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Abstract

In this paper we study a combinatorial optimization problem is-
sued from on-board networks in satellites. In this kind of networks
the entering signals (inputs) should be routed to amplifiers (outputs).
The connections are made via expensive switches with four links avail-
able. The paths connecting inputs to outputs should be link-disjoint.
More formally, we call (p, λ, k)−network an undirected graph with
p + λ inputs, p + k outputs and internal vertices of degree four. A
(p, λ, k)−network is valid if it is tolerant to a restricted number of
faults in the network, i.e. if for any choice of at most k faulty inputs
and λ faulty outputs, there exist p edge-disjoint paths from the re-
maining inputs to the remaining outputs. In the special case λ = 0, a
(p, λ, k)−network is already known as a selector.

Our optimization problem consists of determining N(p, λ, k), the
minimum number of nodes in a valid (p, λ, k)−network. For this, we
present validity certificates and a gluing lemma from which derive lower
bounds for N(p, λ, k). We also provide constructions, and hence upper
bounds, based on expanders. The problem is very sensitive to the order
of λ and k. For instance, when λ and k are small compared to p, the
question reduces to avoid certain forbidden local configurations. For
larger values of λ and k, the problem is to find graphs with a good
expansion property for small sets. This leads us to introduce a new
parameter called α-robustness. We use α-robustness to generalize our
constructions to higher order values of k and λ. In many cases, we
provide asymptotically tight bounds for N(p, λ, k).
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switching networks, routing, expanders, connectivity, disjoint paths.
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1 Introduction

Motivation. One of the most fundamental questions in many applications
of computer science and graph theory is the design of efficient networks.
Efficient can have several meanings depending on the context. Properties
such as high connectivity, fault tolerance and being algorithmically simple
are at the heart of such properties. In this paper we study a combinatorial
optimization problem of this kind. The problem, originally posed by Alcatel
Space Industry, comes from the design of efficient on-board networks in
satellites (also called Traveling Wave Tube Amplifiers). For example, the
satellites under consideration are used for TV and video transmission (like
the Eutelsat or Astra series) as well as for private applications. Signals
incoming in a telecommunication satellite through ports have to be routed
through an on-board network to amplifiers. A first constraint is that the
network is built of switches with four links. But other constraints appear.
On the one hand the amplifiers may fail during the satellite’s life time and
can not be repaired. On the other hand, as the satellite is rotating on itself,
not all the ports and amplifiers are well oriented and hence available. So
more amplifiers and ports are needed than the number of signals which have
to be routed. One can easily construct a network fulfilling these constraints
by using two concentrators of any fixed degree. However, to decrease launch
costs, it is crucial to minimize the network physical weight, i.e. for us, to
minimize the number of switches. Since switches are also expensive to build,
it is worth saving even one. Space industries are interested in designing such
networks for specific values of the parameters. However the general theory
is of interest by itself.
Problem. We consider here networks, connecting a set of inputs to a
set of outputs. A network can be seen as a graph with a set of inputs
and outputs, vertices of this graph representing the switches. We define
a (p,λ, k)−network as a network with p + λ inputs and p + k outputs. A
(p,λ, k)−network is said to be valid, if it can tolerate up to k faults in inputs
and up to λ faults in outputs, more formally if for any choice of p inputs and
of p outputs, there exist p edge-disjoint paths linking all the chosen inputs
to all the chosen outputs. By symmetry, we may assume in the following
that k ≥ λ and we set n := p + k.

Note that finding minimal networks is a challenging problem and even
testing the validity of a given network is hard (see related work). We study
the case where the switches of the network have degree four (although the
theory can be generalized to any degree) which is of primary interest for
the applications. The problem is to find N(p,λ, k), the minimum number
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of switches in a valid (p,λ, k)−network and to give constructions of such
networks.
Related Work. This study of a new kind of network should be considered
in the spirit of the well studied theory of superconcentrators. A (p + k, p)-
concentrator [Val75] is a directed acyclic graph G = (V,E) with p+k desig-
nated input nodes and p designated output nodes (k ≥ 0), such that for each
subset of p input nodes, there exist p edge-disjoint (or, depending on the
context, vertex-disjoint) paths from the input nodes to the output nodes.
A selector, first introduced in [BDD02], is a (p, 0, k)-network (λ = 0). A
general theory of selectors can be found in [BPTed], where several results
are obtained for small values of k. A selector can be seen as an undirected
version of a (p + k, p)-concentrator. An n-superconcentrator [Pip77] is a
directed acyclic graph G = (V,E) with n designated input nodes and n
designated output nodes such that, for any set S of p ≤ n inputs and any
set T of p outputs, there exist p edge-disjoint (or, node-disjoint depend-
ing on the context) paths connecting S to T . There is a vast theory of
superconcentrators (See the seminal work of Pippenger [Pip77] for an in-
troduction, [AM84, AGM87, AC03] and Schöning [Sch06] for constructions,
and [BKP+81] for complexity issues).

