . Moreover, by definition of sigma, |N(vt) \ Mt | > √

kn.
Since, sn(G, v0) = k, let S be any k-winning (non-necessarily connected) strategy for the observer. Assume that the 

observer follows S against the surfer following P \ {vt+1}. Since, S is winning, all vertices of N(vt) must be marked after 
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turn t , otherwise the surfer would win by moving to an unmarked neighbour of vt . Therefore, since S can mark at most k
vertices each turn, |N(vt)| ≤ kt .

Taking both inequalities, we have that 
√

kn < |N(vt)| ≤ kt . Hence, 
√

n < t
√

k. Since n > t
√

kn and 
√

n < t
√

k, we have 
that t2k < n < t2k, a contradiction. �
2.2. Lower bound

This section is devoted to proving the following theorem.

Theorem 2. There exists a family of graphs such that, for any graph G of this family, there exists v0 ∈ V (G) such that

csn(G, v0) > sn(G, v0) + 1.

For this purpose, we define a particular graph, denoted by G . We first prove that there exists a k-strategy for the observer 
that is not connected for some k depending on G (Lemma 3). Then, using two technical results (Claim 4 and Lemma 5), 
we prove that there are no connected (k + 1)-strategies (Lemma 6). Finally, for completeness, we prove that there exists a 
connected (k + 2)-strategy for the observer in G (Lemma 7).

We use the following result proved in [4]. For any graph G = (V , E) and any vertex v0 ∈ V , a k-strategy for G with initial 
vertex v0 is winning if and only if it is winning against a surfer that is constrained to follow induced paths on G . In other 
words, the walk of the surfer is constrained to be an induced path.

In the following theorem, by adding a path P = (v1, · · · , vr) between two vertices u and v of G , we mean that the induced 
path P is added as an induced subgraph of G and the edges {u, v1} and {vr, v} are added.

Let x, α, β and γ be four strictly positive integers satisfying the following.

max

{
β,

β

2
+ γ + 1

}
< α < min{β + γ + 1,2γ + 2} and β < 2γ + 2 and

3x ≥ α + β + 2γ + 12 and x >
4

5
(α + β + γ ) + 10 and 2α ≥ 73 + β + 2γ .

For instance, x = 250, α = 146, β = γ = 73 satisfy all the above inequalities.
For proving the main theorem in this section we mainly rely in the family of graphs built in the following procedure 

described below.
Let G = (V , E) be a graph with 10 isolated vertices {v0, w0, w1, w2, w ′

0, w
′
1, w

′
2, s0, s1, s2}. Then, for all i ∈ {0, 1, 2} do 

the following:

1. 4x − 9 vertices of degree one are added and made adjacent to si ;
2. 3x − 2 vertices of degree one are added and made adjacent to wi , respectively 3x − 2 neighbours of degree one are 

added to w ′
i ;

3. two disjoint paths Ai = (ai
1, · · · , ai

α) and A′ i = (a′ i
1 , · · · , a′ i

α ) are added between v0 and si ;
4. a path Bi = (bi

1, · · · , bi
β) is added between v0 and wi , and a path B ′ i = (b′ i

1 , · · · , b′ i
β ) is added between v0 and w ′

i ;

5. for any j ∈ {i, i + 1 mod 3} a path C i, j = (ci, j
1 , · · · , ci, j

γ ) is added between s j and wi , and a path C ′ i, j = (c′ i, j
1 , · · · , c′ i, j

γ )

is added between s j and w ′
i ;

6. for any 1 ≤ j ≤ α, 3x − 1 vertices of degree one are added and made adjacent to ai
j , respectively 3x − 1 neighbours of 

degree one are added to a′ i
j ;

7. for any 1 ≤ j ≤ β , 3x − 1 vertices of degree one are added and made adjacent to bi
j , respectively 3x − 1 neighbours of 

degree one are added to b′ i
j ;

8. for any 1 ≤ j ≤ γ , 	 ∈ {i, i + 1 mod 3}, 3x − 1 vertices of degree one are added and made adjacent to ci,	
j , respectively 

3x − 1 neighbours of degree one are added to c′ i,	
j .

The shape of G is depicted in Fig. 1. G has (30 + 18(α + β) + 36γ )x − 29 vertices. For any i ∈ {0, 1, 2}, the node si has 
4x − 3 neighbours, v0 has 12 neighbours, and any other non-leaf node has degree 3x + 1.

Lemma 3. sn(G, v0) ≤ 3x.

Proof. To show that sn(G, v0) ≤ 3x, consider the following strategy for the observer. For any i ∈ {0, 1, 2}, in the first step, it 
marks x − 4 one-degree neighbours of si and the 12 neighbours of v0. Then, at any subsequent step, marks all unmarked 
neighbours of the current position of the surfer. It is easy to see, by induction on the number of steps that, each time that 
the surfer arrives at a new node, this node is marked and has at most 3x unmarked neighbours. �
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Fig. 1. Graph Family Scheme. Here we show only one “layer” of the graph.

In next claim, we describe some particular Steiner-trees of G . Intuitively, these Steiner-trees will be used in Lemma 6 to 
characterize connected strategies.

Claim 4. If max{β, β2 +γ + 1} < α < min{β +γ + 1, 2γ + 2} and β < 2γ + 2, the unique (up to symmetries) minimum Steiner-tree 
for S = N[v0] ∪ {s0, s1, s2} in G has 15 + α + β + 2γ vertices and consists of the vertices of the paths A0, B1, C1,1, C1,2 and the 
vertices in S ∪ {w1}.

