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a b s t r a c t

A good edge-labelling of a graph G is a labelling of its edges such that, for any ordered pair of
vertices (x, y), there do not exist two paths from x to y with increasing labels. This notion
was introduced by Bermond et al. (2009) [2] to solve wavelength assignment problems for
specific categories of graphs. In this paper, we aim at characterizing the class of graphs that
admit a good edge-labelling. First, we exhibit infinite families of graphs for which no such
edge-labelling can be found. We then show that deciding whether a graph G admits a good
edge-labelling is NP-complete, even if G is bipartite. Finally, we give large classes of graphs
admitting a good edge-labelling: C3-free outerplanar graphs, planar graphs of girth at least
6, {C3, K2,3}-free subcubic graphs and {C3, K2,3}-free ABC-graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A classical and widely studied problem in WDM (Wavelength Division Multiplexing) networks is the Routing and
Wavelength Assignment (RWA) problem [9,10,1]. It consists in finding routes, and their associated wavelength as well,
to satisfy a set of traffic requests while minimizing the number of used wavelengths. This is a difficult problem which is,
in general, NP-hard. Thus, it is often split into two distinct problems: first, routes are found for the requests. Then, in the
second step, these routes are taken as an input. Wavelengths must be associated to them in such a way that two routes
using the same fibre do not have the same wavelength. The last problem can be reformulated as follows: given a digraph
and a set of dipaths, corresponding to the routes for the requests, find the minimal number of wavelengths w needed to
assign different wavelengths to dipaths sharing an edge. This problem can be seen as a colouring problem of the conflict
graphwhich is defined as follows: it has one vertex per dipath and two vertices are linked by an edge if their corresponding
dipaths share an edge. In [2], Bermond et al. studied the RWA problem for UPP-DAGs which are acyclic digraphs (or DAGs)
in which there is at most one dipath from one vertex to another. In such digraphs the routing is forced and thus the unique
problem is the wavelength assignment one.

In their paper, they introduced the notion of good edge-labelling. An edge-labelling of a graph G is a function φ : E(G) →

R. A path is increasing if the sequence of its edge labels is non-decreasing. An edge-labelling of G is good if, for any two
distinct vertices u, v, there is at most one increasing (u, v)-path. Bermond et al. [2] showed that the conflict graph of a set of
dipaths in a UPP-DAG has a good edge-labelling. Conversely, for any graph admitting a good edge-labelling one can exhibit
a family of dipaths on a UPP-DAG whose conflict graph is precisely this graph. Bermond et al. [2] then used the existence
of graphs with a good edge-labelling and a large chromatic number to prove that there exist sets of requests on UPP-DAGs
with load 2 (an edge is shared by at most two paths) requiring an arbitrarily large number of wavelengths.
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To obtain other results on this problem, it may be useful to identify the good graphs which admit a good edge-labelling
and the bad oneswhich do not. Bermond et al. [2] noticed that C3 andK2,3 are bad. Sereni [12] askedwhether every {C3, K2,3}-
free graph (i.e., with no C3 nor K2,3 as a subgraph) is good. In Section 3, we answer this question in the negative. We give an
infinite family of bad graphs none of which is the subgraph of another.

Furthermore, in Section 4, we prove that determining whether a graph has a good edge-labelling is NP-complete using
a reduction from Not-All-Equal 3-SAT.

In Section 5, we show large classes of good graphs: forests, C3-free outerplanar graphs, planar graphs of girth at least 6.
To do so, we use the notion of critical graphwhich is a bad graph such that every proper subgraph of which is good. Clearly, a
good edge-labelling of a graph induces a good edge-labelling of all its subgraphs. So every bad graph must contain a critical
subgraph. We establish several properties of critical graphs. In particular, we show that they have no matching-cut. Hence,
a result of Farley and Proskurowski [7,5] (Theorem 16) implies that a critical graph G has at least 3

2 |V (G)| −
3
2 edges.

In Section 6, we use the characterization of graphs with no matching-cut and
 3

2 |V (G)| −
3
2


edges given by Bonsma

[3,5] to slightly improve this result. We show that a critical graph G has at least 3
2 |V (G)| −

1
2 edges unless G is C3 or K2,3.

Finally, we present avenues for future research.

2. Preliminaries

In this section, we give some technically useful propositions. Their proofs are straightforward and left to the reader.
A path is decreasing if the sequence of its edge labels is non-increasing. Then, a path u1u2 . . . uk is decreasing if and only if

its reversal ukuk−1 . . . u1 is increasing. Hence an edge-labelling is good if and only if for any two distinct vertices u, v, there
is at most one decreasing (u, v)-path. Equivalently, an edge-labelling is good if and only if for any two distinct vertices u, v,
there is at most one increasing (u, v)-path and at most one decreasing (u, v)-path.

Let x and y be two vertices of G. Two distinct (x, y)-paths P and Q are independent if V (P) ∩ V (Q ) = {x, y}. Observe that
in an edge-labelled graph G, there are two vertices u, v with two increasing (u, v)-paths if and only if there are two vertices
u′, v′ with two increasing independent (u′, v′)-paths. Hence the definition of good edge-labellingmay be expressed in terms
of independent paths.

Proposition 1. An edge-labelling is good if and only if for any two distinct vertices u and v, there are no two increasing indepen-
dent (u, v)-paths.

As above, the definition may also be in terms of decreasing independent paths. In the paper, we sometimes use
Proposition 1 without referring explicitly to it.

Let φ be a good edge-labelling of a graph G. If φ(E(G)) ⊂ A then for every strictly increasing function f : A → B, f ◦ φ is
a good edge-labelling into B. Moreover if φ is not injective, one can transform it into an injective one by recursively adding
a tiny ϵ to one of the edges having the same label. Hence we have the following.

Proposition 2. Let G be a graph and A an infinite set in R ∪ {−∞, +∞}. Then G admits a good edge-labelling if and only if it
admits an injective good edge-labelling into A.

Let φ be an injective good edge-labelling into an infinite set in R ∪ {−∞, +∞} of a graph G. Observe that an injective
good edge-labelling φ′ of G into R can be easily found by just replacing the label −∞(+∞) by the smaller (resp., greater)
label assigned by φ minus (resp., plus) some ϵ > 0.