In this way, (p,λ, k)-networks generalize the concept of selectors as su-
perconcentrators generalize concentrators. It is also clear that taking a
superconcentrator (resp. (p + k, p)−concentrator) and forgetting the orien-
tations provides a valid (p,λ, k)-network (resp. selector) for every value of
k = λ (resp. any k and λ = 0). So one can try to use superconcentrators
to construct efficient on-board satellite networks, but, not surprisingly, this
does not give minimal networks in general. The major difference between the
superconcentrators and general valid networks is that in a valid network the
number of inputs and outputs that may become out of service is bounded (in
our case, given a failure probability, no more that k failures will occur during
the satellite lifetime) To find a minimal network (a superconcentrator of low
density or having a minimum number of vertices) is a challenging problem
and is an active area of research (see the papers [AM84], [AGM87], [AC03]
and very recent construction in [Sch06]). From algorithmic point of view,
one can show that the problem of testing if a graph is a (p+k, p)-concentrator
or a superconcentrator, is coNP-complete. In fact, they are complete even
when restricted to the important special case of graphs of size linear in the
number of inputs (see [BKP+81]). By the same arguments one can prove
that the problem of deciding if a given (p,λ, k)-network is valid or not is
coNP-complete, even restricted to the networks of regular degree 4.

In [BHT06] the authors consider a variant of selectors where some signals
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have priority and should be sent to amplifiers offering the best quality of
service. In [BD02] the authors study the case were all the amplifiers are
different and where a given input has to be sent to a dedicated output. This
problem is related to permutation networks.

In [BGP06], the authors present exact values of N(p,λ, k) for small values
of k and λ and arbitrary values of p. For instance N(p, 2, 1) = N(p, 1, 2) =
N(p, 2, 2) = p + 2 and also for k ∈ {3, 4} and 0 < λ ≤ 4, N (p,λ, k) = ⌈ 5n

4 ⌉

Figure 1: A valid (12,4,4)-network

Results. We are primarily interested in this paper in large networks, where
n = p + k tends to infinity and also k is large enough. We present sev-
eral upper and lower bounds for the minimal number of switches in a
valid (p,λ, k)−network. In many cases these bounds are asymptotically
tight. Since forgetting the orientation of superconcentrators provide valid
(p,λ, k)−networks, these results, as far as we know, provide the first lower
bounds on the size of a superconcentrator. To obtain the lower bounds we
present a very powerful technique, quasi-partitioning. We give here the very
first applications of this lemma, but we think it may have several applica-
tions in other related problems (for example bisection-width, see [MP01]).
To obtain upper bounds we propose several constructions. The construction
of optimal valid networks will heavily rely on expanders (see section A.2) .
Using these, we are able to construct simplified networks with 2n switches
as soon as n is large enough and k ≤ c1 log n for some constant c1 (Sec-
tion 3.1). In Section ?? we also give a lower bound of order 2n(1 − ϵ(k))
where ϵ(k) tends to zero when k tends to infinity (but we do not need
k ≤ c1 log n). Thus for simplified networks the problem is asymptotically
solved for k ≤ c1 log n. For general networks, using bipartite expanders, we
obtain an upper bound of n + 3

4n when k ≤ c2 log n for some constant c2.
The lower bound we obtain is (n + 2

3n)(1− ϵ(λ, k)), and we conjecture that
n + 3

4n should be the right value. We also give a construction of selectors
(case λ = 0) of size n + n

2 , in which case we get also a tight lower bound.
To extend the results to larger values of k, we define a local expansion prop-
erty of graphs that we call α−robustness (see [CRVW02, AHK99] for some
related notions). Intuitively, α−robustness of a graph G, is a local version of
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expansion factor. It is the maximum integer rα such that for small subsets
the expansion factor is α but for larger subsets, the minimum number of
outgoing edges is asked to be at least rα. In our constructions, we only need
our graph to be an expander for small subsets, but for larger subsets all
we need is a minimum constant edge-connectivity to the rest of the graph.
This notion is also interesting by its own sake and contains as particular
case several expansion invariants as bisection-width and Cheeger’s constant
(see [Chu97]). As random graphs are very good expanders, we study the
α−robustness of random graphs. In this way we generalize Bollabàs’s re-
sult on expansion factor of random 4-regular graphs(see [Bol88]) to obtain
related results for α−robustness of random 4-regular graphs. As far as we
know it is the first time in the literature that this new concept of local ex-
panders are defined and investigated. Using this we present a construction
of valid (p,λ, k)−networks with 3n switches for λ ≤ k ≤ n

7 .