Proof. The subgraph induced by the vertices of the paths A0, B1, C1,1, C1,2 and the vertices in S ∪{w1} is a subtree spanning 
S and with 15 + α + β + 2γ vertices. Let us enumerate all the possible (up to symmetries) Steiner-trees for S . Consider the 
subgraph induced by the vertices of:

• A0, A1, A2 and S . The number of vertices in this subgraph is 3α + 13.
• A0, A1, C1,1, C1,2 and S ∪ {w1}. The number of vertices in this subgraph is 2α + 2γ + 15.
• A0, A1, B1, C1,2 and S ∪ {w1}. The number of vertices in this subgraph is 2α + β + γ + 14.
• A0, C0,0, C0,1, C2,0, C2,2 and S ∪ {w0, w2}. The number of vertices in this subgraph is α + 4γ + 17.
• B0, B1, C0,0, C1,1, C1,2 and S ∪ {w0, w1}. The number of vertices in this subgraph is 2β + 3γ + 16.
• B1, C1,1, C1,2, C2,2, C2,0 and S ∪ {w1, w2}. The number of vertices in this subgraph is β + 4γ + 17.

If the subgraph induced by the vertices of the paths A0, B1, C1,1, C1,2 and the vertices in S ∪ {w1}, is the unique (up to 
symmetries) minimum Steiner-tree for S = N[v0] ∪ {s0, s1, s2} in G , then we get the following inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α >
β

2
+ γ + 1

α > β

α > γ + 1
β < 2γ + 2
α < β + γ + 1
α < 2γ + 2.

Thus max{β, β2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2. �
In Fig. 1, the scheme of a minimum Steiner-tree for S = N[v0] ∪ {s0, s1, s2} is depicted with dashed lines.
For any i ∈ {0, 1, 2}, let Ai = N[v0] ∪N[Ai] ∪N[si] (resp., A′

i = N[v0] ∪N[A′ i] ∪N[si]). Note that |Ai | = |A′
i | = (3α+4)x +9

and that the Ai and A j , i �= j, pairwise intersect only in N[v0].
For any i ∈ {0, 1, 2}, let Bi = N[v0] ∪ N[Bi] ∪ N[wi] ∪ N[C i,i] ∪ N[C i,i+1 mod 3] ∪ N[si] ∪ N[si+1 mod 3] and B′

i is defined 
similarly. |Bi | = |B′

i | = (3β + 6γ + 11)x + 5. Finally, for any i ∈ {0, 1, 2} and j ∈ {i, i + 1 mod 3}, let Bi, j = N[v0] ∪ N[Bi] ∪
N[wi] ∪ N[C i, j] ∪ N[s j] and B′

i, j = N[v0] ∪ N[B ′ i] ∪ N[w ′
i] ∪ N[C ′ i, j] ∪ N[s j].

In the next lemma, we characterize the first step of some strategies for G , showing that several subsets of nodes have to 
be marked.

Lemma 5. For any i ∈ {0, 1, 2} and j ∈ {i, i + 1 mod 3}, during its first step, any winning (3x + y)-strategy for G must mark at least

• x + 8 − y(α + 1) nodes in Ai (resp., in A′
i ), and

• x + 8 − y(β + γ + 2) nodes in Bi, j (resp., in B′
i, j ), and

• 2x + 4 − y(β + 2γ + 3) nodes in Bi (resp., in B′).
i
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Proof. Let S be any winning (3x + y)-strategy and F be the set of nodes that S marks during its first step.
Let M = F ∩A0. The surfer goes to a0

1. We may assume that S had marked it since the strategy fails otherwise. Now, the 
surfer first goes to s0 through A0 unless, at some turn, its position has an unmarked neighbour. In the latter case, the surfer 
goes to this unmarked node and wins. During these (α + 1) steps, the strategy S can mark at most (α + 1)(3x + y) extra 
nodes in A0. Hence, in total, at most |M| + (α + 1)(3x + y) nodes have been marked in A0 when the surfer is at s0 and it 
is its turn. Because S is a winning strategy, all nodes in A0 must have been marked since otherwise the surfer would have 
won. Therefore, |M| + (α + 1)(3x + y) ≥ |A0 \ {v0}| = (3α + 4)x + 8 and |M| ≥ x + 8 − y(α + 1).

The proof is similar for Bi, j .
Now, let M = F ∩ B0 and let M ′ = F ∩ (N[v0] ∪ N[B0] ∪ N[w0]) ⊆ M . The surfer goes to b0

1. We may assume that S
had marked it since the strategy fails otherwise. Now, the surfer first goes to w0 through B0 unless, at some turn, its 
position has an unmarked neighbour. In the latter case, the surfer goes to this unmarked node and wins. At the turn 
of the surfer when it is in w0, the strategy has marked |M| + (β + 1)(3x + y) and all nodes in N[v0] ∪ N[B0] ∪ N[w0]
must have been marked. Therefore, at most |M| + (β + 1)(3x + y) − (12 + 3(β + 1)x) = |M| + y(β + 1) − 12 nodes of 
B′

0 \ (N[v0] ∪ N[B0] ∪ N[w0]) are marked. Therefore, w.l.o.g., there are at most � |M|+y(β+1)−12
2 � nodes that are marked in 

(N[C0,0] ∪ N[s0]) \ N[w0]. The surfer now goes from w0 to s0. During these steps, at most (γ + 1)(3x + y) new vertices are 
marked. Because S is a winning strategy, all nodes in (N[C0,0] ∪ N[s0]) \ N[w0] must have been marked since otherwise the 
surfer would have won. Therefore, � |M|+y(β+1)−12

2 � + (γ + 1)(3x + y) ≥ |(N[C0,0] ∪ N[s0]) \ N[w0]| = 3γ x + 4x − 4. Hence, 
|M| ≥ 2x + 4 − y(β + 2γ + 3). �
Lemma 6. csn(G, v0) > 3x + 1.

Proof. For purpose of contradiction, let us assume that there is a winning connected (3x + 1)-strategy. Let F be the set of 
vertices marked by this strategy during the first step. Clearly, N(v0) ⊆ F and |F | ≤ 3x + 1.

