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a b s t r a c t

In this paper, we study the geodetic convexity of graphs, focusing on the problem of the
complexity of computing a minimum hull set of a graph in several graph classes.

For any twoverticesu, v 2 V of a connected graphG = (V , E), the closed interval I[u, v]
of u and v is the set of vertices that belong to some shortest (u, v)-path. For any S ✓ V ,
let I[S] = S

u,v2S I[u, v]. A subset S ✓ V is geodesically convex or convex if I[S] = S. In
other words, a subset S is convex if, for any u, v 2 S and for any shortest (u, v)-path P ,
V (P) ✓ S. Given a subset S ✓ V , the convex hull Ih[S] of S is the smallest convex set that
contains S. We say that S is a hull set of G if Ih[S] = V . The size of a minimum hull set of G
is the hull number of G, denoted by hn(G). The Hull Number problem is to decide whether
hn(G)  k, for a given graph G and an integer k. Dourado et al. showed that this problem is
NP-complete in general graphs.

In this paper, we answer an open question of Dourado et al. (2009) [1] by showing that
theHull Number problem is NP-hard even when restricted to the class of bipartite graphs.
Then, we design polynomial-time algorithms to solve theHull Number problem in several
graph classes. First, we deal with the class of complements of bipartite graphs. Then, we
generalize some results in Araujo et al. (2011) [2] to the class of (q, q � 4)-graphs and to
cacti. Finally, we prove tight upper bounds on the hull numbers. In particular, we show that
the hull number of an n-node graph Gwithout simplicial vertices is at most 1+ d 3(n�1)

5 e in
general, at most 1 + d n�1

2 e if G is regular or has no triangle, and at most 1+ d n�1
3 e if G has

girth at least 6.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A classical example of convexity is the one defined in Euclidean spaces. In a Euclidean space E, a set S ✓ E is said to be
convex if, for any two points x and y of S, [x, y] ✓ S, i.e., the set of points lying in the straight line segment between x and y
also belongs to S. Note that if two convex sets X, Y ✓ E contain a given set S ✓ E of points, then their intersection X \ Y
is also a convex set of E containing S. Hence, we can define the convex hull of S as the minimum convex set that contains S.
Reciprocally, given a convex set S of E, a hull set of S is any subset S 0 of S such that S is the convex hull of S 0. A naive way
to compute the convex hull H of a set S consists in starting with H = S and, while it is possible, adding [x, y] to H for any
x, y 2 H . However, there exist more efficient algorithms. For instance, for any set S of a d-dimensional Euclidean space, the
gift wrapping algorithm computes the convex hull and a minimum-inclusion hull set of S in polynomial time in the size of S
(d being fixed). For more results concerning convexity in Euclidean spaces, we refer to [3].
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In order to capture the abstract notion of convexity, [4] defines an alignment over a finite set X as a family C of subsets
of X that is closed under intersection and that contains both X and the empty set. The members of C are called the convex
sets of X . The pair (X, C) is then called an aligned space. An example of aligned space (E, C) is the one where E is a Euclidean
space and C = {H ✓ E : 8x, y 2 H, [x, y] ✓ H}. Given an aligned space (X, C), the definitions of convex hull and hull set
are generalized as follows. For any S ✓ X , the convex hull of S is the smallest member of C containing S. For any S 2 C, a
hull set of S is a set S 0 ✓ S such that S is the convex hull of S 0.

Various notions of convexity can be defined in graphs as specific alignments over the set of vertices. This paper is devoted
to the study of the geodetic convexity of graphs. Let G = (V , E) be a connected undirected graph. For any u, v 2 V , let the
closed interval I[u, v] of u and v be the set of vertices that belong to some shortest (u, v)-path. The closed interval of a set of
vertices can be seen as an analog to segments in Euclidean spaces. For any S ✓ V , let I[S] = S

u,v2S I[u, v]. A subset S ✓ V
is geodesically convex or convex if I[S] = S. In this paper, convexity refers to the geodesical variant. In other words, a subset
S is convex if, for any u, v 2 S and for any shortest (u, v)-path P , V (P) ✓ S. That is, the geodetic convexity can be defined
as the alignment C over V , where C = {S ✓ V : I[S] = S}.

Given a subset S ✓ V , the convex hull Ih[S] of S is the smallest convex set that contains S. We say that S is a hull set of G
if Ih[S] = V . That is, S is a hull set of G if, starting from the vertices of S and successively adding in S the vertices in some
shortest path between two vertices in S, we eventually obtain V . The size of a minimum hull set of G is the hull number of
G, denoted by hn(G). The Hull Number problem is to decide whether hn(G)  k, for a given graph G and an integer k [5].
This problem is known to be NP-complete in general graphs [1]. In this paper, we consider the problem of the complexity
of computing an inclusion-minimum hull set of a graph in several graph classes.
Our results. We first answer an open question of Dourado et al. [1] by showing that the Hull Number problem is NP-hard
even when restricted to the class of bipartite graphs (Section 3). Then, we design polynomial-time algorithms to solve the
Hull Number problem in several graph classes. In Section 4, we deal with the class of complements of bipartite graphs. In
Section 5, we generalize some results in [2] to the class of (q, q�4)-graphs. Section 6 is devoted to the class of cacti. Finally,
we prove tight upper bounds on the hull number of certain graphs in Section 7. In particular, we show that the hull number
of an n-node graph G without simplicial vertices is at most 1 + d 3(n�1)

5 e in general, at most 1 + d n�1
2 e if G is regular or has

no triangle, and at most 1 + d n�1
3 e if G has girth at least 6.

Related work. In the seminal work [5], the authors present some upper and lower bounds on the hull number of general
graphs and characterize the hull number of some particular graphs. The corresponding minimization problem has been
shown to be NP-complete [1]. Dourado et al. also proved that the hull number of unit interval graphs, cographs and split
graphs can be computed in polynomial time [1]. Bounds on the hull number of triangle-free graphs are shown in [6]. The
hull number of the Cartesian and the strong product of two connected graphs are studied in [7,8]. In [9], the authors have
studied the relationship between the Steiner number and the hull number of a given graph. An oriented version of the Hull
Number problem is studied in [10,11].

Other parameters related to the geodetic convexity have been studied in [12,13]. Variations of graph convexity have been
further proposed and studied. For instance, themonophonic convexity that deals with induced paths instead of shortest paths
is studied in [4,14]. Another example is the P3-convexity, where just paths of order 3 are considered [4,15]. Other variants of
graph convexity and other parameters are mentioned in [16].

2. Preliminaries

In this paper, we adopt the graph terminology defined in [17]. Otherwise stated, all graphs considered in this work are
simple, undirected and connected. Let G = (V , E) be a graph. Given a vertex v, N(v) denotes the (open) neighborhood of v,
i.e., the set of neighbors of v. Let N[v] = N(v) [ {v} be the closed neighborhood of v. A vertex v is universal if N[v] = V . A
vertex is simplicial if N[v] induces a complete subgraph in G. Finally, a subgraph H of G is isometric if, for any u, v 2 V (H),
the distance distH(u, v) between u and v in H equals distG(u, v).

This section is devoted to basic lemmas on hull sets. These lemmas will serve as the cornerstone of most of the results
presented in this paper.
Lemma 1 ([5]). For any hull set S of a graph G, S contains all simplicial vertices of G.
Lemma 2 ([1]). Let G be a graph which is not complete. No hull set of G with cardinality hn(G) contains a universal vertex.
Lemma 3 ([1]). Let G be a graph, H be an isometric subgraph of G, and S be any hull set of H. Then, the convex hull of S in G
contains V (H).
Lemma 4 ([1]). Let G be a graph and S a proper and non-empty subset of V (G). If V (G)\S is convex, then every hull set of G
contains at least one vertex of S.