3. Bad graphs

A path of length 1 is both increasing and decreasing, and a path of length two is either increasing or decreasing. So C3 has
clearly no good edge-labelling. Also K2,3 does not admit a good edge-labelling since there are three paths of length 2 between
the two vertices of degree 3. Hence, in any edge-labelling, two of them are increasing or two of them are decreasing.

Extending this idea, we now construct an infinite family of bad graphs, none of which is the subgraph of another. The
construction of this family is based on the graphs Hk defined below. These graphs play the same role as a path of length
2 because they have two vertices u and v such that any good edge-labelling of Hk has either a (u, v)-increasing path or a
(v, u)-increasing path.

For any integer k ≥ 3, let Hk be the graph defined by

V (Hk) = {u, v} ∪ {ui | 1 ≤ i ≤ k} ∪ {vi | 1 ≤ i ≤ k},
E(Hk) = {uui | 1 ≤ i ≤ k} ∪ {uivi | 1 ≤ i ≤ k} ∪ {viv | 1 ≤ i ≤ k}, ∪{viui+1 | 1 ≤ i ≤ k}

with uk+1 = u1. See Fig. 1.
Observe that the graph Hk has no K2,3 as a subgraph, and for i ≠ k,Hi is not a subgraph of Hk.

Proposition 3. Let k ≥ 3. For every good edge-labelling, the graph Hk has either an increasing (u, v)-path or an increasing
(v, u)-path.
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Fig. 1. Graph Hk .

Proof. Suppose, by way of contradiction, that Hk has a good edge-labelling φ having no increasing (u, v)-path and no
increasing (v, u)-path. By Proposition 2, we may assume that φ is injective.

A key component in this proof is the following observation which follows easily from the fact that φ is good.

Observation 3.1. Suppose x1x2x3x4x1 is a 4-cycle. Then, either
• φ(x4x1) < φ(x1x2), φ(x2x3) < φ(x1x2), φ(x2x3) < φ(x3x4) and φ(x1x4) < φ(x3x4); or
• all those inequalities are reversed.

By symmetry, we may assume that φ(uu1) < φ(u1v1). By Observation 3.1, φ(v1u2) < φ(u1v1), φ(v1u2) < φ(uu2) and
φ(uu1) < φ(uu2). Then, since vv1u2u is not increasing, φ(u2v1) < φ(v1v). Again by Observation 3.1, φ(v2v) < φ(u2v2).
Thus since uu2v2v is not increasing φ(uu2) < φ(u2v2).

Applying the same reasoning, we obtain that φ(uu2) < φ(uu3) and φ(uu3) < φ(u3v3) and so on, iteratively, φ(uu1) <
φ(uu2) < · · · < φ(uuk) < φ(uu1), a contradiction. �

For convenience we denote by H2 the path of length 2 with end vertices u and v. Let i, j, k be three integers greater than
1. The graph Ji,j,k is the graph obtained from disjoint copies of Hi,Hj and Hk by identifying the vertices u of the three copies
and the vertices v of the three copies.

Proposition 4. Let i, j, k be three integers greater than 1. Then Ji,j,k is bad.

Proof. Suppose, by way of contradiction, that Ji,j,k admits a good edge-labelling. By Proposition 3, in each of the subgraphs
Hi,Hj and Hk, there is either an increasing (u, v)-path or an increasing (v, u)-path. Hence in Ji,j,k, there are either two
increasing (u, v)-paths or two increasing (v, u)-paths, a contradiction. �

4. NP-completeness

In this section, we prove that it is an NP-complete problem to decide if a bipartite graph admits a good edge-labelling.
We give a reduction from the NOT-ALL-EQUAL (NAE) 3-SAT Problem [11] which is defined as follows:

Instance: A set V of variables and a collection C of clauses over V such that each clause has exactly 3 literals.
Question: Is there a truth assignment such that each clause has at least one true and at least one false literal?
For the sake of clarity, we first present the NP-completeness proof for general graphs.

Theorem 5. The following problem is NP-complete.
Instance: A graph G.
Question: Does G have a good edge-labelling?

Proof. Given a graph G and an injective edge-labelling φ into R, one can check in polynomial time if φ is good or not using
the following algorithmwhere (u1v1, . . . , umvm) is an ordering of the edges ofG in increasing order according to their labels.

foreach u ∈ V (G) do
Set V (T ) := {u}, E(T ) := ∅;
foreach i=1 to m do

if {ui, vi} ⊂ V (T ) then
return ‘‘bad edge-labelling’’;

if ui ∈ V (T ) (and vi /∈ V (T )) then
V (T ) := V (T ) ∪ {vi} and E(T ) := E(T ) ∪ {uivi};

return ‘‘good edge-labelling’’;
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Fig. 2. The variable graph VGi .

Fig. 3. The clause graph CGj .

Indeed, for each vertex u, the above algorithm grows the tree T of increasing paths from u: at each step i, T is the tree of
increasing paths from u with arcs with labels less than φ(uivi). In particular, there is an increasing (u, v)-path Pv for every
v ∈ V (T ). Hence if ui ∈ V (T ) and vi ∈ V (T ) then Pvi and Pui + uivi are two increasing (u, vi)-paths, so the edge-labelling
is not good. If ui ∈ V (T ) and vi ∉ V (T ), then Pui + uivi is a new increasing path that must be included into T . Finally, if
ui ∉ V (T ) and vi ∉ V (T ), then uivi will not be in any increasing path from u as the edges to be considered after it have larger
labels.

Hence the considered problem is in NP.
To prove that the problem is NP-complete, we will reduce the NAE 3-SAT Problem without repetition (i.e. a variable

appears atmost once in each clause) which is equivalent to the NAE 3-SAT Problem (with repetition) to it. (For each repeated
variable x, we introduce two other variables y and z. Then the second (third) occurrence of x in a clause is replaced by y(z).
Then, x, y, z are forced to have the same truth assignment by adding x̄ ∨ y ∨ z, x ∨ ȳ ∨ z, x ∨ y ∨ z̄, x̄ ∨ ȳ ∨ z, x̄ ∨ y ∨ z̄, and
x ∨ ȳ ∨ z̄ to the instance.)

Let V = {x1, . . . , xn} and C = {C1, . . . , Cm} be an instance I of the NAE 3-SAT Problem without repetition. We shall
construct a graph GI in such a way that I has an answer yes for the NAE 3-SAT Problem if and only if GI has a good edge-
labelling.