For any 0 ≤ i ≤ 2, let f i = |F ∩ N[si]| and let fmin = mini f i . Without loss of generality, fmin = f0. We first show that 
fmin > 3.

By Lemma 5, for any i ∈ {0, 1, 2}, |F ∩ (Ai \ N[v0])| ≥ x −5 −α and, for any i ∈ {0, 2}, |F ∩ (Bi,0 \ N[v0])| ≥ x −6 − (β +γ )

and |F ∩ (B′
i,0 \ N[v0])| ≥ x − 6 − (β + γ ). Therefore,

3x + 1 ≥ ∣∣F ∩ (
A0 ∪A′

0 ∪A1 ∪A2 ∪ B0,0 ∪ B2,0 ∪ B′
0,0 ∪ B′

2,0

)∣∣
≥ 12 + 4(x − 5 − α) + 4

(
x − 6 − (β + γ )

) − 5
∣∣F ∩ N[s0]

∣∣
≥ 8x − 4(α + β + γ ) − 32 − 5 fmin

Hence, 5 fmin ≥ 5x − 4(α + β + γ ) − 33, and fmin ≥ x − 4
5 (α + β + γ ) − 7 > 3.

Therefore, by definition of fmin , |F ∩ N[si]| ≥ 4 for any i ∈ {0, 1, 2}. By connectivity of the strategy, si ∈ F ∩ N[si] for 
any i ∈ {0, 1, 2}. Hence, F must contain a subset of vertices inducing a subtree spanning S = N[v0] ∪ {s0, s1, s2}. Let T
be an inclusion-minimal subset of F that induces a subtree spanning S . By Claim 4, |T | ≥ α + β + 2γ + 15. Let T ′ =
T \ (N[v0] ∪ ⋃

0≤i≤2 N[si]). Then, |T ′| ≥ α + β + 2γ − 4. Moreover, because of the symmetries, we may assume w.l.o.g., that 
T ′ ⊆ ⋃

0≤i≤2(Ai ∪Bi).
By Lemma 5 and because N(v0) ⊆ F , for any 0 ≤ i ≤ 2, |F ∩ (A′

i ∪ B′
i+1 mod 3)| ≥ x + 8 − (α + 1) + 2x + 4 − (β + 2γ +

3) − 12 = 3x − (α + β + 2γ ) − 4. Hence, |T ′| + |F ∩ (A′
i ∪ B′

i+1 mod 3)| ≥ 3x − 8. Let W i = F \ (A′
i ∪ B′

i+1 mod 3 ∪ T ′). Since 
|F | ≤ 3x + 1, it follows that |W i | ≤ 9.

Let fmax = maxi f i and assume w.l.o.g. that fmax = f2. Since 
∑

0≤i≤2 f i ≤ |F \ T ′|, we get that f0 + f1 ≤ � 2
3 (5 + 3x − (α +

β + 2γ ))�.
To conclude, |F ∩ B′

0| = |N(v0)| + f0 + f1 + |W0| ≤ 21 + � 2
3 (5 + 3x − (α + β + 2γ ))�. On the other hand, Lemma 5

implies that |F ∩ B′
0| ≥ 2x + 1 − (β + 2γ ). Therefore, 22 + 2

3 (5 + 3x − (α + β + 2γ )) > 2x + 1 − (β + 2γ ) and it follows 
73 > 2α − β − 2γ . This contradicts the inequalities. �

Lemmas 3 and 6 are sufficient to prove Theorem 2. More precisely, it shows that there exists a family of graphs G and 
v0 ∈ V (G) such that csn(G, v0) ≥ sn(G, v0) + 2. However, Lemma 7 shows that the family of graphs we described does not 
allow to increase further the cost of connectivity.

Lemma 7. csn(G, v0) ≤ 3x + 2.

Proof. Consider the following strategy. At the first step, the observer marks the 12 neighbours of v0, all nodes of the paths 
A0, B1, C1,1 and C1,2, the vertices w1, s0, s1 and s2 and finally Z = �(3x − α − β − 2γ − 12)/3� one-degree neighbours of 
each si . Note that Z ≥ 0 by the fact that 3x ≥ α + β + 2γ + 12.

Then, the strategy goes on as follows. Let i ∈ {0, 1, 2}. When the surfer arrives at some node ai
j (resp., a′ i

j ), 1 ≤ j ≤ α, 
the observer marks the at most 3x unmarked neighbours of ai and marks at least 2 unmarked neighbours of si . When the 
j
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Fig. 2. Scheme of the graph family described in the proof of Theorem 8.

surfer arrives at some node bi
j (resp., b′ i

j ), 1 ≤ j ≤ β , or at wi , the observer marks the at most 3x unmarked neighbours 
of this node and marks at least 1 unmarked neighbour of si and at least 1 unmarked neighbour of si+1 mod 3. When the 
surfer arrives at some node ci,	

j (resp., c′ i,	
j ), 1 ≤ j ≤ γ , 	 ∈ {i, i + 1 mod 3}, the observer marks the at most 3x unmarked 

neighbours of ci,	
j and marks at least 2 unmarked neighbours of s	 (if any) and, if all neighbours of s	 are already marked, 

the observer marks at least 2 unmarked neighbours of sk where {k} = {i, i + 1 mod 3} \ {	}. Finally, when the surfer arrives 
at si , the observer marks 3x + 2 unmarked neighbours of it.

To prove the validity of this strategy, it is sufficient to show that the surfer will lose for the following three different 
trajectories. This is sufficient, because the surfer is only able to win when moving from s0, s1 or s2 and because α < 2γ , 
i.e., the amount of steps it takes for the surfer to move from si to s j , with j �= i is bigger than the amount of steps it takes 
it to move from v0 to s j . Meaning that, if the surfer wins it wins the first time it moves out of one of these three vertices.