3. Bipartite graphs

In this section, we answer an open question of Dourado et al. [1] by showing that the Hull Number problem is NP-
complete in the class of bipartite graphs. Since the Hull Number problem is in NP, as proved in [1], it only remains to prove
the following theorem.
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Fig. 1. Subgraph of the bipartite instance G(F ) containing the gadget of a variable xi that appears positively in clauses C1 and C2, and negatively in C8. If xi
appears positively in Cj , link a5i to cj through yji . If it appears negatively, we use b5i instead of a5i .

Theorem 1. The Hull Number problem is NP-hard in the class of bipartite graphs.

Proof. To prove this theorem, we adapt the proof presented in [1]. We reduce the 3-satisfiability (3-SAT) problem to the
HullNumberproblem in bipartite graphs. Let us consider the following instance of 3-SAT. Given a formula in the conjunctive
normal form, let F ={C1, C2, . . . , Cm} be the set of its 3-clauses and X ={x1, x2, . . . , xn} the set of its Boolean variables.
We may assume that m = 2p, for a positive integer p � 1, since it is possible to add dummy variables and clauses without
changing the satisfiability ofF and such that the size of the instance is atmost twice the size of the initial instance.Moreover,
we also assume,without loss of generality (w.l.o.g.), that each variable xi and its negation appear at least once inF (otherwise
the clauses where xi appeared could always be satisfied).

Let us construct the bipartite graph G(F ) as follows. First, let T be a full binary tree of height p rooted in r with m = 2p

leaves, and let L ={c1, c2, . . . , cm} be the set of leaves of T . We then construct a graph H as follows. First, let us add a vertex
u that is adjacent to every vertex in L. Then, any edge {w, v} 2 E(T ) with w the parent of v is replaced by a path with 2h(v)

edges, where h(v) is the distance between v and any of its descendent leaves. Note that, in H , the distance between r and
any leaf is

Pp�1
i=0 2i = 2p � 1 = m � 1. Moreover, it is easy to see that |V (H)| = O(m · logm).

The following claims are proved in [1].

Claim 1. Let v, w 2 V (T )\{r}. The closed interval of v, w in H contains the parents of v in T if and only if v and w are siblings
in T .

Claim 2. The set L is aminimal hull set of H.

Then, let H 0 be obtained by adding a one-degree vertex u0 adjacent to u in H . Finally, we build a graph G(F ) from H 0 by
adding, for any variable xi, i  n, the gadget defined as follows.

Let us start with a cycle {a1i , a2i , v1
i , b

2
i , b

1
i , b

3
i , b

4
i , v

2
i , a

4
i , a

3
i } plus the edge {v2

i , v
1
i }. Then, add the vertex v3

i as common
neighbor of v2

i andu. Add aneighbor b5i (respectively, a
5
i ) adjacent to b

3
i (respectively, a

3
i ) and apath of length 2h(r)�3 = m�3

edges between b5i (respectively, a
5
i ) and r . Let D be the set of internal vertices of all these 2n paths between a5i (respectively,

b5i ) and r , i  n. Finally, for any clause Cj in which xi appears, if xi appears positively (respectively, negatively) in Cj

then add a common neighbor yji between cj and a5i (respectively, b5i ). See an example of such a gadget in Fig. 1. Note that
|V (G(F ))| = O(m · (n + logm)).

Lemma 5. G(F ) is a bipartite graph.

Proof. Let us present a proper 2-coloring c of G(F ). Let c(r) = 1, and, for each vertex w in V (H), define c(w) as 1 if w is in
an even distance from r , and 2 otherwise. Clearly, c is a partial proper coloring of G(F ), andmoreover we have c(u) = 1 and
c(cj) = 2, for any j 2{1, . . . ,m} (indeed, any ci is at distance m � 1 (odd) of r in H). Let c(u0) = 2. For every i 2{1, . . . , n}
and for any j such that xi 2 Cj, let c(y

j
i) = 1. For any i  n, for any x 2 {b5i , a5i , v3

i , b
4
i , a

4
i , b

1
i , v

1
i , a

1
i }, c(x) = 2.

Again, this partial coloring of G(F ) is proper. One can easily verify that this coloring can be extended to
{a1i , a2i , v1

i , b
2
i , b

1
i , b

3
i , b

4
i , v

2
i , a

4
i , a

3
i } for any i  n. Moreover, since c(r) = 1 and c(a5i ) = 2 (c(b5i ) = 2), for every

i 2{1, . . . , n}, and since the path that we add in G(F ) between r and a5i (b5i ) is of odd length m � 3, one can completely
extend c in order to get a proper 2-coloring of G(F ). ⇤

Claim 3. The set V (G(F ))\{a1i , a2i , v1
i , b

1
i , b

2
i } is convex, for any i 2{1, . . . , n}.
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Proof. Denote Wi ={a1i , a
2
i , v

1
i , b

1
i , b

2
i }, for some i 2 {1, . . . , n}, and W 0

i = {a3i , b3i , v2
i }. By contradiction, suppose that there

exists an (x, y)-shortest path containing a vertex of Wi, for some x, y 2 V (G(F ))\Wi. Observe that this implies that there
are x0, y0 2 W 0

i such that I[x0, y0] contains a vertex ofWi, sinceW 0
i contains all the neighbors ofWi in V (G(F ))\Wi. However,

it is easy to verify that, for any pair x, y 2 W 0
i , I[x, y] contains no vertex ofWi. This is a contradiction. ⇤

Lemma 6. hn(G(F )) � n + 1.

Proof. Let S be any hull set of G(F ). Clearly, u0 2 S, because u0 is a simplicial vertex of G(F ) (Lemma 1). Furthermore,
Claim 3 and Lemma 4 imply that S must contain at least one vertex wi of the set {a1i , a

2
i , v

1
i , b

1
i , b

2
i }, for every i 2{1, . . . , n}.

Hence, |S| � n + 1. ⇤

The main part of the proof consists in showing the following.

Lemma 7. F is satisfiable if and only if hn(G(F )) = n + 1.

First, consider that F is satisfiable. Given an assignment A that turns F true, define a set S as follows. For 1  i  n, if xi
is true in A, add a1i to S; otherwise, add b1i to S. Finally, add u0 to S. Note that |S| = n+1.We show that S is a hull set of G(F ).
First, note that a5i , cj 2 I[a1i , u0], for every clause Cj containing the positive literal of xi. Similarly, observe that b5i , cj 2 I[b1i , u0],
for every clause Cj containing the negative literal of xi. Since A satisfies F , it follows that L ✓ Ih[S]. Therefore, H being an
isometric subgraph of G(F ), Lemma 3 and Claim 3 imply that V (H) ✓ Ih[S]. Furthermore, the shortest paths between r
and u have length m, which implies that all vertices a5i , b

5
i , y

j
i (i  n) and all vertices in D are included in Ih[S]. It remains to

observe that Ih[a5i , b5i , w, u0], where w 2 {a1i , b1i }, contains the variable subgraph of xi. Therefore, we have that S is a hull set
of G(F ).

We prove the sufficiency by contradiction. Suppose that G(F ) contains a hull set S with n + 1 vertices and that F is not
satisfiable.

Recall that, by Lemma 1, u0 2 S. For any i  n, let Wi as defined in Claim 3. Recall also that there must be a vertex
wi 2 Wi \ S, for any i  n. Since v1

i 2 I[u0, a1i ], v1
i 2 I[u0, b1i ], a2i 2 I[u0, a1i ] and b2i 2 I[u0, b1i ], we can assume, without loss

of generality, that wi 2 {a1i , b1i }, for every i 2{1, . . . , n} (indeed, if wi 2 {v1
i , a

2
i }, it can be replaced by a1i , and if wi = b2i , it

can be replaced by b1i ). Therefore, S defines the following truth assignment A to F . If wi = a1i , set xi to true; otherwise, set
xi to false. As F is not satisfiable, there exists at least one clause Cj not satisfied by A.

Using the hypothesis that F is not satisfiable, we complete the proof by showing that there is a non-empty set U such
that V (G(F ))\U is a convex set and U \ S = ;. That is, we show that Ih[S] ✓ V (G(F ))\U for some U 6= ;, contradicting
the fact that S is a hull set.