For each variable xi, 1 ≤ i ≤ n, we create a variable graph VGi defined as follows (see Fig. 2.):

V (VGi) = {v
i,j
k | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {r i,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {si,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}.

E(VGi) = {v
i,j
k v

i,j
k+1 | 1 ≤ j ≤ m, 1 ≤ k ≤ 3} ∪ {v

i,j
4 v

i,j+1
1 | 1 ≤ j ≤ m − 1}

∪{v
i,j
k r i,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {v

i,j
k si,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}

∪{v
i,j
4 r i,j1 | 1 ≤ j ≤ m} ∪ {v

i,j+1
k r i,jk+1 | 1 ≤ j ≤ m − 1, 1 ≤ k ≤ 3}

∪{v
i,j
4 si,j1 | 1 ≤ j ≤ m} ∪ {v

i,j+1
k si,jk+1 | 1 ≤ j ≤ m − 1, 1 ≤ k ≤ 3}.

For each clause Cj = l1 ∨ l2 ∨ l3, 1 ≤ j ≤ m, we create a clause graph CGj defined as follows (see Fig. 3.):

V (CGj) = {c j, bj1, b
j
2, b

j
3};

E(CGj) = {c jbj1, c
jbj2, c

jbj3}.

Now, for each literal lk, 1 ≤ k ≤ 3, if lk is the non-negated variable xi, we identify bjk, c
j and bjk+1 (index k is takenmodulo

3) with v
i,j
1 , v

i,j
2 and v

i,j
3 , respectively. Otherwise, if lk is the negated variable x̄i, we identify bjk, c

j and bjk+1 with v
i,j
3 , v

i,j
2 and

v
i,j
1 , respectively.
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Let us first show that, if GI has a good edge-labelling φ, then there is a truth assignment such that each clause of I has at
least one true literal and at least one false literal.

By Proposition 2, we may assume that φ is injective. �

Claim 5.1. Let 1 ≤ i ≤ n. If φ(v
i,1
1 v

i,1
2 ) < φ(v

i,1
2 v

i,1
3 ) then φ(v

i,j
1 v

i,j
2 ) < φ(v

i,j
2 v

i,j
3 ) for all 1 ≤ j ≤ m.

Proof. By induction on j. A path of length 2 is necessarily increasing or decreasing. Now v
i,j
1 is joined to v

i,j
4 by two paths of

length two via r i,j1 and si,j1 . Since φ is good, one of these two paths is increasing and the other one is decreasing. In addition,
the path v

i,j
1 v

i,j
2 v

i,j
3 v

i,j
4 is neither increasing nor decreasing so φ(v

i,j
2 v

i,j
3 ) > φ(v

i,j
3 v

i,j
4 ).

Applying three times this reasoning, we derive φ(v
i,j
3 v

i,j
4 ) < φ(v

i,j
4 v

i,j+1
1 ), φ(v

i,j
4 v

i,j+1
1 ) > φ(v

i,j+1
1 v

i,j+1
2 ) and finally

φ(v
i,j+1
1 v

i,j+1
2 ) < φ(v

i,j+1
2 v

i,j+1
3 ). �

Hence we define the truth assignment Λ by Λ(xi) = true if φ(v
i,1
1 v

i,1
2 ) < φ(v

i,1
2 v

i,1
3 ) and Λ(xi) = false otherwise.

Let us show that each clause Cj has at least one true literal or one false literal. Set Cj = l1 ∨ l2 ∨ l3. First observe that,
by construction, for all 1 ≤ k ≤ 3, lk is true if φ(bjkc

j) < φ(bjk+1c
j) and lk is false otherwise. Now the three literals are

not all true otherwise, φ(bj1c
j) < φ(bj2c

j) < φ(bj3c
j) < φ(bj1c

j), a contradiction. And they are not all false, otherwise
φ(bj1c

j) > φ(bj2c
j) > φ(bj3c

j) > φ(bj1c
j), a contradiction. Hence Cj has at least one true literal and one false literal.

Conversely, let us now show that if there is a truth assignment Λ such that each clause of I has at least one true literal
and at least one false literal, then GI has a good edge-labelling.

The idea is to find a good edge-labelling φ satisfying the following property (⋆): if Λ(xi) = true, φ(v
i,j
1 v

i,j
2 ) < φ(v

i,j
2 v

i,j
3 )

for all 1 ≤ j ≤ m and if Λ(xi) = false, φ(v
i,j
1 v

i,j
2 ) > φ(v

i,j
2 v

i,j
3 ) for all 1 ≤ j ≤ m.

Let Cj = l1 ∨ l2 ∨ l3 be a clause. To satisfy (⋆), we must label the edges of VGj such that φ(bjkc
j) < φ(bjk+1c

j) if lk is true
and φ(bjkc

j) > φ(bjk+1c
j) if lk is false. As Cj has at least one true and one false literal, there is a unique way to label the three

edges c jbjk, 1 ≤ k ≤ 3, with {−1, 0, +1} such that the condition (⋆) is fulfilled.
Let us now extend this edge-labelling to the remaining edges of each of the variable graphs VGi. First, for all 1 ≤ j ≤ m

and 1 ≤ k ≤ 4, assign −3 and +3 alternatingly on the edges of the cycle of length 4 containing both r i,jk and si,jk such that
φ(v

i,j
k r i,jk ) = −3. Then, if Λ(xi) = true, set φ(v

i,j
3 , v

i,j
4 ) = −2 and φ(v

i,j
4 , v

i,j+1
1 ) = 2 for all 1 ≤ j ≤ m, and, if Λ(xi) = false,

set φ(v
i,j
3 , v

i,j
4 ) = 2 and φ(v

i,j
4 , v

i,j+1
1 ) = −2 for all 1 ≤ j ≤ m.

We claim that φ is a good edge-labelling of GI . Suppose, by way of contradiction, that there is a pair of vertices (x, y) such
that two independent increasing (x, y)-paths P1 and P2 exist.

A set of two independent paths starting at a vertex of R = {r i,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4} ∪ {si,jk | 1 ≤ j ≤ m, 1 ≤ k ≤ 4}
contains one increasing path (the one starting with the edge labelled −3) and one decreasing path (the one starting with
the edge labelled 3). Hence x and y are not in R.