First, let us assume that the surfer goes from v0 to si through Ai (i ∈ {0, 1, 2}). Clearly, at each step before reaching si , all 
neighbours of the current position of the surfer are marked. Now, when the surfer arrives at si , there are at least 2(α+1) + Z
neighbours of si that are already marked. To show that the observer wins, it is sufficient to note that |N(si)| − (2(α + 1) +
Z) = 4x − 3 − 2α − 2 −�(3x −α −β − 2γ − 12)/3� ≤ 3x − 2α − 5 + (α +β + 2γ + 12)/3 = 3x − 1 + (β + 2γ − 5α)/3 ≤ 3x + 2
because 2α > β + 2γ + 1.

Second, let us assume that the surfer goes from v0 to si through Bi , wi and C i,i (i ∈ {0, 1, 2}). When the surfer arrives 
at si , there are at least β + 1 + 2γ + Z neighbours of si that are already marked. To show that the observer wins, it is 
sufficient to note that |N(si)| − (β + 1 + 2γ + Z) = 4x − 3 − β − 1 − 2γ − �(3x − α − β − 2γ − 12)/3� ≤ 3x − β − 4 − 2γ +
(α + β + 2γ + 12)/3 ≤ 3x + (α − 2β − 4γ )/3 ≤ 3x + 2 because α < β + γ + 1.

Finally, let us assume that the surfer goes from si (all neighbours of which are already marked) to si+1 mod 3 through 
C i,i, wi and C i,i+1 mod 3 (i ∈ {0, 1, 2}). When the surfer arrives at si+1 mod 3, there are at least 4γ + 2 + Z neighbours of 
si+1 mod 3 that are already marked. To show that the observer wins, it is sufficient to note that |N(si+1 mod 3)| −(4γ +2 + Z) =
4x − 3 − 4γ − 2 − �(3x − α − β − 2γ − 12)/3� ≤ 3x − 5γ − 4 + (α + β + 2γ + 12)/3 ≤ 3x − 1 + (α + β − 10γ )/3 ≤ 3x + 2
because β < α < 2γ + 1. �
2.3. Relationship with another graph parameter

It is shown that, for any graph G and v0 ∈ V (G), max� |N[S]|−1
|S| � ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken 

over every subset S ⊆ V (G) inducing a connected subgraph with v0 ∈ S [4]. Moreover, both previous inequalities turn into 
an equality in case of trees. The authors of [4] ask whether the first inequality may be strict.

First, let us notice that such an equality is unlikely to hold since it would imply that the problem of computing the 
surveillance number of a graph is in co-NP while this problem is known to be PSPACE-complete in DAGs. We actually show 
that there are graphs where the inequality is strict.

Let us build a graph as follows. Starting from the vertex set V = {a, b, c,ab,ac,bc, s} and E = {(s, a), (s, b), (s, c), (a, ab),

(a, ac), (b, ab), (b, bc), (c, ac), (c, bc)}. Then, we add 11k−21−2x
6 leaves to each vertex ab, ac and bc, moreover, add 3 leaves to 

each vertex a, b and c, and, finally, add x leaves to s. A scheme of this family can be found in Fig. 2.
We moreover assume that k − 5 ≡ 0 (mod 2), k − x − 3 ≡ 0 (mod 3), 11k − 21 − 2x ≡ 0 (mod 6), x ≤ k − 36 and k ≥ 34. 

For instance, k = 105 and x = 42 are possible.
Let G be the graph obtained by the above construction and where parameters satisfy the above constraints.

Theorem 8. sn(G, s) = k and maxS⊆V (G)�{ |N[S]|−1
|S| }� < k.

Proof. Throughout this proof, let M ⊆ V denote the set of (currently) marked vertices in G .
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We show a strategy for the surfer that wins against an observer that can mark at most k − 1 vertices per turn. Let 
Sa = (N[a] ∪ N[ab] ∪ N[ac]) \ {s, a, b, c}, Sb = (N[b] ∪ N[ab] ∪ N[bc]) \ {s, a, b, c}, Sc = (N[c] ∪ N[bc] ∪ N[ac]) \ {s, a, b, c}.

In the first step and after the observer has used its marks, the surfer chooses to move to i where i = arg mini={a,b,c} |Si ∩
M|. Since the observer must mark the vertices in N(s) (including a, b, c) we have that |Si ∩M| ≤ 2

3 (k −1 −x −3). Without loss 
of generality assume that i = a. In the second step, all neighbours of a must have been marked, otherwise the surfer wins by 
moving to an unmarked leaf of a. Let Sab = N[ab] \ {a, b, ab} and Sac = N[ac] \ {a, c, ac}, therefore, after all marks are spent 
in the second step, min j={ab,ac} |S j ∩ M| ≤ k−1−5+ 2

3 (k−1−x−3)

2 . The surfer then chooses to move to arg mini={ab,ac} |Si ∩ M|, 
w.l.o.g. assume that it is the vertex ab. In the third step, the observer might use all its available marks onto the leaves of 
ab, hence, after spending all the marks, |Sab ∩ M| ≤ k − 1 + k−1−5+ 2

3 (k−1−x−3)

2 = 11k−32−2x
6 which is less than |Sab|, hence 

there is an unmarked leaf of ab that the surfer can reach.
We consider now a winning strategy for the observer that marks k vertices per step. At the first step, the observer marks 

all vertices in N[s], with the remaining marks, k − x − 3, being spread evenly among vertices in the sets N[ab] \ {a, b, ab}, 
N[ac] \ {a, c, ac} and N[bc] \ {b, c, bc}. Hence, there are at least � k−x−3

3 � = k−x−3
3 vertices marked in each of those sets. 