For any clause Cj, let us define the subset Uj of vertices as follows. Let Pj be the path in T between cj and r , and let Xj be
the p vertices in V (T ) \ V (Pj) that are adjacent to some vertex in Pj. Then, Uj is the union of the vertices that are either in
Pj or that are internal vertices of the paths resulting from the subdivision of the edges {x, y}, where x, y 2 Pj [ Xj. Another
way to build the set Uj is to start with the set of vertices in the (unique) shortest path between cj and r in H and then add
successively to this set the vertices of V (H) \ (V (T ) [ {u}) that are adjacent to some vertex of the current set.

Now, let U 0 = [j2JUj, where J is the (non-empty) set of clauses that are not satisfied by A. Note that r 2 U 0.
For any i  n, let Zi be defined as follows. If wi = a1i (xi assigned to true by A), then Zi is the union of {b`

i : `  5} with
the set of the yki that are adjacent to b5i . Otherwise, if wi = b1i (xi assigned to false by A), then Zi is the union of {a`

i : `  5}
with the set of the yki that are adjacent to a5i .

Finally, let U = U 0 [ (
S

in Zi) [ D. In Fig. 1, U is depicted by the white vertices, assuming that clause C2 is false and that
xi is set to false by A. Observe that U \ S = ;.

It remains to prove that V (G(F ))\U is a convex set. Consider the partition {A1, A2, A3} of V (G(F ))\U , where A1 =
V (H)\(U [ {u}), A2 ={u, u0} and A3 = V (G(F ))\(U [ A1 [ A2). To prove that V (G(F ))\U is convex, let w 2 Ai and w0 2 Aj
for some i, j 2 {1, 2, 3}. We show that I[w, w0] \ U = ; considering different cases according to the values of i and j. Recall
that V (H) \ {u} induces a tree T 0 rooted in r and that, if a vertex of T 0 is in A1, then, by definition of U 0, all its descendants in
T 0 are also in A1 (i.e., if v 2 U \ V (T 0), then all ancestors of v in T 0 are in U). It is important to note that, for any vertex v in
A1, the shortest path in G(F ) from v to any leaf ` of T 0 is the path from v to ` in T 0 (in particular, such a shortest path does
not pass through r and any vertices in D).

• The case i = j = 2, i.e.,m,m0 2 {u, u0}, is trivial.
• First, let us assume that w 2 A1 = V (H)\(U [ {u}) and w0 2 A2 = {u, u0}. If w0 = u (respectively, if w0 = u0), then

Ih[w, w0] consists of the subtree of T 0 rooted inw union u (respectively, union u and u0). Hence, Ih[w, w0]\U = ; because
no descendants of w in T 0 are in U .

• Second, let w, w0 2 A1. If one of them, sayw, is an ancestor of the other in T 0, then Ih[w, w0] consists of the path between
them in T 0 (remember that r 2 U so w 6= r). Since no descendants of w in T 0 are in U , Ih[w, w0] \ U = ;. Otherwise,
there are three cases: (1) either Ih[w, w0] consists of the path P between w and w0 in T 0, or (2) Ih[w, w0] consists of the
union of the subtree R of T 0 rooted in w, the subtree R0 of T 0 rooted in w0 and u, or (3) Ih[w, w0] = R[ R0 [ P [ {u}. Again,
(R [ R0 [ {u}) \ U = ; because no descendants of w and w0 in T 0 are in U . Hence, it only remains to prove that when
P ✓ Ih[w, w0] then P \ U = ;. It is easy to check that P ✓ Ih[w, w0] only in the following case: there exist x, y, z 2 V (T )
such that x is the parent of y and z in T , and w (respectively, w0) is a vertex of the path resulting from the subdivision
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of {x, y} (respectively, {x, z}). In this case, it means that all clause-vertices that are descendants of y and z are not in U .
Therefore, x /2 U , and hence no descendants of x are in U . In particular, P \ U = ;.

• Assume now that w 2 A3. Let i  n such that w belongs to the gadget Gi corresponding to variable xi. Let us assume that
wi = b1i . The case wi = a1i can be handled in a similar way by symmetry. Then, by definition, U contains {a1i , . . . , a5i } and
the yji adjacent to a5i . With this setting, xi is set to false in the assignment A. If there is a vertex yji adjacent to b5i , let Cj be
the other neighbor of jji. By definition, this means that clause Cj contains the negation of variable xi. Since xi is set to false,
this means that clause Cj is satisfied, and so Cj /2 U .
Let x 2 V (Gi) \ U . Then, any shortest path P from w to x either passes through V (Gi) \ U , or there is a yji adjacent to b5i
such that P passes through yji, Cj, u and v3

i (the latter case may occur if a 2 {yji, b5i } and b = v3
i , or a = yji and b 2 {v3

i , v
2
i },

where {a, b} = {x, w}). Hence, such a path P avoids U , and the result holds if x = w0 2 A3 \ Gi.
Similarly, if x 2 {u, u0}, then any shortest path P from w to x either passes through V (Gi) \ U or through yji, Cj, u with yji
adjacent to b5i . In particular, if x = w0 2 {u, u0} = A2, then the result holds.
Now, let x = Cj0 be a leaf of T 0 that is not in U . Then, any shortest path P from w to x either passes through u or through
yji, Cj and, if j 6= j0, through u. In any case, P avoids U . If w0 2 A3 \ Gi, any path between w and w0 passes through u
or through one or two leaves that are not in U . Finally, if w0 2 A1, let R be the subtree of T 0 rooted in w0. Note that
V (R) ✓ Ih[w, w0]. Moreover, any shortest path from w to w0 contains a leaf of R, i.e., a leaf not in U . By previous remarks,
in all these cases, the shortest paths between w and w0 avoid u, and Ih[w, w0] are disjoint from U . ⇤

We conclude this section by showing one approximability result. Let IG(G) be the incidence graph of G, obtained from G by
subdividing each edge once. That is, let us add one vertex suv , for each edge uv 2 E(G), and replace the edge uv by the edges
usuv, suvv.

Proposition 2. hn(IG(G))  hn(G)  2hn(IG(G)).

Proof. Let IG(G) be the incidence graph of G. Observe that any hull set of G is a hull set of IG(G), since, for any shortest path
P = {v1, . . . , vk} in G, there is a shortest path P 0 = {v1, sv1v2 , v2, . . . , svk�1vk , vk} in IG(G) (the edges were subdivided).
Consequently, hn(IG(G))  hn(G). However, given a hull set Sh of IG(G), one may find a hull set of G by simply replacing
each vertex of Sh that represents an edge of G by its neighbors (vertices of G). Thus, hn(G)  2hn(IG(G)). ⇤

Corollary 1. If there exists a k-approximation algorithm B to compute the hull number of bipartite graphs, then B is a 2k-
approximation algorithm for any graph.

4. Complement of bipartite graphs

A graph G = (V , E) is a complement of a bipartite graph if there is a partition V = A [ B such that A and B are cliques. In
this section, we give a polynomial-time algorithm to compute a hull set of Gwith size hn(G). We start with some notation.

Given the partition (A, B) of V , we say that an edge uv 2 E is a crossing edge if u 2 A and v 2 B. Denote by S the set of
simplicial vertices of G. Let SA = S \A and SB = S \B. Let U be the set of universal vertices of G. Note that, if G is not a clique,
U \ S = ;. Let H be the graph obtained from G by removing the vertices in S and U , and removing the edges intra-clique,
i.e., V (H) = V \ (U [ S) and E(H) = {{u, v} 2 E : u 2 A \ V (H) and v 2 B \ V (H)}. Let C = {C1, . . . , Cr} (r � 1) denote
the set of connected components Ci of H . Observe that, if G is neither one clique nor the disjoint union of A and B, H is not
empty, and each connected component Ci has at least two vertices, for every i 2 {1, . . . , r}. Indeed, any vertex in A \ SA
(respectively, in B \ SB) has a neighbor in B \ V (H) (respectively, in A \ V (H)).