2 Preliminaries

In this section, we define more formally the design problem and introduce
notations used throughout the paper. We state a cut criterion (Proposi-
tion 1): this criterion is fundamental because it characterizes the validity of
(p,λ, k)−networks. It is extensively used to prove that networks are valid.

In Section 5 we use the cut criterion to detect forbidden patterns leading
to lower bounds for the number of switches of valid networks. Proofs of lower
and upper bounds are simplified by the use of last notion introduced here,
the associated graph of a network (see Section A.3 and Section 5.1).
Notations. Given a function f , we define f(A) :=

∑

a∈A f(a) for any finite
set A. For a subset W of vertices of a graph G = (V,E), let us denote
by ∆(W ) the set of edges connecting W and W = V \W and by Γ(W ) the
set of vertices of W adjacent to a vertex of W . If a set is denoted by an
upper case letter, the corresponding lower case letter denotes its cardinality
(δ(W ) = |∆(W )|).
(p,λ, k)−networks and valid (p,λ, k)−networks. A (p,λ, k)−network
is a triple N = {(V,E), i, o} where (V,E) is a graph and i, o are posi-
tive integral functions defined on V called input and output functions, such
that for any v ∈ V , i(v) + o(v) + deg(v) = 4. The total number of in-
puts is i(V ) = Σv∈V i(v) = p + λ, and the total number of outputs is
o(V ) = Σv∈V o(v) = p+k. We can see a network as a graph where all vertices
but the leaves have degree 4, in which inputs and outputs are leaves. A non-
faulty output function is a function o′ defined on V such that o′(v) ≤ o(v)
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for any v ∈ V and o′(V ) = p. A used input function is a function i′ defined
on V such that i′(v) ≤ i(v) for any v ∈ V and i′(V ) = p. A (p,λ, k)-network
is said valid if for any non-faulty output function o′ and any used input
function i′, there are p edge-disjoint paths in G such that each vertex v ∈ V
is the initial vertex of i′(v) paths and the terminal vertex of o′(v) paths.

Design Problem. Let N(p,λ, k) denotes the minimum number of switches
of a valid (p,λ, k)-network. The Design Problem consists in determining
N(p,λ, k) and in constructing a minimum (p,λ, k)-network, or at least a
valid (p,λ, k)-network with a number of vertices close to the optimal value.
We introduce a variation of the problem, the Simplified Design Problem,
which is to find minimum networks having p+λ switches, each of them with
one input and one output, and with k − λ switches with only one output.
Networks of this kind are especially good for practical applications, as they
simplify the routing process, minimize path lengths and lower interferences
between signals.

Excess, Validity and Cut-criterion. To verify if a network is valid,
instead of solving a flow/supply problem for each possible configuration of
output failures and of used inputs, it is sufficient to look at an invariant
measure of subsets of the network, the excess, as expressed in the following
proposition.

Proposition 1 (Cut Criterion) A (p,λ, k)−network is valid if and only
if, for any subset of vertices W ⊂ V the excess of W , defined by,

ε(W ) := δ(W ) + o(W ) − min(k, o(W )) − min(i(W ), p),

satisfies ε(W ) ≥ 0.

The intuition is that the signals arriving in W (in number at most min(i(W ), p))
should be routed either to the valid outputs of W (in number at least
o(W )−min(k, o(W ))) or to the links going outside (in number δ(W )). The
omitted formal proof reduces to a supply/demand flow problem. Remark
that, for the cut criterion, it is sufficient to consider only connected subsets
W with connected complement W (This comes from the submodularity of
ε).
Associated Graph Vertices D ∈ V of degree 2 with i(D) = o(D) = 1
play an important role. We call them doublon. A switch that is not a
doublon is called an R-switch. Remark that for k ≥ 3 no paths has 3 or
more consecutive doublons. Indeed if we consider the set W consisting of
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these doublons we have δ(W ) = 2 and o(W ) = i(W ) ≥ 3. The cut criterion
would give a contradiction.

Let N be a (p,λ, k)−network. We build a graph R associated to N . Its
vertices are the R-switches of N . Consequently the edges of R are of three
kinds, respectively E0, E1 and E2: the edges of N between two R−switches,
the edges corresponding in N to a path of length 2 with a doublon in the
middle and those corresponding to a path of length 3 with 2 doublons in the
middle.