Without loss of generality assume that the surfer moves towards a. Then, the observer marks the vertices in N(a) and, with 
the remaining marks, proceeds to distribute them evenly among the vertices of the sets N(ab) and N(ac). When the surfer 
is about to move there are at least � k−5

2 � + k−x−3
3 = k−5

2 + k−x−3
3 vertices in (N(ab) \ {a, b}) ∩ M and in (N(ac) \ {a, c}) ∩ M . 

Without loss of generality assume that the surfer moves towards ab. Then the observer uses all its available marks on 
the unmarked vertices in N(ab) \ {a, b}. Therefore, after all marks are spent, there are k + k−5

2 + x−3
3 marked vertices in 

N(ab) \ {a, b}. It remains to show that k + k−5
2 + x−3

3 ≥ 11k−21−2x
6 .

k + k − 5

2
+ x − 3

3
≥ 6k

6
+ 3k − 15

6
+ 2x − 6

6
− 2 = 9k − 21 + 2x

6
− 2

9k − 21 + 2x

6
− 2 = 9k − 33 + 4x − 2x

6
≥ 11k − 21 − 2x

6

Now we show that for all connected sets S such that s ∈ S we have that � |N[S]|−1
|S| � < k.

Claim 9. For all connected sets S such that s ∈ S, then � |N[S]|−1
|S| � ≤ k − 1.

Proof. First we prove that if S contains a vertex v ∈ V with degree 1, then � |N[S]|−1
|S| � ≤ � |N[S\{v}]|−1|

|S\{v}| �. Since S contains s
and induces a connected subgraph, then N(v) ⊂ S because |N(v)| = 1. Thus N[S \ {v}] contains v and so N[S \ {v}] = N[S].

In the rest of the proof, we consider sets S that do not contain a node with degree 1. Let Lab = N(ab) \ {a, b}, Lac =
N(ac) \ {a, c}, and Lbc = N(bc) \ {b, c}. By the previous assumption, if a node v ∈ Lab is such that v ∈ N[S], then all nodes in 
Lab are in N[S]. By symmetry, we have the similar property for Lac and Lbc . Note that (N(s) \ {a, b, c}) ⊂ N[S] because s ∈ S
by definition.

We have four different cases:

• Consider S such that N[S] ∩ (Lab ∪ Lac ∪ Lbc) = ∅. We get that |S| ≥ 1 and N[S] ≤ x + 16. Thus � |N[S]|−1
|S| � ≤ x + 15 ≤ k − 1

because x ≤ k − 36.
• Consider S such that N[S] ∩ (Lac ∪ Lbc) = ∅ and Lab ⊂ N[S]. We get that |S| ≥ 3 and N[S] ≤ x + 16 + 11k−21−2x

6 . Thus 
� |N[S]|−1|

|S| � ≤ � 11k+4x+69
18 � ≤ k −1 because x ≤ k −36 and k ≥ 34. The case N[S] ∩ (Lab ∪ Lbc) = ∅ and Lac ⊂ N[S] is similar 

and the case N[S] ∩ (Lab ∪ Lac) = ∅ and Lbc ⊂ N[S] is also similar.
• Consider S such that N[S] ∩ Lbc = ∅ and Lab ∪ Lac ⊂ N[S]. We get that |S| ≥ 4 and N[S] ≤ x + 16 + 11k−21−2x

3 . Thus 
� |N[S]|−1

|S| � ≤ � 11k+x+24
12 � ≤ k − 1 because x ≤ k − 36 and k ≥ 34. The case N[S] ∩ Lac = ∅ and Lab ∪ Lbc ⊂ N[S] is similar 

and the case N[S] ∩ Lab = ∅ and Lac ∪ Lbc ⊂ N[S] is also similar.
• Consider S such that Lab ∪ Lac ∪ Lbc ⊂ N[S]. We get that |S| ≥ 6 and N[S] ≤ x + 16 + 11k−21−2x

2 . Thus � |N[S]|−1
|S| � ≤

� 11k+9
12 � ≤ k − 1 because k ≥ 34. �

This concludes the proof of Claim 9 and therefore, the proof of Theorem 8 because we have proved that sn(G, s) = k. �
3. Online surveillance number

In this section, we study the online variant of the surveillance game motivated by the web-page prefetching problem 
where the observer (the web-browser) discovers new nodes through hyperlinks in already marked nodes. In this variant, 
the observer does not know a priori the graph in which it is playing. That is, initially, the observer only knows v0, its degree 
and the identifiers of its neighbours. Then, when a new node is marked, the observer discovers all its neighbours that are 
not yet marked. Note that the degree of a node is not known before it is marked.
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Another property of an online strategy that must be defined concerns the moment when the observer discovers the 
unmarked neighbours of a node that it has decided to mark. There are two natural models. Assume that the set M of nodes 
have been marked and this is the turn of the observer, and let N(M) be the set of nodes with a neighbour in M . Either it 
first chooses the k nodes that will be marked among the set N(M) \ M of the unmarked neighbours of the nodes that were 
already marked and then the observer marks each of these k nodes and discovers their unknown neighbours simultaneously. 
Or, the observer first chooses one node x in N(M) \ M , marks it and discovers its unmarked neighbours, then it chooses a 
new node to be marked in N(M ∪ {x}) \ (M ∪ {x}) and so on until the observer finishes its turn after marking k nodes. Note 
that the second model is less restricted since the observer has more power. However, we show that, even in this model, the 
basic strategy is the best one with respect to the competitive ratio.

Formal definition of online strategy. Now we are ready to formally define an online strategy. Let k ≥ 1, let G = (V , E) be a 
graph, v0 ∈ V , and let G be the set of subgraphs of G .