Theorem 3. Let G = (A [ B, E) be the complement of a bipartite n-node graph. There is an algorithm that computes hn(G) and
a hull set of this size in time O(n7).

Proof. We use the notation defined above. Recall that, by Lemma 1, S is contained in any hull set of G. In particular, if G is a
clique or G is the disjoint union of two cliques A and B, then hn(G) = n. From now on, we assume that this is not the case.
By Lemma 2, no vertices in U belong to any minimal hull set of G. Now, several cases have to be considered.

Claim 4. If U = ;, SA 6= ; and SB 6= ;, then S is a minimum hull set of G, and thus hn(G) = |S|.
Proof. Since G has no universal vertex, a simplicial vertex in SA (in SB) has no neighbor in B (respectively, in A). Since G is not
the disjoint union of two cliques, every vertex u 2 A\SA has a neighbor v 2 B\SB and vice versa. Thus, sauvsb is a shortest
(sa, sb)-path, for any sa 2 A and sb 2 B, and then u, v 2 Ih[S]. ⇤

Hence, from now on, let us assume that U 6= ; or, w.l.o.g., that SB = ;.
Again, if there is some simplicial vertex in G, i.e., if SA 6= ;, all the vertices of S belong to any hull set of G, and thus

hn(G) � |S|. In fact, for each connected component of H , we prove that it is necessary to choose at least one of its vertices
to be part of any hull set of G.

Claim 5. If U 6= ; or SB = ; or SA = ;, then hn(G) � |S| + r.
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Proof. Again, all vertices of S belong to any hull set of G. We show that, for any 1  i  r , V\Ci is a convex set. Thus, by
Lemma 4, any hull set of G contains at least one vertex of Ci for any i  r .

It is sufficient to show that no pair u, v 2 V (G)\Ci can generate a vertex vi of Ci. By contradiction, suppose that there
exists a pair of vertices u, v 2 V (G)\Ci such that there is a shortest (u, v)-path P containing a vertex vi of Ci. Consequently, u
and v must not be adjacent, and we consider that u 2 A and v 2 B. If U = ;, then, w.l.o.g., SB = ;, and v is not simplicial and
has at least one neighbor in A. Hence, since U 6= ; or Sb = ;, u and v are at distance 2. Consequently, P = uviv. However, if
vi 2 A, v belongs to Ci, because of the crossing edge viv; otherwise, u 2 Ci. In both cases we reach a contradiction. ⇤

Now, two cases remain to be considered. We recall that U 6= ; or SB = ;.

1. If r � 2, then hn(G) = |S| + r , and we can build a minimum convex hull by taking the vertices in S, one arbitrary vertex
in A \ Ci for all i < r and one arbitrary vertex in B \ Cr .
Let R = {v1, . . . , vr} such that vi 2 Ci \ A for any i < r and vr 2 Cr \ B.

Claim 6. S [ R is a hull set of G.

Proof. Since all vertices in U are generated by v1 and vr (that are not adjacent, since they are in different components),
it is sufficient to show that S [R generates all the vertices in Ci, for any i 2 {1, . . . , r}. Actually, we show that R generates
all the vertices in Ci.
By contradiction, suppose that there is a vertex z /2 Ih[R]. Let i  r such that z 2 Ci. Because Ci contains one vertex
in R and is connected, we can choose z and w 2 Ci \ Ih[R] linked by a crossing edge. We will show that z 2 Ih[R] (a
contradiction); hence, w.l.o.g., we may assume that z 2 A. If i = r , then v1zw is a shortest (v1, w)-path and z 2 Ih[R].
Otherwise, recall that N(vr) \ A \ Cr 6= ; and, for any i < r , N(vi) \ B \ Ci 6= ; because vi is not simplicial for any i  r .
Let x 2 N(vr) \ A\ Cr and yi 2 N(vi) \ B\ Ci. Note that x 2 Ih[R] because v1xvr is a shortest (vr , v1)-path, and yi 2 Ih[R]
because viyivr is a shortest (vr , vi)-path. Hence, since xzyi is a shortest (x, yi)-path, we have z 2 Ih[R]. ⇤

As |R| = r , we conclude by Claim 5 that hn(G) = |S| + r .
2. If r = 1, then hn(G)  |S| + 4, and any minimum convex hull contains at most 4 vertices not in S.

Again, S is included in any hull set of G by Lemma 1, and no vertices in U belong to some hull set by Lemma 2. In this
case, when H has just one connected component C1 = C , one vertex of C may not suffice to generate this component, as
in the previous case. However, we prove that at most four vertices in C are needed.
(a) If SA 6= ; and SB 6= ; (and thus U 6= ; because Claim 4 applies otherwise), then hn(G) = |S| + 1.

By Claim 5, we know that hn(G) � |S| + 1. Let v be an arbitrary vertex of C . We claim that S [ {v} is a minimum hull
set of G. By contradiction, let z /2 Ih[S [ {v}]. Since C is a connected component of H , we may choose z such that there
is w 2 N(z)\ C \ Ih[S [ {v}]. Moreover, we may assume w.l.o.g. that z 2 A, and thus w 2 B. In that case, since SA 6= ;,
there is vA 2 SA and, as vAw /2 E(G) (indeed, any vertex in N(vA) \ Bmust be universal because vA is simplicial, which
is not the case since w is not universal because it belongs to C), z is generated by vA and w.

(b) If SA 6= ; and SB = ;, then hn(G)  |S| + 2.
Let vA 2 A \ C be such that |N(vA) \ B \ C | is maximum. Since vA is not universal in G, there exists x 2 B such that
vAx /2 E(G). Note that x 2 C since x is not universal and SB = ;. Let R = {vA, x}. Observe that N(vA)\B\C ✓ Ih[R[ S]
since vAx /2 E.
By contradiction, assume that V (G)\Ih[R[S] 6= ;. Let z 2 V (G)\Ih[R[S]. First, suppose that z 2 A. Since C is connected
in H , wemay assume that z has a neighborw 2 Ih[R[ S]\B\C . As SA 6= ;, there is v 2 SA and as vw /2 E(G) (because
otherwise w would be universal in G and not in C), z is generated by v and w. Now suppose that z 2 B, and now it has
a neighbor w 2 Ih[R [ S] \ A \ C . Observe that Ih[R [ S] \ B ✓ N(w); otherwise z would be in Ih[R [ S]. However,
since N(vA) \ B \ C ⇢ (N(vA) \ B \ C)[{x}✓ Ih[R [ S] \ B, we get that N(vA) \ B \ C ⇢ N(w) \ B \ C , contradicting
the maximality of |N(vA) \ B \ C |.

(c) If SA = ; and SB = ;, then hn(G)  4.
Let vA 2 A \ C be such that |N(vA) \ B \ C | is maximum and vB 2 B \ C be such that |N(vB) \ A \ C | is maximum.
Since vA is not universal in G and SB = ;, there exists y 2 C \ B \ N(va), and similarly there exists x 2 C \ A \ N(vB).
Let R = {vA, vB, x, y}. Observe that N(vA) \ B ✓ Ih[R] and N(vB) \ A ✓ Ih[R], since vAy /2 E and vBx /2 E.
By contradiction, assume that V (G)\Ih[R] 6= ;. Let z 2 V (G)\Ih[R]. First, suppose that z 2 A. As in the previous case,
since C is connected in H , we may assume that z has a neighbor w 2 Ih[R]\ B\ C . Observe that Ih[R]\A\ C ✓ N(w);
otherwise z would be in Ih[R]. However, since N(vB) \ A \ C ⇢ (N(vB) \ A \ C)[{x}✓ Ih[R] \ A \ C , we get that
N(vB) \ A \ C ⇢ N(w) \ A \ C , contradicting the maximality of |N(vB) \ A \ C |.
Whenever z 2 B, one can use the same arguments to reach a contradiction on the maximality of |N(vA) \ B \ C |.