In addition, the union of P1 and P2 cannot be one of the four-cycles formed by the edges incident to r i,jk and si,jk for some
i, j and k.

Without loss of generality, we may assume that P1 is at least as long as P2. As cycles formed by two graphs GVi and GVj
are of length at least 6, P1 has length at least 3. Now one can see that P1 may not contain any vertex of R because every path
of length at least 3 with internal vertices in R is not increasing (nor decreasing).

Hence P1 must contain at least three consecutive edges on one of the paths Qi = VGi − R. So P1 is not increasing, a
contradiction.

Observe that the graph GI constructed in the above proof is not bipartite. However, with a slight modification, we can
transform it into a bipartite graph and obtain the following theorem.

Theorem 6. The following problem is NP-complete.

Instance: A bipartite graph G.

Question: Does G have a good edge-labelling?

Proof. Let G′

I be the graph obtained from GI (described in the proof of Theorem 5) by replacing each path v
i,j
k , r i,jk , v

i,j
k+3 and

each path v
i,j
k , si,jk , v

i,j
k+3, by copies of a graph Hk′ defined in Section 4, for some k′

≥ 3 and for all i = 1, . . . , n, j = 1, . . . ,m
and k = 1, . . . , 4 (k + 3 is taken modulo 4).

By Proposition 3, it is not difficult to verify that G′

I admits a good edge-labelling, if and only if, G′

I also does. Moreover,
each Hk′ admits a proper 2-colouring such that the vertices u and v have disjoint colours. Thus, G′

I is bipartite, since it
admits a proper 2-colouring where all the vertices v

i,j
1 and v

i,j
3 belong to the same colour class, for all i = 1, . . . , n and

j = 1, . . . ,m. �
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5. Classes of good graphs

Recall that a graph G is critical if it is bad but each of its proper subgraphs is good. To prove that every graph in a class C
closed under taking subgraphs has a good edge-labelling, it suffices to prove that C contains no critical graph.

Lemma 7. Let G be a graph with a cutvertex x, C1, . . . , Ck be the components of G − x and Gi = G⟨Ci ∪ {x}⟩, 1 ≤ i ≤ k. Then G
is good if and only if all the Gi are good.

Proof. Necessity is obvious since a good edge-labelling of G induces a good edge-labelling on each subgraph Gi.
Sufficiency follows from the fact that there are two independent (u, v)-paths in G only if there exists i, 1 ≤ i ≤ k, such

that u and v are in V (Gi). Hence the union of good edge-labellings of all the Gi is a good edge-labelling of G. �

Corollary 8. Every critical graph is 2-connected.

Corollary 9. Every forest F admits a good edge-labelling.

Proof. No forest contains a non-trivial 2-connected subgraph, and so contains no critical subgraph. �

Let G = (V , E) be a graph. A K2-cut of G is a set of two adjacent vertices u and v such that the graph G − {u, v} (obtained
from G by removing u and v and their incident edges) has more connected components than G.

Lemma 10. Let G be a connected graph and {u, v} a K2-cut in G such that G − {u, v} has two connected components C1 and C2.
If G1 = G⟨C1 ∪ {u, v}⟩ and G2 = G⟨C2 ∪ {u, v}⟩ have a good edge-labelling then G has a good edge-labelling.

Proof. Let φ1 and φ2 be good edge-labellings of G⟨C1 ∪ {u, v}⟩ and G⟨C2 ∪ {u, v}⟩, respectively, such that φ1(uv) = φ2(uv).
Then the union of φ1 and φ2 is a good edge-labelling of G. Indeed, suppose by way of contradiction, that there exist x and

y and two independent increasing (x, y)-paths P1 and P2 in G. W.l.o.g., we may assume that x ∈ V (G1). At least one of the
paths, say P1, contains at least one edge e1 in E(G2) \ {uv} since φ1 is good.

Assume first that y ∈ V (G1). Then P1 must go through u and v. Let Q2 be the shortest (u, v)-subpath of P1 containing e1.
Then Q2 is either increasing or decreasing. Hence since uv is both increasing and decreasing, there are either two increasing
paths or two decreasing paths in G2. This contradicts the fact that φ2 is good.

Assume now that y ∈ C2. Then since P1 and P2 are independent without loss of generality, P1 goes through u and P2 goes
through v. Let Q1 be the (x, u)-subpath of P1, R1 be the (u, y)-subpath of P1, let Q2 be the (x, v)-subpath of P2 and R2 be the
(v, y)-subpath of P2.

If φ(uv) is larger than the label of the last edge of Q1, then Q1uv and Q2 are two increasing (x, v)-paths in G1, a
contradiction. If not φ(uv) is smaller than the label of the first edge of R1 and vuR1 and R2 are two increasing (v, y)-paths in
G2, a contradiction. �

Let G = (V , E) be a graph. An edge-cut is a non-empty set of edges between a set of vertices S and its complement S.
Formally, for any S ⊂ V , the edge-cut [S, S] is the set {uv ∈ E | u ∈ S and v ∈ S). An edge cut which is also a matching is
called amatching-cut.

Lemma 11. Let G be a graph and [S, S] a matching-cut in G. If G⟨S⟩ and G⟨S⟩ have a good edge-labelling then G has a good
edge-labelling.

Proof. Let φ1 be a good edge-labelling of G⟨S⟩ and φ2 be a good edge-labelling of G⟨S⟩ (in R). Then the edge-labelling φ of G
defined by φ(e) = φ1(e) if e ∈ E(G⟨S⟩), φ(e) = φ2(e) if e ∈ E(G⟨S⟩) and φ(e) = +∞ if e ∈ [S, S] is good.

Indeed, suppose by way of contradiction, that it is not good. Then there exist two vertices u and v and two independent
increasing (u, v)-paths P1 and P2. Since φ1 and φ2 are good, then without loss of generality, we may assume that u ∈ S and
v ∈ S. For i = 1, 2, the path Pi contains an edge of uivi in [S, S]. Now, since u1v1 and u2v2, are labelled +∞ and are incident
to no edges labelled +∞, u1v1 must be the last edge of P1 and u2v2 the last edge of P2. So v1 = v = v2, which is impossible
as [S, S] is a matching. �

Corollary 12. A critical graph has no matching-cut.

Corollary 13. Every C3-free outerplanar graph admits a good edge-labelling.