Let M ⊆ V be a subset of nodes inducing a connected subgraph containing v0 in G . Let G M ∈ G be the subgraph of G
known by the observer when M is the set of marked nodes. That is, G M = (M ∪ N(M), E M) where E M = {(u, v) ∈ E | u ∈ M}. 
For any u, v ∈ N(M) \ M , let us set u ∼M v if and only if N(u) ∩ M = N(v) ∩ M . Let χM be the set of equivalent classes, 
called modules, of N(M) \ M with respect to ∼M . The intuition is that two nodes in the same module of χM are known by 
the observer but cannot be distinguished. For instance, χ{v0} = {N(v0)}.

A k-online strategy for the observer starting from v0 is a function σ : G × V × 2V × {1, · · · , k} → 2V such that, for any 
subset M ⊆ V of nodes inducing a connected subgraph containing v0 in G , for any v ∈ M , and for any 1 ≤ i ≤ k, then 
σ(G M , v, M, i) ∈ χM . This means that, if M is the set of nodes already marked and thus the observer only knows the 
subgraph G M , if v is the position of the surfer and it remains k − i +1 nodes to be marked by the observer before the surfer 
moves, then the observer will mark one node in σ(G M , v, M, i).

More precisely, we say that the observer follows the k-online strategy σ if the game proceeds as follows. Let M =
M0 be the set of marked nodes just after the surfer has moved to v ∈ M . Initially, M0 = {v0} and v = v0. Then, the 
strategy proceeds sequentially in k steps for i = 1 to k. First, the observer marks an arbitrary node x1 ∈ σ(G M0 , v, M0, 1). 
Let M1 = M0 ∪ {x1}. Sequentially, after having marked 1 < i < k nodes at this turn, the observer marks one arbitrary node 
xi+1 ∈ σ(G Mi , v, Mi, i + 1) and Mi+1 = Mi ∪ {xi+1}. When the observer has marked k nodes, that is after choosing xk ∈
σ(G Mk−1 , v, Mk−1, k), it is the turn of the surfer, when it may move to a node adjacent to its current position and then a 
new turn for the observer starts. Note that because we are interested in the worst case for the observer, each marked node 
xi ∈ σ(G Mi−1 , v, Mi−1, i) is chosen by an adversary.

The online surveillance number of a graph G with initial node v0, denoted by osn(G, v0), is the smallest k such that there 
exists a winning k-online strategy starting from v0. In other words, there is a winning k-online strategy σ starting from 
v0 such that an observer following σ wins whatever be the trajectory of the surfer and the choices done by the adversary 
at each step. Note that, since we consider the worst scenario for the observer, we may assume that the surfer has full 
knowledge of G .

Theorem 10. There exists an infinite family of rooted trees such that, for any T with root v0 ∈ V (T ) in this family, sn(T , v0) = 2 and 
osn(T , v0) = Ω(�) where � is the maximum degree of T .

Proof. We first define the family (Tk)k≥1 of rooted trees as follows (see also Fig. 3).

Let k ≥ 4 be a power of two and let i = 2k and d = 2k

k .
Let us consider a path P = (v0, v1, . . . , vi−1) with i nodes. Let B be a complete binary tree of height h = 3k + 1 and 

rooted at some vertex vi , i.e., B has 2h+1 − 1 vertices. Let w0 be any leaf of B . Finally, let Q = (w1, . . . , wk) be a path on k
nodes. Note that, P , B and Q depend on k.

The tree Tk is obtained from P , B and Q by adding an edge between vi−1 and vi , an edge between w0 and w1. Finally, 
for any 1 ≤ j ≤ k, let us add an independent set, S j , with d vertices and an edge between each vertex of S j and w j (i.e., 
each node in S j is a leaf). Tk is then rooted in v0.

Let Q + denote the union of vertices of Q and 
⋃k

j=1 S j . The maximum degree � of Tk is reached by any node w j , 

1 ≤ j < k, and � = d + 2 = 2k

k + 2.
Clearly, sn(Tk, v0) > 1. We show that sn(Tk, v0) = 2.
Consider the following (offline) strategy for the observer. At each turn j ≤ i, the observer marks the vertex v j and one 

unmarked vertex of Q + that is closest to the surfer. For each turn j > i and while the surfer does not occupy a node in 
Q + ∪ {w0}, the observer marks the neighbours of the current position of the surfer if they are not already marked. Finally, 
if the surfer occupies a node in Q + ∪ {w0}, the observer marks two unmarked nodes of Q + that are closest to the surfer. 
It is easy to see, by induction on the number of steps that, each time that the surfer arrives at a new node, this node is 
marked and has at most 2 unmarked neighbours. Hence, sn(Tk, v0) = 2.

Now it remains to show that osn(Tk, v0) = Ω(�). Let γ be any online strategy for Tk and marking at most d
4 = 2k−2

k
nodes per turn. We show that γ fails.

For this purpose, we model the fact that the observer does not know the graph by “building” the tree during the game. 
More precisely, each time the observer marks a node v , then the adversary may add new nodes adjacent to v or decide 
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Fig. 3. Tree Tk described in the proof of Theorem 10.

that v is a leaf. Of course, the adversary must satisfy the constraint that eventually the graph is Tk . Initially, the observer 
only knows v0 that has one neighbour v1. Now, for any 1 ≤ j < i, when the observer marks the node v j of P , then the 
adversary “adds” a new node v j+1 adjacent to v j , i.e., the observer discovers its single unmarked neighbour v j+1. Now, let 
v be any node of B . Recall that h is the height of B . When the observer marks v , there are three cases to be considered: 
if v is at distance at most h − 1 from vi , then the adversary adds two new nodes adjacent to v; if v is at distance h from 
vi and not all nodes of B have been marked then the adversary decides that v is a leaf; finally, if all nodes of B have been 
marked (v is the last marked node of B , i.e., B is a complete binary tree of height h), the adversary decides that v = w0
and adds one new neighbour w1 adjacent to it. Note that we can ensure that the last node of B to be marked is at distance 
h of vi by connectivity of any online strategy.