Since |S| + 1  hn(G)  |S| + 4, S is included in any hull set of G and no vertices in U belong to some hull set, there exist
a subset R of at most four vertices in C such that S [ R is a minimum hull set of G. There are O(|V |4) subsets to be tested
and, for each one, its convex hull can be computed in O(|V ||E|) time [1]. This leads to the announced result. ⇤
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5. Graphs with few P4s

A graph G = (V , E) is a (q, q � 4)-graph, for a fixed q � 4, if, for any S ✓ V , |S|  q, S induces at most q � 4 paths on
four vertices [18]. Observe that cographs and P4-sparse graphs are the (q, q � 4)-graphs for q = 4 and q = 5, respectively.
The hull number of a cograph can be computed in polynomial time [1]. This result is improved in [2] to the class of P4-sparse
graphs. In this section, we generalize these results by proving that, for any fixed q � 4, computing the hull number of a
(q, q � 4)-graph can be done in polynomial time. Our algorithm runs in time O(2qn2) and is therefore a Fixed Parameter
Tractable (FTP) for any graph G, where the number of induced P4s of G is the parameter.

5.1. Definitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of (q, q � 4)-graphs, called Primeval
Decomposition. For a survey on Primeval Decomposition, the reader is referred to [19]. In order to present this decomposition
of (q, q � 4)-graphs, we need the following definitions.

Let G1 and G2 be two graphs. G1 [ G2 denotes the disjoint union of G1 and G2. G1 � G2 denotes the join of G1 and G2,
i.e., the graph obtained from G1 [ G2 by adding an edge between any two vertices v 2 V (G1) and w 2 V (G2). A spider
G = (S, K , R, E) is a graph with vertex set V = S [ K [ R and edge set E such that the following hold.
1. (S, K , R) is a partition of V and R may be empty.
2. The subgraph G[K [ R] induced by K and R is the join K � R, and K separates S and R, i.e., any path from a vertex in S to

a vertex in R contains a vertex in K .
3. S is a stable set, K is a clique, |S| = |K | � 2, and there exists a bijection f : S ! K such that either N(s)\K = K � {f (s)}

for all vertices s 2 S or N(s) \ K = {f (s)} for all vertices s 2 S. In the latter case, or if |S| = |K | = 2, G is called thin;
otherwise, G is thick.

A graph G = (S, K , R, E) is a pseudo-spider if it satisfies only the first two properties of a spider. A graph G = (S, K , R, E)
is a q-pseudo-spider if it is a pseudo-spider and, moreover, |S [ K |  q. Note that q-pseudo-spiders and spiders are pseudo-
spiders.

We now describe the decomposition of (q, q � 4)-graphs.

Theorem 4 ([18]). Let q � 0, and let G be a (q, q � 4)-graph. Then, one of the following holds:
1. G is a single vertex, or
2. G = G1 [ G2 is the disjoint union of two (q, q � 4)-graphs G1 and G2, or
3. G = G1 � G2 is the join of two (q, q � 4)-graphs G1 and G2, or
4. G is a spider (S, K , R, E), where G[R] is a (q, q � 4)-graph if R 6= ;, or
5. G is a q-pseudo-spider (H2,H1, R, E), where G[R] is a (q, q � 4)-graph if R 6= ;.

Theorem 4 leads to a tree-like structure T (G) (the primeval tree) which represents the Primeval Decomposition of a
(q, q � 4)-graph G. T (G) is a rooted binary tree where any vertex v corresponds to an induced (q, q � 4)-subgraph Gv

of G and the root corresponds to G itself. Moreover, the vertices of subgraphs corresponding to the leaves of T (G) form a
partition of V (G), i.e., {V (G`)}` leaf of T (G) is a partition of V (G).

For any leaf ` of T (G), G` is either a spider (S, K , ;, E) or has at most q vertices. Moreover, any internal vertex v has its
label according to one of the four last cases of Theorem 4. More precisely, let v be an internal vertex of T (G), and let u and
w be its two children. v is a parallel node if Gv = Gu [ Gw . v is a series node if Gv = Gu � Gw . v is a spider node if u is a leaf
with Gu is a spider (S, K , ;, F) and Gv is the spider (S, K , R, E), where Gv[R] = Gw and Gv[S [ K ] = Gu. Finally, v is a small
node if u is a leaf with |V (Gu)|  q and Gv is the q-pseudo-spider (S, K , R, E), where Gv[R] = Gw and Gv[S [ K ] = Gu.

This tree can be obtained in linear time [19].
We compute hn(G) by a post-order traversal in T (G). More precisely, given v 2 V (T (G)), let Hv be an optimal hull set

of Gv , and let H⇤
v be an optimal hull set of G⇤

v , the graph obtained by adding a universal vertex to Gv . We show in the next
subsection that we can compute (H`,H⇤

` ) for any leaf ` of T (G) in time O(2qn). Moreover, for any internal vertex v of T (G),
we show that we can compute (Hv,H⇤

v ) in time O(2qn), using the information that was computed for the children and
grandchildren of v in T (G).

Theorem 5. Let q � 0, and let G be a n-node (q, q � 4)-graph. An optimal hull set of G can be computed in time O(2qn2).

Before going into the details of the algorithm in next subsection, we prove some useful lemmas.

Lemma 8 ([2]). Let G = (S, K , R, E) be a pseudo-spider with R neither empty nor a clique. Then, any minimum hull set of G
contains a minimum hull set of the subgraph G[K [ R].
Proof. Let H be a minimum hull set of G. Let HS = H \ S and HR = H \ HS . We prove that HR is a minimum hull set of
G[K [ R].

LetH 0 be anyminimumhull set of G[K [R]. Note thatH 0 ✓ R by Lemma 2, since K is a set of universal vertices in G[K [R].
Moreover, by Lemma 3, because G[K [ R] is an isometric subgraph of G, the convex hull of H 0 in G contains G[K [ R]. Hence,
HS [ H 0 is a hull set of G and hn(G)  |HS | + hn(G[K [ R]).
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Now, it remains to prove that HR is a hull set of G[K [ R]. Clearly, if HR generates all vertices of R in G[K [ R] then HR is a
hull set of G[K [ R] since there are at least two non-adjacent vertices in R and any vertex in K is adjacent to all vertices in R.
For purpose of contradiction, assume that HR does not generate R in G[K [ R]. This means that there is a vertex v 2 R that
is generated in G by a vertex in S [ K , i.e., v 2 R is an internal vertex of a shortest path between s 2 S [ K and some other
vertex, which is not possible, since we have all the edges between K and R. Hence, hn(G[K [ R])  |HR|.

Therefore, |HS | + |HR| = hn(G)  |HS | + hn(G[K [ R])  |HS | + |HR|. So, hn(G[K [ R]) = |HR|, i.e., HR is a minimum hull
set of G[K [ R] contained in H . ⇤

The next lemma is straightforward by the use of isometry.

Lemma 9. Let G be a graph which is not complete and that has a universal vertex. Let H be obtained from G by adding some new
universal vertices. A set is a minimum hull set of G if, and only if, it is a minimum hull set of H.

5.2. Dynamic programming and correctness

In this section, we detail the algorithm presented in the previous section and we prove its correctness. Let v 2 V (T (G)),
whichmay therefore be either a leaf, a parallel node, a series node, a spider node or a small node. For each of these five cases,
we describe how to compute (Hv,H⇤

v ), in time O(2qn).
Let us first consider the case when v is a leaf of T (G).
If Gv is a singleton {w}, then Hv = V (Gv) = {w} and H⇤

v = V (G⇤
v). If Gv is a spider (S, K , ;, E), then Hv = S since S is a

set of simplicial vertices (so it has to be included in any hull set by Lemma 1), and it is sufficient to generate Gv . One may
easily check that, if Gv is a thick spider, S is also a minimum hull set of G⇤

v , i.e., S = H⇤
v . However, when Gv is a thin spider, S

does not suffice to generate G⇤
v , and in this case it is easy to see that this is done by taking any extra vertex k 2 K , in which

case we have H⇤
v = S [ {k}. Finally, if Gv has at most q vertices, Hv and H⇤

v can be computed in time O(2q) by an exhaustive
search.