Proof. An easy result of Eaton and Hull [6] states that a C3-free outerplanar graph has either a vertex of degree 1 or two
adjacent vertices of degree 2. This implies that it has a matching-cut. Hence by Corollary 12 no C3-free outerplanar graph is
critical, which yields the result. �

A graph is subcubic if every vertex has degree at most three.

Lemma 14. Every subcubic {C3, K2,3}-free graph has a matching-cut.
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Proof. Let G be a subcubic graph {C3, K2,3}-free. If G has no cycle, then every edge forms a matching-cut. Suppose now that
G has a cycle. Let C be a cycle of smallest length in G. If C is a connected component of G (in particular, if C = G) then any
pair of non-adjacent edges of C forms a matching-cut.

If not, let us show that [V (C), V (C)] is a matching-cut. Let e1 = x1y1 and e2 = x2y2 be two distinct edges in [V (C), V (C)]
with x1, x2 ∈ V (C). Then x1 ≠ x2 because these two vertices have degree (at most) 3 and they have two neighbours in V (C).
Suppose by way of contradiction that y1 = y2. Then x1 and x2 are not adjacent since G is C3-free. Furthermore, there are the
two (x1, x2)-paths along C are of length at most 2 otherwise C would not be a smallest cycle. Hence C is a cycle of length 4
and the graph induced by V (C) ∪ {y1} is a K2,3, a contradiction. �

Corollary 12 and Lemma 14 immediately imply that the sole subcubic critical graphs are C3 and K2,3.

Corollary 15. Every subcubic {C3, K2,3}-free graph has a good edge-labelling.

Farley andProskurowski [7,5] proved that every (multi)graphGonn verticeswith less than 3
2 (n−1) edges has amatching-

cut.

Theorem 16 (Farley and Proskurowski [7,5]). Let G be a multigraph. If |E(G)| < 3
2 |V (G)| −

3
2 then G has a matching-cut.

Corollary 12 and Theorem 16 yield immediately the following.

Corollary 17. Every critical graph has at least
 3

2 |V (G)| −
3
2


edges.

An easy and well-known consequence of Euler’s Formula states that every planar graph with girth at least 6 has at most
3
2 |V (G)| − 3 edges and so is not critical.

Corollary 18. Every planar graph of girth at least 6 has a good edge-labelling.

6. Good edge-labelling of ABC-graphs

Corollary 17 states that every critical graph has at least
 3

2 |V (G)| −
3
2


edges. This is tight since if G is C3 or K2,3 then

|E(G)| =
 3

2 |V (G)| −
3
2


. We will now show that those two graphs are the unique critical ones satisfying this equality.

Farley and Proskurowski [7,5] constructed a class of multigraphs G (called ABC-graphs) having
 3

2 |V (G)| −
3
2


edges with

no matching-cut. The definition of ABC-graphs is based on the following three operations:

• An A-operation on vertex u introduces vertices v and w and edges uv, uw and vw.
• A B-operation on edge uv introduces vertices w1 and w2 and edges uw1, vw1, uw2 and vw2, and removes edge uv.
• A C-operation on vertices u and v (u = v is allowed) introduces vertex w and edges uw and vw.

Note that the C-operation is the only operation that can introduce parallel edges.
An ABC-graph is a graph that can be obtained fromK1 with a sequence of A- and B-operations and atmost one C-operation.
It is easy to check that ABC-graphs have no matching-cut. In addition, solving a conjecture of Farley and Proskurowski,

Bonsma [3,5] showed that they are the unique extremal examples, i.e., satisfying |E(G)| =
 3

2 |V (G)| −
3
2


.

Theorem 19 (Bonsma [3,5]). Let G be a graph such that |E(G)| =
 3

2 |V (G)| −
3
2


. Then G has no matching-cut if and only if G

is an ABC-graph.

Our aim is to prove that every {C3, K2,3}-free ABC-graph is good. It is easy to check that every 2-connected component of
an ABC-graph is an ABC-graph, so by Lemma 7, it suffices to prove it for 2-connected ABC-graphs.

Observe that the C-operation is the only one that changes the parity of the order. Hence an ABC-graph with an odd
number of vertices is obtained from K1 with a sequence of A- and B-operations and no C-operation.

Let G be a graph obtained from a graph H by a B-operation on some edge uv. Let φ be an edge-labelling of H . Let φ0 and
φ∞ be the edge-labellings of G defined by:

φ0(e) = φ∞(e) = φ(e) for all e ∈ E(H) \ {uv},

φ0(uw1) = φ0(w2v) = 1/2,
φ0(uw2) = φ0(w1v) = −1/2,
φ∞(uw1) = φ∞(w2v) = +∞,

φ∞(uw2) = φ∞(w1v) = −∞.

Proposition 20. Let G be a graph obtained from a graph H by a B-operation on some edge uv and φ be a good edge-labelling
of H.

(i) If φ is injective integer-valued and φ(uv) = 0, then φ0 is a good edge-labelling of G.
(ii) If φ is real-valued, then φ∞ is a good edge-labelling of G.
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Fig. 4. The graph G1 and a good edge-labelling.

Proof. (i) By contradiction, suppose that φ0 is not a good edge-labelling of G. Then there exist two increasing independent
(x, y)-paths P1 and P2 on G, for some x, y ∈ V (G).

Since φ is a good edge-labelling of H , by the definition of φ0 at least one edge of the set E ′
= {uw1, uw2, vw1, vw2}

belongs to some of the paths P1 or P2. Observe also that an increasing path in H cannot contain more than two edges of E ′.
Suppose then that exactly one of the paths, say P1, contains a non-empty intersection with the set E ′. In this case, there

would be two increasing paths in the edge-labellingφ ofH . To prove this fact, let P ′

1 be the path obtained from P1 by replacing
the edges of the set E ′

∩ E(P1) by the edge uv. Observe that P ′

1 and P2 would be two increasing paths of H under the edge-
labelling φ, since φ(uv) = 0.