Now, let us consider the following execution of the game. During the first i steps, the surfer goes from v0 to vi . Just 
after the surfer arrives in vi , the observer has marked at most (di)/4 nodes and all nodes of P ∪ {vi} must be marked since 
otherwise the surfer would have won. Therefore, at most i(d/4 − 1) + 1 = 22k−2/k − 2k + 1 nodes of B are marked when it 
is the turn of the surfer at vi . Since B has 2h+1 − 1 = 23k+2 − 1 nodes, at least one node of B is not marked.

From vi , the surfer always goes toward w0. Note that the observer may guess this strategy but it does not know where 
is w0 while all nodes of B have not been marked.

Then let 0 ≤ t ≤ h and let v ′
t ∈ V (B) be the position of the surfer at step i + t and Bt the subtree of B rooted at v ′

t . 
Note that, at step i, v ′

0 = vi and B0 = B . Let Bt
l and Bt

r be the subtrees of B rooted at the children of v ′
t . W.l.o.g., let us 

assume that the number of marked nodes in Bt
l is at most the number of marked nodes in Bt

r , when it is the turn of the 
surfer standing at v ′

t . Then, the surfer moves to the root of Bt
l . That is, v ′

t+1 is the child of vt whose subtree contains the 
minimum number of marked nodes.

Let mt be the number of marks in the subtree of B rooted at v ′
t when it is the turn of the surfer at v ′

t . Since, at the 
beginning of step i there are at most 22k−2/k − 2k + 1 nodes of B that are marked and k ≥ 4, then m0 ≤ 22k−2/k − 2k + 1 ≤
22k−2/k. Note that, for any t > 0, mt ≤ (mt−1 − 1 + d

4 )/2 ≤ (mt−1 + d
4 )/2. Simply expanding this expression we get that, for 

any t > 0,

mt ≤ m0

2t
+ 2k

k

t+2∑
j=3

2− j ≤ 22k−(t+2)

k
+ 2k

k

t+2∑
j=3

2− j.

Therefore, for any t ≥ 2k:

mt ≤ 1

k
+ 2k

k

t+2∑
2− j ≤ 2k + 1

k
.

j=3
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Fig. 4. Scheme representing the digraph D constructed from G .

In particular, at step i + 2k (when it is the turn of the surfer), the surfer is at v ′
2k which is at distance k + 1 from w0. 

Hence, |B2k| ≥ 2k+1 − 1 and at most 2k+1
k < 2k+1 − 1 of its nodes are marked. Hence, neither w0 nor nodes in Q + are 

marked.
From this step, the surfer directly goes to wk unless it meets an unmarked node, in which case, it goes to it and wins. 

When the surfer is at wk and it is its turn, the observer may have marked at most (2k + 2) d
4 ≤ kd

2 + d
2 ≤ 2k−1 + 2k−1

k nodes 
in Q + . Since |Q +| = (d + 1)k = 2k + k and k ≥ 4, at least one neighbour of wk is not marked yet and the surfer wins. �

Theorem 10 implies that, for any online strategy S , ρ(S) = Ω(�). Recall that the basic strategy B, that marks all 
unmarked neighbours of the surfer at each step, is an online strategy. B has trivially competitive ratio ρ(B) = O (�). Hence, 
no online winning strategy has better competitive ratio than the basic strategy up to a constant factor. In other words:

Corollary 1. The best competitive ratio of online winning strategies is Θ(�), with � the maximum degree.

As mentioned in the introduction, any online strategy is connected and therefore, for any graph G and v0 ∈ V (G), 
csn(G, v0) ≤ osn(G, v0). Moreover, we recall that, for any tree T and for any v0 ∈ V (T ), csn(T , v0) = sn(T , v0) [4]. Hence, 
the previous theorem shows that there might be an arbitrary gap between csn(G, v0) and osn(G, v0).

4. Bounded degree hardness

The question of the complexity of computing the surveillance number in the class of bounded degree graphs was left 
open in [4]. Notice that computing sn(G, v0) is trivial for graphs of maximum degree 3 [4].

In this section, we show that the problem is difficult in the class of DAGs with maximum degree 6. More precisely, we 
prove the following theorem.

Theorem 11. Deciding whether sn(G, v0) ≤ 2, for a directed acyclic graph G of maximum degree 6 and a starting vertex v0 ∈ V (G), 
is NP-hard.

A graph is called cubic, if every node has degree exactly 3. To prove NP-hardness, a reduction from a special case of 
the well-known Vertex Cover problem is employed. Given a cubic graph G and a constant k, the Cubic Vertex Cover problem 
consists in deciding whether there exists a set C ⊆ V (G), |C | ≤ k and such that for any {υi, υ j} ∈ E(G), |{υi, υ j} ∩ C | ≥ 1. 
NP-hardness for the above problem was proved in [6]. From now on, we shall refer to the problem shortly as VC-3.

Let (G, k) be any instance of VC-3 and set V (G) = {x1, · · · , xn} and E(G) = {e1, · · · , em}. We build an instance (D, v0) of 
the surveillance game problem from the instance (G, k) as follows. We start with a directed path (v0, v1, · · · , vk+m−2, c1, c2,

· · · , cm). For any 1 ≤ i ≤ m, let us add three new nodes cleft
i , cright

i , cmid
i and the following arcs (ci, c

left
i ), (ci, c

right
i ), (cleft

i , cmid
i ), 

(cright
i , cmid

i ). Finally, let us add n nodes u1, · · · , un to D , and, for any edge ei = {u j, u	} of G , let us add the corresponding 
arcs (cleft

i , u j), (cleft
i , u	), (cright

i , u j) and (cright
i , u	) in D . The digraph D is depicted in Fig. 4. Notice that, since G is cubic, the 

sum of in-degree and out-degree of each node of D is at most 6. In particular, ui has in-degree 6 for any i ≤ n. Furthermore, 
|V (D)| = n + 5m + k − 1 and |E(D)| = 10m + k − 2.