Now, let v be an internal node of T (G) with children u and w.
If v is a parallel node, then Gv = Gu [ Gw . Then, (Hv,H⇤

v ) can be computed in time O(1) from (Hu,H⇤
u ) and (Hw,H⇤

w)
thanks to Lemma 10.

Lemma 10 ([1]). Let Gv = Gu [ Gw . Then, (Hv,H⇤
v ) = (Hu [ Hw,H⇤

u [ H⇤
w).

Proof. The fact thatHu [Hw is an optimal hull set for Gv is trivial. The second part comes from the fact thatH⇤
u (respectively,

H⇤
w) is an isometric subgraph of H⇤

v , and from Lemma 3. ⇤

Now, we consider the case when v is a series node.

Lemma 11. If Gv = Gu � Gw , then (Hv,H⇤
v ) can be computed from the sets (Hx,H⇤

x ) of the children or grandchildren x of v in
T (G), in time O(2qn).

Proof. If Gu and Gw are both complete, then Gv is a clique and (Hv,H⇤
v ) = (V (Gv), V (G⇤

v)).
If Gu and Gw are both not complete, let x, y be any two non-adjacent vertices in Gu. Then, we claim thatHv = H⇤

v = {x, y}.
Indeed, in Gv , x and y generate all vertices in V (Gw) (respectively, of G⇤

w). In particular, two non-adjacent vertices z, r 2
V (Gw) are generated. Symmetrically, z, r generate all vertices in V (Gu) (respectively, in V (G⇤

u)).
Without loss of generality, we suppose now that Gu is a complete graph and that Gw is a non-complete (q, q � 4)-graph.

First, observe that no vertex of Gu belongs to any minimum hull set of Gv , since they are universal (Lemma 2). Note also
that, by Lemma 9, and since Gv is not a clique and has universal vertices, we can make Hv = H⇤

v . Hence, in what follows, we
consider only the computation of Hv . Let us consider all possible cases for w in T (G).

• w is a series node. Gw is the join of two graphs. We claim that Hv = Hw .
In this case, Gw is an isometric subgraph of Gv . Thus, by Lemma 3, any minimum hull set of Gw generates all vertices of
V (Gw) in Gv . Finally, since Gw has two non-adjacent vertices, they generate all vertices of Gu in Gv .

• w is a parallel node. Gw is the disjoint union of two graphs. Let x and y be the children of w in T (G). Then, Gw = Gx [ Gy.
Let X = H⇤

x if Gx is not a clique and X = V (Gx); otherwise, let Y = H⇤
y if Gy is not a clique and Y = V (Gy), otherwise. We

claim that Hv = X [ Y .
Clearly, if Gx (respectively, Gy) is a clique, all its vertices are simplicial in Gv and then must be contained in any hull set
by Lemma 1. Moreover, recall that, by Lemma 2, no vertex of Gu belongs to any minimum hull set of G.
Now, let z 2 {x, y} such that Gz is not complete. It remains to show that it is necessary and sufficient to also include any
minimum hull set H⇤

z of G⇤
z in any minimum hull set of G.

The necessity can be easily proved by using Lemma 8 for every Gz that is not a complete graph.
The sufficiency follows again from the fact that Gu is generated by two non-adjacent vertices of Gw and since, in all cases,
X [ Y contains at least one vertex in Gx and one vertex in Gy, all vertices in Gu will be generated.

• w is a spider node and Gw is a thin spider (S, K , ;, E 0). Then, Hv = S [ {k} = G⇤
w , where k is any vertex in K .

All vertices in S are simplicial in Gv; hence any hull set of Gv must contain S by Lemma 1. Now, in Gv , the vertices in S
are at distance 2, and no shortest path between two vertices in S passes through a vertex in K , since there is a join to
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a complete graph. Therefore, S is not a hull set of Gv . However, since |S| � 2, it is easy to check that adding any vertex
k 2 K to S is sufficient to generate all vertices in Gv . So S [ {k} is a minimum hull set of Gv .
Note that, in that way, Hv = S [ {k} = G⇤

w .• w is a spider node and Gw is a spider (S, K , R, E 0) that is either thick or R 6= ; and R induces a (q, q � 4)-graph. Then,
Hv = Hw .
If R = ;, then Gw is thick. In this case, it is easy to check that the only minimum hull set of Gw is S (because it consists of
simplicial vertices), and it is also a minimum hull set for Gv . Hence, Hv = Hw = S.
If R 6= ;, then by Lemma 1 any minimum hull set of Gw contains S. Moreover, by Lemma 8 any minimum hull set of Gw

contains a minimum hull set of K [ R which is composed by vertices of R.
By the same lemmas, a minimum hull set of Gw is a minimum hull set of Gv since, by Lemma 2, no vertex of Gu belongs
to any minimum hull set of Gv and Gu is generated by non-adjacent vertices of Gw .

• w is a small node. Gw is a q-pseudo-spider (H2,H1, R, E 0) and R induces a (q, q � 4)-graph.
If R = ;, Gv is the join of a clique Gu with a graph Gw that has at most q vertices. No vertex of Gu belongs to anyminimum
hull set of Gv , since they are universal. Thus, Hv can be computed in time O(2q) by testing all the possible subsets of
vertices of Gw .
Similarly, if R is a clique, all vertices in R are simplicial in Gv , so they must belong to any hull set of Gv . Moreover, no
vertices in Gu belong to any minimum hull set of Gv . So Hv can be computed in time O(2q) by testing all the possible
subsets of vertices of H1 [ H2 and adding R to them.
If R 6= ; nor a clique, two cases must be considered. By definition of the decomposition, there exists a child r ofw in T (G)
such that V (Gr) = R.
– If G[H1] is a clique, then Gv = (H2,H1 [ V (Gu), R, E) is a pseudo-spider that satisfies the conditions in Lemma 8.

Hence, any minimum hull set of Gv contains a minimum hull set of P = G[H1 [ V (Gu) [ R]. Let Z be a minimum hull
set of Gv , and let Z 0 = Z \ H2. By Lemma 8, we have |Z 0|  hn(Gv) � hn(P).
By Lemma 9, H⇤

r is a minimum hull set of G[H1 [ V (Gu) [ R]. Now, G[H1 [ V (Gu) [ R] is an isometric subgraph of Gv .
Hence, by Lemma 3, H⇤

r generates all vertices of G[H1 [ V (Gu) [ R] in Gv . Therefore, H⇤
r [ Z 0 will generate all vertices

of Gv . Since |H⇤
r | = hn(P), we get that |H⇤

r [ Z 0|  hn(Gv), and then H⇤
r [ Z 0 is a minimum hull set of Gv .

So, we have shown that there exists a minimum hull set for Gv that can be obtained from H⇤
r by adding some vertices

in H1 [ H2. Since |H1 [ H2|  q, such a subset of H1 [ H2 can be found in time O(2q).
– IfG[H1] is not a clique, let x and y be two non-adjacent vertices ofH1.We claim in this case that there exists aminimum

hull set of Gv containing at most one vertex of R. Let S be a minimum hull set of Gv containing at least two vertices
in R. Observe that S 0 = (S\R) [ {x, y} is also a hull set of Gv , since x and y are sufficient to generate all vertices in R.
Consequently, |S 0|  |S|, and S 0 is minimum.
Since no hull set of Gv contains a vertex in V (Gu), there always exists a minimum hull set of Gv that consists of only
vertices in H1 [H2 plus at most one vertex in R. Therefore, an exhaustive search can be performed in time O(n2q). ⇤

Now, we consider the case when v is a spider node or a small node. That is, Gv = (S, K , R, E). If R 6= ;, let r be the child
of v such that V (Gr) = R.