Hence the paths P1 and P2 both contain some edge of the set E ′. Suppose first that P1 and P2 contain exactly one edge of
E ′ each. As P1 and P2 are independent, we assume that uw1 ∈ E(P1) and vw1 ∈ E(P2), without loss of generality. If w1 = y,
then the last edge of the (x, u)-subpath of P1 has a label smaller than 0 (since φ is injective) and the same happens for the
last edge of the (x, v)-subpath of P2 (observe that at least one of these subpaths must be non-empty). Consequently, there
would be two increasing paths (x, u)-paths or (x, v)-paths in H under the edge-labelling φ. Similarly, one may conclude
that if w1 = x, then there would also be two increasing paths on φ. It is just necessary to verify that the first edges of the
(u, y)-subpath of P1 and of the (v, y)-subpath of P2 are greater than 0 (at least one of these edges exist) and that there would
be two increasing (u, y)-paths or (v, y)-paths in H .

Finally, P1 and P2 cannot have both two edges from E ′ because they are independent.
(ii) The proof that φ∞ is a good edge-labelling of G is similar to the proof of (i). In this case, P1 and P2 cannot contain just

one edge of E ′. Consequently, either E(P1) ⊂ E ′ or E(P2) ⊂ E ′. In any case, there would be an increasing (u, v)-path or an
increasing (v, u)-path, which is a contradiction because there would be two increasing paths in H . �

Corollary 21. If G is a graph obtained from a good graph by a B-operation, then G is good.

Proof. It follows directly from Proposition 20. �

Lemma 22. Let G be a 2-connected ABC-graph with an odd number of vertices. If G ∉ {C3, K2,3} then G is good.

Proof. By contradiction, suppose that G is a counter-example to the statement. As every A-operation (with the exception
of the transition K1 → C3) creates a cut-vertex, by Lemma 7, we may assume that G is obtained from C3 with a sequence
of B-operations. However a B-operation on C3 at any edge creates a K2,3 and a B-operation on K2,3 at any edge creates the
graph G1 depicted in Fig. 4. If G ∉ {C3, K2,3} then it is obtained from G1 with a sequence of B-operations. Now this graph G1
admits a good edge-labelling (see Fig. 4). Hence an easy induction and Corollary 21 imply that G has a good edge-labelling,
a contradiction. �

Since 2-connected components of an ABC-graph with an odd number of vertices are ABC-graphs with an odd number of
vertices, we have the following.

Corollary 23. Every {C3, K2,3}-free ABC-graph with an odd number of vertices is good.

We nowwould like to prove an analogous statement to the one of Corollary 23 but for ABC-graphs with an even number
of vertices.

Let G be a graph and x, y be two distinct vertices of G. An (x, y)-better edge-labelling of G is a good edge-labelling of G such
that there is no increasing (x, y)-path. Clearly, if x and y are adjacent or if x and y have two neighbours in common then G
has no (x, y)-better edge-labelling. A graph is friendly if it has a good edge-labelling and for any pair (x, y) of non-adjacent
vertices with at most one neighbour in common there exists an (x, y)-better edge-labelling.

Let G1 be a graph whose vertex set is {v1, v2, v3, v4, w, y1, y2} and whose edge set is
4

i=1{(w, vi)} ∪ {(v1, y1),
(v2, y1), (v3, y2), (v4, y2)} ∪ {y1, y2} (see Fig. 4.).

Lemma 24. G1 is friendly.

Proof. Let φ be the edge-labelling of G1 in Fig. 4. Then φ is good.
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Let us now prove that for every pair p = (a, b) of two distinct non-adjacent vertices a and b in G1 such that a and b have
at most one common neighbour, there is a better (a, b)-edge-labelling of G1.

First, observe that the vertex w of G1 cannot be in such a pair because, for any other vertex of G1, either w is adjacent to
it or they have two common neighbours.

Suppose now that the vertex y1 ∈ p. Then the other vertex of p must be v3 or v4. But φ is (v3, y1)-better and (y1, v4)-
better, and so −φ is (y1, v3)-better and (v4, y1)-better. Hence in any case, there is a better p-edge-labelling of G1.

By symmetry, if y2 is a vertex of p, there exists a p-better edge-labelling.
Suppose that v1 ∈ p. Then the other vertex of p is v3 or v4. φ is (v1, v4)-better and exchanging the labels of y2v3 and

y2v4 and also the labels of v3w and v4w we obtain a (v1, v3)-better edge-labelling φ′. Thus −φ′ and −φ are respectively
(v3, v1)-better and (v4, v1)-better. Hence in any case, there is a better p-edge-labelling of G1.

By symmetry, if v2, v3 or v4 is a vertex of p, there exists a p-better edge-labelling. �

Proposition 25. Let G be a graph obtained from a graph H by a B-operation on some edge uv. If H is friendly then G is friendly.

Proof. Let w1, w2 be the vertices created by the B-operation. Let x and y be two non-adjacent vertices of G having at most
one neighbour in common. Then |{x, y} ∩ {w1, w2}| ≤ 1.

• Suppose first that {x, y} ∩ {w1, w2} = ∅. Then x and y are not adjacent in H .
Assume first that x and y have at most one common neighbour in H . Let φ be an injective integer-valued (x, y)-better

edge-labelling of H such that φ(uv) = 0. Then φ0 is a good edge-labelling of G by Proposition 20-(i). Moreover it is easy
to check that there is no increasing (x, y)-path in G. Hence φ0 is an (x, y)-better edge-labelling of G.

Assume now that x and y have two common neighbours in H . As they do not have two common neighbours in G, we
can supposew.l.o.g. that x = u andN(x)∩N(y) = {v, w}, for some vertexw. Letφ be a real-valued good edge-labelling of
H . Free to consider −φ, we may assume that uvy is an increasing path. Hence in H \uv there is no increasing (u, y)-path.
By Proposition 20-(ii), φ∞ is a good edge-labelling of G. Moreover it is an (x, y)-better edge-labelling, because there is no
increasing (u, y)-path in H \ uv and the unique increasing paths containing w1 and w2 are uw2 and uw2v.

• Suppose now that |{x, y} ∩ {w1, w2}| = 1. Without loss of generality, we may assume that x = w1 and y is not adjacent
to v.

Assume first that v and y have at most one common neighbour in H . Let φ be a (v, y)-better edge-labelling of H . By
Proposition 2, we may assume that φ is real-valued. By Proposition 20-(ii), φ∞ is a good edge-labelling of G. Moreover,
there is no increasing (w1, y)-path, through u sinceφ(uw1) = +∞, nor through v since there is no increasing (v, y)-path
in H . Hence φ∞ is a (w1, y)-better edge-labelling of G.