Lemma 12. If G has a vertex cover of size at most k, then sn(D, v0) ≤ 2.
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Proof. If there exists a vertex cover of size at most k for G , then we show how the observer can win in D by using 2 marks 
per round. Let X ⊆ V (G) be a vertex cover of size at most k and let X ′ = {ui | xi ∈ X, 1 ≤ i ≤ n} ⊆ V (D). That is, X ′ is the 
set of nodes of D that corresponds to X . Initially, v0 is marked. When the surfer moves to any node vi ∈ {v0, v1, . . . , vm−1}, 
the observer’s strategy is to mark vi+1 and ci+1. When the surfer moves to any node vi ∈ {vm, . . . , vm+k−3}, the observer’s 
strategy is to mark vi+1 and an unmarked node in X ′ . When the surfer moves to node vm+k−2, the observer’s strategy is to 
mark the last two unmarked nodes in X ′ . At this step, the set of marked nodes is {v0, . . . , vm+k−2} ∪ {c1, . . . , cm} ∪ X ′ .

Now, while the surfer moves to ci , i ≤ m, the observer marks both unmarked neighbours cleft
i and cright

i of ci . Then, at 
some step, the surfer goes from ci to w ∈ {cleft

i , cright
i }. Let ei = {x j, x	} be the edge of G corresponding to ci . Since X is a 

vertex cover of G , either x j or x	 , say x j , belongs to it. Hence, u j ∈ X ′ has been already marked. Thus w has at most two 
unmarked neighbours: cmid

i and x	 . The observer marks them and the surfer cannot access any unmarked node.
Hence, sn(D, v0) ≤ 2. �

Lemma 13. If G does not admit a vertex cover of size k, then sn(D, v0) > 2.

Proof. If G does not admit a vertex cover of size k, we provide a winning strategy for the surfer against an observer that 
marks 2 nodes per step in D .

Let S be any strategy for the observer marking at most 2 nodes per steps. We will show that this strategy is not 
winning. First, we show that we may assume that S marks a node cmid

i (i ≤ m) only if the surfer occupies an in-neighbour 
of it. Indeed, let us assume that there is a step such that S marks cmid

i while the surfer is neither at cleft
i nor at cright

i . Let 
ei = {x j, x	} be the edge of G corresponding to ci . We modify S such that, instead of marking cmid

i , it marks one unmarked 
node in {u j, u	}. Clearly, if S was a winning strategy, then the modified strategy is still winning since, when the surfer 
arrives in cleft

i or cright
i , at most 2 out-neighbours are not marked. Hence, we may assume that S satisfies the desired 

property.
Now, let us consider the following strategy for the surfer. First, the surfer follows the path from v0 to c1. Just before 

the surfer leaves c1 (i.e., after the observer has marked at most 2m + 2k nodes), all nodes in {v0, · · · , vk+m−2, c1} have 
been marked by S since otherwise the surfer would have already won. Moreover, cleft

1 , cright
1 and c2 must also be marked 

since otherwise the surfer would win during its next move. Hence, at this step, at most m + k − 1 nodes are marked in 
V (D) \ {v0, · · · , vk+m−2, c1, c2, c

left
1 , cright

1 }.
Let 1 ≤ i < m. Assume that the surfer has followed the path from c1 to ci and, when it is about to leave ci : all nodes in 

Mi = {v0, · · · , vk+m−2, c1, · · ·, ci+1, c
left
1 , · · · , cleft

i , cright
1 , · · · , cright

i } have been marked, and at most m + k − i nodes are marked 
in V (D) \ Mi . Note that, in the above paragraph, we reached this configuration for i = 1.

Note that, by the property of S , cmid
i is not marked yet. Let u j and u	 be the two out-neighbours, distinct from cmid

i , of 
cleft

i . If both u j and u	 are not marked yet, then the surfer goes to cleft
i that has then 3 unmarked out-neighbours. Therefore, 

the surfer will win during its next move. Hence, we may assume that either u j or u	 is marked. In such a case, the surfer 
goes to ci+1. Now, the observer marks at most 2 nodes. Note that, cleft

i+1, cright
i+1 and (if i + 1 < m) ci+2 must have been marked 

since otherwise the surfer would win during its next move. Therefore, the surfer is about to leave ci+1 and all nodes in 
Mi+1 have been marked, and at most m + k − (i + 1) nodes are marked in V (D) \ Mi+1.

Therefore, either the surfer wins at some step or it eventually reached cm . Let X ′ be the set of marked nodes in 
{u1, · · · , un} when the surfer is about to leave cm . By the above reasoning, |X ′| ≤ k. Moreover, for any i < m, there is 
at least one node in X ′ that is adjacent to cleft

i . Hence, by definition of D , the set X = {xi | ui ∈ X ′} covers all edges in 
{e1, · · · , em−1} ⊂ E(G). Since no vertex cover of G has size at most k, this implies that em = {x j, x	} is not covered by X . 
Therefore, none of the two neighbours u j and u	 of cleft

m belongs to X ′ . That is, when the surfer is about to leave cm , neither 
u j nor u	 are marked. Moreover, by the property of S , cmid

m is not marked yet. To conclude, the surfer goes to cleft
m that has 

3 unmarked out-neighbours. The surfer will win during its next move. �
The proof of Theorem 11 follows directly from Lemma 12 and Lemma 13.

5. Conclusion

Despite our results, the main question remains open. Can the difference or the ratio between the connected surveillance 
number of a graph and its surveillance number be bounded by some constant?
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