Lemma 12. Let Gv = (S, K , R, E) be a spider such that R induces a (q, q � 4)-graph.
Then, Hv = H⇤

v = S [ H⇤
r if R 6= ; and R is not a clique, and Hv = H⇤

v = S [ R otherwise.

Proof. Since all the vertices in S are simplicial vertices in Gv and in G⇤
v , we apply Lemma 1 to conclude that they are all

contained in any hull set of Gv (respectively, of G⇤
v).

By the structure of a spider, every vertex of K (and the universal vertex in G⇤
v) belongs to a shortest path between two

vertices in S and is therefore generated by them in any minimum hull set of Gv (respectively, of G⇤
v). Consequently, if R = ;,

S is a minimum hull set of Gv (respectively, of G⇤
v). If R is a clique, S [ R is the set of simplicial vertices of Gv (respectively, of

G⇤
v) and also a minimum hull set of Gv (respectively, of G⇤

v).
Finally, if R 6= ; and R is not a clique, then Gv is a pseudo-spider satisfying the conditions of Lemma 8. Similarly, G⇤

v is a
pseudo-spider (by including the universal vertex in K ). Then, by Lemma 8, any hull set of Gv (respectively, of G⇤

v) contains
a minimum hull set of G[K [ R] (respectively, of G⇤

v \ S. Moreover, any hull set contains all vertices in S, since they are
simplicial. Hence, hn(Gv) = hn(G⇤

v) = |S|+hn(G[K [R]) (recall that, by Lemma 9, hn(G[K [R]) = hn(G⇤
v \ S)). Finally, since

G[K [ R]) is an isometric subgraph of Gv , H⇤
r (which is a minimum hull set of G[K [ R] by Lemma 9) generates G[K [ R] in

Gv (respectively, in G⇤
v).

Hence, S [ H⇤
r is a hull set of Gv and G⇤

v . Moreover, it has size |S| + hn(G[K [ R]), so it is optimal. ⇤
Lemma 13. Let Gv = (H2,H1, R, E) be a q-pseudo-spider such that R is a (q, q� 4)-graph. Then, Hv and H⇤

v can be computed in
time O(2qn).

Proof. All the arguments to prove this lemma are in the proof of Lemma 11. Moreover, the following arguments hold both
for Gv and G⇤

v: they allow computation of both Hv and H⇤
v .

If R = ;, Gv has at most q vertices, for a fixed positive integer q. Thus, its hull number can be computed in O(2q) time.
Otherwise, ifH1 is a clique, by Lemma 8, anyminimum hull set of Gv contains aminimum hull set of G[H1 [R]. Moreover,

by the same arguments as in Lemma 11, we can show that there is an optimal hull set for Gv that can be obtained from H⇤
r

(minimum hull set of G[H1 [ R]) and some vertices in H2.
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IfH1 is not a clique, twonon-adjacent vertices ofH1 can generateR. Thus,we conclude that there exists aminimumhull set
ofGv containing atmost one vertex of R. Then, aminimumhull set ofGv can be found inO(2qn) time, where n = |V (Gv)|. ⇤

6. Hull number via 2-connected components

In this section, we introduce the generalized hull number of a graph. Let G = (V , E) be a graph, and let S ✓ V . The
generalized hull number, denoted by hn(G, S), is the minimum size of a set U ✓ V \ S such that U [ S is a hull set for G. We
prove that, to compute the hull number of a graph, it is sufficient to compute the generalized hull number of its 2-connected
components (or blocks). This extends a result in [5].

Theorem 6. Let G be a graph, and let G1, . . . ,Gn be its 2-connected components. For any i  n, let Si ✓ V (Gi) be the set of
cut-vertices of G in Gi. Then,

hn(G) =
X

in

hn(Gi, Si).

Proof. Clearly, the result holds if n = 1; so we assume that n > 1.
A block Gi is called a leaf-block if |Si| = 1. Note that, for any leaf-block Gi, G[V \ (V (Gi) \ Si)] is convex, so, by Lemma 4,

any hull set of G contains at least one vertex in V (Gi) \ Si. Moreover, for any minimum hull set S of G, S \ ([inSi) = ;. To
prove this fact, it is sufficient to observe that, for any cut-vertex v, there exist two vertices u and v in disjoint leaf-blocks
such that v in a shortest (u, v)-path.

Claim 7. Let S be a hull set of G. Then S 0 = (S \ V (Gi)) [ Si is a hull set of Gi.

Proof. For the purpose of contradiction, assume that Ih[S 0] = V (Gi) \ X for some X 6= ;. Then, there is v 2 X \ I[a, b] for
some a 2 V (G) \V (Gi) and b 2 V (G) \X . Then, there is a shortest (a, b)-path P containing v. Hence, there is u 2 Si such that
u is on the subpath of P between a and v. Moreover, let w = b if b 2 Gi, and else let w be a vertex of Si on the subpath of P
between v and b. Hence, v 2 I[u, w] ✓ Ih[S 0], a contradiction. ⇤

Let X be any minimum hull set of G. Since X \ ([inSi) = ;, we can partition X = [inXi such that Xi ✓ V (Gi) \ Si
and Xi \ Xj = ; for any i 6= j. Moreover, by Claim 7, Xi [ Si is a hull set of Gi, i.e., |Xi| � hn(Gi, Si). Hence, hn(G) = |X | =P

in |Xi| � P
in hn(Gi, Si).

It remains to prove the reverse inequality. For any i  n, let Xi ✓ V (Gi) \ Si such that Xi [ Si is a hull set of Gi and
|Xi| = hn(Gi, Si). We prove that S = [inXi is a hull set for G. Indeed, for any v 2 Si, there are two leaf-blocks G1,G2 such
that v is on a shortest path between G1 and G2 or {v} = V (G1) \ V (G2). So, there exist x 2 X1 and y 2 X2 such that v is on a
shortest (x, y)-path, i.e., v 2 I[x, y] ✓ Ih[S]. Hence, [inSi ✓ Ih[S], and therefore V = [inIh[Xi [ Si] ✓ Ih[[in(Xi [ Si)] ✓
Ih[[in(Xi)] = Ih[S]. ⇤

A cactus G is a graph in which every pair of cycles has at most one common vertex. This definition implies that each block
of G is either a cycle or an edge. By using the previous result, one may easily prove the following.

Corollary 2 ([2]). In the class of cactus graphs, the hull number can be computed in linear time.

7. Bounds

In this section, we use the same techniques as presented in [5,1] to prove new bounds on the hull number of several
graph classes. These techniques mainly rely on a greedy algorithm for computing a hull set of a graph and that consists of
the following. Given a connected graph G = (V , E) and its set S of simplicial vertices, we start with H = S or H = {v} (v
is any vertex of V ) if S = ;, and C0 = Ih[H]. Then, at each step i � 1, if Ci�1 ⇢ V , the algorithm greedily chooses a subset
Xi ✓ V \ Ci�1, adds Xi to H and sets Ci = Ih[H]. Finally, if Ci = V , the algorithm returns H , which is a hull set of G.

Claim 8. If, for every i � 1, |Ci \ (Ci�1 [ Xi)| � c · |Xi|, for some constant c > 0, then |H|  max{1, |S|} +
l

|V |�max{1,|S|}
1+c

m
.

In the following, we keep the notation used to describe the algorithm.

Claim 9. Let G be a connected graph. Then, before each step i � 1 of the algorithm, for any v 2 V \ Ci�1, N(v) \ Ci�1 induces a
clique. Moreover, any connected component induced by V \ Ci�1 has at least two vertices.

Proof. Let v 2 V \Ci�1, and assume that v has two neighbors u andw in Ci�1 that are not adjacent. Then, v 2 I[u, w] ✓ Ci�1
because Ci�1 is convex, a contradiction. Note that, at any step i � 1 of the algorithm, V \ Ci�1 contains no simplicial vertex.
By a previous remark, if v has only neighbors in Ci�1, then v is simplicial, a contradiction. ⇤

Claim 10. If G is a connected C3-free graph, then, at every step i � 1 of the algorithm, a vertex in V \Ci�1 has at most one neighbor
in Ci�1.