Assume now that v and y have two common neighbours in H .
– Suppose that y is adjacent to u. Let φ be an injective integer-valued good edge-labelling of H such that φ(uv) = 0. Free

to consider −φ, we may assume that φ(uy) < 0 and so φ(uy) ≤ −1. By Proposition 20-(i), φ0 is a good edge-labelling
of G. Moreover it has no increasing (w1, y)-path and so is (w1, y)-better. Indeed suppose for a contradiction that there
is an increasing (w1, y)-path P:
∗ If u is the second vertex of P then P − w1 is an increasing (u, y)-path. Since φ(uy) ≤ −1, P − w1 is not (u, y). So

P − w1 and (u, y) are two increasing (u, y)-paths in H , a contradiction.
∗ If v is the second vertex of P then the path Q in H obtained from P by replacing w1 with u is an increasing (u, y)-

path because the labels of the edges of P − w1 are positive. Thus Q and (u, y) are distinct increasing (u, y)-paths, a
contradiction.

– Suppose that y is not adjacent to u. Let t1 and t2 be the two common neighbours of v and y. Let φ be an injective
integer-valued good edge-labelling ofH such that φ(uv) = 0.Without loss of generality, wemay assume that (v, t1, y)
is increasing and (v, t2, y) is decreasing. By Observation 3.1, φ(vt1) < φ(vt2). Thus, if φ(vt1) > 0 then φ(vt2) > 0. So
with respect to −φ, (v, t2, y) is increasing and −φ(vt2) < 0. Hence, free to consider −φ (and swap the names of t1
and t2), we may assume that φ(vt1) < 0 and so φ(vt1) ≤ −1. By Proposition 20-(i), φ0 is a good edge-labelling of G.
Moreover it has no increasing (w1, y)-path and so is (w1, y)-better. Indeed suppose for a contradiction that there is an
increasing (w1, y)-path P:
∗ If v is the second vertex of P then P −w1 is an increasing (v, y). Since φ(vt1) ≤ −1, P −w1 is not (v, t1, y). So there

are two increasing (v, y)-paths in H , a contradiction.
∗ If u is the second vertex of P then the path P ′ inH obtained from P by replacingw1 with v is an increasing (v, y)-path

because the labels of the edges of P − w1 are positive. P ′ is distinct from (v, t1, y), a contradiction. �

One can now generalize Lemma 22.

Lemma 26. Let G be a 2-connected ABC-graph with an odd number of vertices. If G ∉ {C3, K2,3} then G is friendly.

Proof. Similarly as in the proof of Lemma 22, combining Lemma 24 and Proposition 25 yield the result by induction. �

Corollary 27. Every {C3, K2,3}-free ABC-graph with an odd number of vertices is friendly.
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Proof. Let x and y be two non-adjacent vertices of G having at most one common neighbour.
Assume first that x and y are in a same connected 2-component C . By Lemma 26, C has an (x, y)-better edge-labelling

and, by Corollary 23, G \ E(C) has a good edge-labelling. The union of these two edge-labellings is clearly an (x, y)-better
labelling of G.

Suppose now that the 2-connected components containing x do not contain y. Let G1 be the graph induced by the
union of the 2-connected components containing x and G2 = G \ E(G1). By Corollary 23, the two graphs G1 and G2
admit good edge-labellings φ1 and φ2, respectively. Free to add a huge number to all the labels of φ1, we may assume that
min{φ1(e) | e ∈ E(G1)} > max{φ2(e) | e ∈ E(G2)}. Then the union of φ1 and φ2 is an (x, y)-better labelling of G. �

Lemma 28. Let G be a 2-connected ABC-graph with an even number of vertices. If G is {C3, K2,3}-free, then G is good.

Proof. We prove this lemma by induction on the number of vertices (or equivalently the number of A-, B- or C-operations).
An even ABC-graph is obtained from K1 with a sequence of A- and B-operations and exactly one C-operation. Since G is
2-connected, no A-operation can be made after a C-operation. Consider a sequence of operations such that the C-operation
is done as late as possible. Let u and v be the vertices on which the C-operation is done and w the introduced vertex.

• Suppose that the C-operation is the ultimate one. Note that u ≠ v since G has nomultiple edges. Since G is {C3, K2,3}-free
then u and v are not adjacent and u and v have at most one neighbour in common. Hence by Corollary 27, G − w admits
a (u, v)-better edge-labelling φ (in R). Setting φ(uw) = −∞ and φ(wv) = +∞ we obtain a good edge-labelling of G.

• If the C-operation is the penultimate one, then it is followed by a B-operation on one of the introduced edges, because
the C-operation is applied as late as possible and G is C3-free. These two operations together may be seen as a single one
on u and v that introduces the vertices t1, t2 and w and the edges ut1, ut2, t1w, t2w and wv.

Note that u and v are not adjacent sinceG isK2,3-free. Assume first that u and v have atmost one neighbour in common.
By Corollary 27, G − {t1, t2, w} admits a (u, v)-better edge-labelling φ. Let M be the maximum value of φ. Then setting
φ(ut1) = φ(t2w) = −∞, φ(ut2) = φ(t1w) = M + 1 and φ(vw) = M + 2, we obtain a good edge-labelling of G.

Assume now that u and v have at least two common neighbours. Since G is K2,3-free, then u and v have exactly two
common neighbours x1 and x2. By Corollary 23, G− {t1, t2, w} admits a good edge-labelling φ. By Proposition 2, we may
assume that φ is injective and real-valued. Without loss of generality, we may suppose that φ(vx1) > φ(vx2). Let us
set φ(ut1) = φ(t2w) = +∞, φ(ut2) = φ(t1w) = −∞ and φ(vw) =

1
2 (φ(vx1) + φ(vx2)). We claim that φ is a good

edge-labelling of G. Indeed suppose, by way of contradiction, that it is not the case. Then there exist two vertices a and
b and two independent increasing (a, b)-paths P1 and P2. Since φ is a good edge-labelling of G − {t1, t2, w} one of these
two paths, say P1 must go through w. Moreover since φ(t1w) = −∞ and φ(t2w) = +∞ and d(w) = 3, then either wt1
(or t1w) is the first edge of P1 or t2w (or wt2) is the last edge of P1. Free to consider −φ instead of φ, we may assume that
we are in the first case.