Proof. Assume that v 2 V \ Ci�1 has two neighbors u, w 2 Ci�1. {u, w} /2 E because G is triangle free. This contradicts
Claim 9. ⇤
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Lemma 14. For any C3-free connected graph G and at step i � 1 of the algorithm, either Ci�1 = V or there exists Xi ⇢ V \ Ci�1
such that |Ci \ (Ci�1 [ Xi)| � |Xi|.
Proof. If there is v 2 V \ Ci�1 at distance at least 2 from Ci�1, let Xi = {v}, and the result clearly holds. Otherwise, let v be
any vertex in V \ Ci�1. By Claim 9, v has a neighbor u in V \ Ci�1. Moreover, because no vertices of V \ Ci�1 are at distance
at least 2 from Ci�1, v and u have some neighbors in Ci�1. Finally, u and v have no common neighbors because G is triangle
free. Hence, by taking Xi = {v}, we have u 2 Ci, and the result holds. ⇤

Recall that the girth of a graph is the length of its smallest cycle.

Lemma 15. Let G be connected with girth at least 6. Before any step i � 1 of the algorithm when Ci�1 6= V , there exists
Xi ⇢ V \ Ci�1 such that |Ci \ (Ci�1 [ Xi)| � 2|Xi|.
Proof. If there is v 2 V \ Ci�1 at distance at least 3 from Ci�1, let Xi = {v}, and the result clearly holds. Otherwise, let v be a
vertex in V \Ci�1 at distance 2 from any vertex of Ci�1. Letw 2 V \Ci�1 be a neighbor of v that has a neighbor z 2 Ci�1. Since
v is not simplicial, v has another neighbor u 6= w in V \ Ci�1. If u is at distance 2 from Ci�1, let y 2 V \ Ci�1 be a neighbor of u
that has a neighbor x 2 Ci�1. In this case, since the girth of G is at least 6, z 6= x, and there is a shortest (v, z)-path containing
w and a shortest (v, x)-path containing u and y. Consequently, by setting Xi = {v}, we obtain the desired result. The same
happens when u has a neighbor x 2 Ci�1. One may use again the hypothesis that the girth of G is at least 6 to conclude that,
by setting Xi = {v}, we obtain that w, u 2 Ci.

Finally, we claim that no vertex remains in V \ Ci�1. By contradiction, suppose that it is the case, and that they are in
V \ Ci�1 and all these vertices have a neighbor in Ci�1. Let v be a vertex in V \ Ci�1 that has a neighbor z in Ci�1. Again, v
has a neighbor u 2 V \ Ci�1, since it is not simplicial. The vertex u must have a neighbor x in Ci�1. Observe that x and z are
at distance 3, since the girth of G is at least 6. Consequently, v and u are in a shortest (x, z)-path should not be in V \ Ci�1,
which is a contradiction. ⇤

Lemma 16. Let G be a connected graph. Before any step i � 1 of the algorithm when Ci�1 6= V , there exist Xi ⇢ V \ Ci�1 such
that |Ci \ (Ci�1 [ Xi)| � 2|Xi|/3.

Moreover, if G is k-regular (k � 1), there exist Xi ⇢ V \ Ci�1 such that |Ci \ (Ci�1 [ Xi)| � |Xi|.
Proof. By Claim 9, all connected component of V \ Ci�1 contains at least one edge.

• If there is v 2 V \ Ci�1 at distance at least 2 from Ci�1, let Xi = {v} and |Ci \ (Ci�1 [ Xi)| � |Xi|.
• Now, assume all vertices in V \ Ci�1 are adjacent to some vertex in Ci�1. If there are two adjacent vertices u and v in

V \ Ci�1 such that there is z 2 Ci�1 \ N(u) \ N(v), then let Xi = {v}. Therefore, u 2 Ci and |Ci \ (Ci�1 [ Xi)| � |Xi|. So, the
result holds.

• Finally, assume that, for any two adjacent vertices u and v in V \ Ci�1, N(u) \ Ci�1 = N(v) \ Ci�1 6= ;.
We first prove that this case actually cannot occur if G is k-regular. Let v 2 V \ Ci�1. By Claim 9, K = N(v) \ Ci�1 induces
a clique. Moreover, for any u 2 N(v) \ Ci�1, N(u) \ Ci�1 = K . Note that k = |K | + |N(v) \ Ci�1|. Let w 2 K . Then,
A = (K [ N(v) [ {v}) \ {w} ✓ N(w) and, since |A| = k, we get that A = N(w). Moreover, N[u] cannot induce a clique,
since V \ Ci�1 contains no simplicial vertices, i � 1. Hence, there are x, y 2 N(v) \ Ci�1 such that {x, y} /2 E. Because
G is k-regular, there is z 2 N(x) \ (N(v) [ Ci�1). However, N(z) \ Ci�1 = N(x) \ Ci�1 = K . Hence, z 2 N(w) \ A, a
contradiction.
Now, assume that G is a general graph. Let v be a vertex ofminimumdegree in V \Ci�1. Recall that, by Claim 9,N(v)\Ci�1
induces a clique. Because any neighbor u 2 V \ Ci�1 of v has the same neighborhood as v in Ci�1, and because v is not
simplicial, there must be u, w 2 N(v) \ Ci�1 such that {u, w} /2 E. Now, by minimality of the degree of v, there exists
y 2 N(u) \ (N(v) [ Ci�1) 6= ;. Similarly, there exists z 2 N(w) \ (N(v) [ Ci�1) 6= ;. Let us set Xi = {v, z, y}. Hence,
u, w 2 Ci \ (Ci�1 [ Xi), and the result holds. ⇤

Theorem 7. Let G be a connected n-node graph with s simplicial vertices. All bounds below are tight.

• hn(G)  max{1, s} +
l

3(n�max{1,s})
5

m
.

• If G is C3-free or k-regular (k � 1), then hn(G)  max{1, s} +
l

n�max{1,s}
2

m
.

• If G has girth � 6, then hn(G)  max{1, s} +
l

1(n�max{1,s})
3

m
.

Proof. The first statement follows from Claim 8 and the first statement in Lemma 16. The second statement follows from
Claim 8 and Lemma 14 (the case where G is C3-free) and the second part of Lemma 16 (the case of regular graphs). The last
statement follows from Claim 8 and Lemma 15.

All bounds are reached in the case of complete graphs. In the case with no simplicial vertices, the first bound is reached
by the graph obtained by taking several disjoint C5 and adding a universal vertex, the second bound is obtained for a C5, and
the third one is reached by a C7. ⇤

The first statement of the previous theorem improves another result in [5].
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Corollary 3. If G is a graph with no simplicial vertex, then

lim sup
|V (G)|!1

hn(G)

|V (G)| = 3
5
.

It important to remark that the second statement of Theorem 7 is closely related to a bound of Everett and Seidman
proved in Theorem 9 of [5]. However, the graphs they consider do not have simplicial vertices and, consequently, they do
not have vertices of degree 1, which is not a constraint for our result.

8. Conclusions

In this paper, we simplified the reduction of Dourado et al. [1] to answer a question they asked about the complexity of
computing the hull number of bipartite graphs. We presented polynomial-time algorithms for computing the hull number
of cobipartite graphs, (q, q � 4)-graphs and cactus graphs. Finally, we presented upper bounds for general graphs and two
particular graph classes.

The result in Section 5 provides an FPT algorithm where the parameter is the number of induced P4s in the input graph.
It would be nice to know about the parametrized complexity of the Hull Number problem when the parameter is the size
of the hull set.

Another question of Dourado et al. [1], concerning the complexity of this problem for interval graphs and chordal graphs,
remains open. To the best of our knowledge, determining the complexity of the Hull Number problem on planar graphs is
also an open problem.
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