Two cases may occur. Either (a) P1 starts in t1 or (b) P1 starts in w.
(a) In this case, P2 = (t1, u) and the third vertex of P1 is v. Then Q1 = P1 − {t1, w} is an increasing (v, u)-path. So by

Observation 3.1 and the assumption that φ(vx1) > φ(vx2), Q1 = vx2u (we recall the reader that another increasing
(v, u)-path not going through x2 cannot exist as φ is a good edge-labelling of G − {t1, t2, w}). This is a contradiction
because φ(wv) > φ(vx2).

(b) In this case, P1 = (w, t1, u), becauseφ(ut1) = +∞. Now the first edge of P2 iswv. HenceQ2 = P2−w is an increasing
(v, u)-path and vx2 is not the first edge of Q2 since φ(wv) > φ(vx2). Note that by Observation 3.1, vx2u is increasing
because φ(vx1) > φ(vx2). So, in G − {t1, t2, w}, there are two distinct increasing (v, u)-paths. This contradicts the
fact that φ is a good edge-labelling of G − {t1, t2, w}.

• If there are exactly twoB-operations after theC-operation, and ifu andv are not adjacent thenby the inductionhypothesis
and Corollary 21, G has a good edge-labelling. If u and v are adjacent, then uv is a K2-cut. Let C1 be the component
of G − {u, v} containing w (i.e., the set of vertices added with the C-operation and the following B-operations). Let
G1 = G⟨C1 ∪{u, v}⟩ and G2 = G⟨V (G) \ C1⟩. Note that G1 is obtained from a triangle by performing two B-operations and
thus is the graph G1 depicted Fig. 4 which has a good edge-labelling. Similarly, G2 is the graph G taken before performing
the C-operation has a good edge-labelling. Hence by Lemma 10, G has a good edge-labelling.

• If there are at least three B-operations after the C-operation, then by the induction hypothesis and Corollary 21, G has a
good edge-labelling. �

Lemmas 22 and 28 imply that every 2-connected {C3, K2,3}-free ABC-graph is good. Since 2-connected components of an
ABC-graph are ABC-graphs, we have the following.

Corollary 29. Every {C3, K2,3}-free ABC-graph is good.

In turn, this corollary, together with Corollary 12, Theorems 16 and 19, yields the following.

Theorem 30. Let G be a critical graph. If G ∉ {C3, K2,3} then |E(G)| ≥
3
2 |V (G)| −

1
2 .



2512 J. Araujo et al. / Discrete Applied Mathematics 160 (2012) 2502–2513

7. Conclusions and further research

Wehave shown that it is NP-complete to decide whether a graph has a good edge-labelling, even for the class of bipartite
graphs. It would be nice to find large classes of graphs for which it is polynomial-time decidable. For graphs with treewidth
1, which are the forests, it is the case. But is it also the case for graphs with treewidth at most k?

Problem 31. Let k ≥ 2 be a fixed integer. Does there exist a polynomial-time algorithm that decides whether a given graph
of treewidth at most k has a good edge-labelling?

We also do not know what is the complexity of the problem when restricted to planar graphs.

Problem 32. Does there exist a polynomial-time algorithm that decides whether a given planar graph has a good edge-
labelling?

We do not even know if there are planar critical graphs distinct from C3 and K2,3.

Problem 33. Does there exist a {C3, K2,3}-free planar graph which is bad?

If there is no such graphs or only a finite number of them then the answer to Problem 32 will be yes.
Corollary 18 implies that, with the additional condition of girth at least 6, the answer to Problem 33 is no. It would be

nice to solve the above problems for planar graphs of smaller girth. In particular, we do not know if there is a planar graph
with girth 5 which is bad.

Problem 34. Does every planar graph of girth at least 5 have a good edge-labelling?

Bonsma [4] showed that it is NP-complete to decide if a planar graph of girth at least 5 has a matching-cut. In particular,
there are infinitely many planar graphs of girth at least 5 without matching-cut. However, for all such graphs we looked at,
we were able to find a good edge-labelling.

The average degree of a graph G is Ad(G) =


v∈V (G) d(v)

|V (G)|
=

2|E(G)|

|V (G)|
.

Theorem 30 implies that for any c < 3 there is a finite number of critical graphs with average degree at most c. Actually,
we conjecture that the only ones are C3 and K2,3.

Conjecture 35. Let G be a critical graph. Then Ad(G) ≥ 3 unless G ∈ {C3, K2,3}.

More generally for any c < 4, we conjecture the following.

Conjecture 36. For any c < 4, there exists a finite list of graphs L such that if G is a critical graph with Ad(G) ≤ c then G ∈ L.

The constant 4 in the above conjecture would be tight. Indeed, for all k, the graph J2,2,k defined in Section 3 is critical: it is
bad according to Proposition 4. Moreover one can easily show that for any edge e,Hk \ e has a good edge-labelling with no
(u, v)-increasing path and no (v, u)-increasing (just follow the constraint as in the proof of Proposition 3). Extending this
labelling by labelling the two H2 with −∞ and +∞ such that one of them is an increasing (u, v)-path and the other one an
increasing (v, u)-path we obtain a good edge-labelling of J2,2,k \ e. Furthermore Ad(J2,2,k) =

8k+8
2k+4 = 4 −

4
k+2 . Last, one can

easily see that if k ≠ k′ then J2,2,k is not a subgraph of J2,2,k′ .
Theorem 30 says that if a graph has no dense subgraphs then it has a good edge-labelling. On the opposite direction one

may wonder what is the minimum density ensuring a graph to be bad. Or equivalently,

Problem 37. What is the maximum number g(n) of edges of a good graph on n vertices?

Clearly, we have g(n) = ex(n, C) where C is the set of critical graphs. As K2,3 is critical then g(n) ≤ ex(n, K2,3) =
1

√
2
n3/2

+ O(n4/3) by a result of Füredi [8].
The hypercubes show that g is super-linear. Indeed the hypercube Hk is obtained from two disjoint copies of Hk−1 by

adding a perfect matching between them. Hence an easy induction and Lemma 11 shows that Hk has a good edge-labelling.
Since Hk has 2k vertices and 2k−1k edges, g(2k) ≥ 2k−1k, so g(n) ≥

1
2n log n.
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