3 Upper Bounds: The design problem

In this section, we present three constructions with 2n, n + 3
4n and n + n

2
switches respectively for the simplified design problem, the design problem
(any λ) and for the design problem when λ = 0. All these constructions are
valid for k ≤ c · log n (where c is a constant depending only on the expansion
factor of 3 and 4−regular graphs).

3.1 Simplified Design Problem - Upper Bound 2n

In this subsection, we use the existence of expanders presented in subsec-
tion A.2 to construct valid (p,λ, k)−networks with 2n = 2(p+k) switches for
large n and k ≤ c1 log n (c1 depending on the expansion factor of 4−regular
expanders, c1 = 1

6 when using explicit Ramanujan graphs). Furthermore we
will show in Section 5 a lower bound of the same order for the simplified
design problem.

Theorem 1 Let n = p + k, k ≤ 1
6 log n, for n large enough, we have:

N(p, k, k) ≤ 2n.

Proof. The results for expanders exposed in Section A.2 state the existence
of (n, 4, c = 1

4 )−E-expander, G = (V,E), of girth g, g ≥ 2
3 log n. Let k ≤ c ·g

and p = n − k. It is well known that in a 4−regular graph there exists a
family of vertex disjoint cycles covering all vertices of G. Let us call this
family F and add n new vertices by subdividing each edge of F into two
edges. On each new vertex, we add an output and input creating a doublon.
We now have a (p, k, k)−network, N , with 2n switches. The proof of validity
of this network is given in Appendix A.3. !

We can derive (p,λ, k)−networks for any λ ≤ k by deleting k − λ inputs.
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3.2 Design Problem - Upper Bound n + 3
4n

In this subsection, we construct general (p, k, k)−networks for large n, k ≤
c2 log n (where c2 depends on the expansion factor of 3−regular expanders).
We can also derive (p,λ, k)−networks for any λ ≤ k by deleting k−λ inputs.
Theorem 2 gives a n + 3

4n upper bound for such networks. Constructions
are based on 3-regular bipartite expanders.

Definition 1 Two edges are at distance d if any path that contains both of
them is of length at least d + 2. A node is at distance d of an edge if any
path that contains both of them is of length at least d + 1.

Lemma 1 Let G be a 3−regular bipartite graph G = (V1 ∪ V2, E) of large
girth (g = Θ(log |V1|)) which is an (2|V1|, 3, c)-E-expander and suppose 2k ≤
cg. Let F be a set of selected edges, such that any two edges of F are at
distance at least 3. The network N obtained from G by adding a doublon on
each edge of F , an input on each vertex of V1 and an output on each vertex
of V2 is a valid network.

The proof is given in Appendix A.3.

Theorem 2 (Construction) Let n = p+k, k ≤ 1
15 log n, for n large enough,

we have: N(p, k, k) ≤ n + 3
4n

Proof. Take H = (A,B,E), a bipartite (2|A|, 4, c′)-E-expander with girth
g = 4

3 log n. Let k, k ≤ c′ · g ≤ 4
3 log n (for existence see Section A.2). Take

a complete matching F in the bipartite complement H = (A,B,E) of H,
that is, if (u, v) ∈ F , then u ∈ A, v ∈ B and u, v are not adjacent in H. For
each edge e = (a, b) of F , replace a and b by three vertices a1, a2, a3 and
b1, b2, b3, add edges (a1, b1), (a1, b2), (a1, b3), (a2, b1) and (a3, b1). Finally
join a2 (resp b2) to two neighbors of a (resp b) and a3 (resp b3) to the two
others neighbors. See Figure 2. We obtain a 3 − regular bipartite graph
G, (6|A|, 3, c

5 ) − E−expander. Note that by construction the edges of type
(a1, b1), with (a, b) ∈ F form a selected set F of edges pairwise at distance
3. We can apply Lemma 1 to G with F as selected set. All together we
have 6|A| + |F| = 7|A| switches, |V1| + |F = 4|A| inputs, |V2| + |F = 4|A|
outputs. So, with n = p + k, N(p,λ, k) = 7|A| = 7

4n !

3.3 Design Problem: λ = 0 - Upper Bound n + n
2

In this subsection, we study selectors (the case λ = 0). In Theorem 3 we
construct valid (p, 0, k)−networks with n + n

2 switches for n large and k ≤
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Figure 2: ’Expansion’ of a selected couple of a bipartite graph (A,B,E).

c3 log n (c3 depends on the expansion factor of 3-regular expanders). Such
networks are built from bipartite 3−regular vertex-expanders (see Appendix
A.2).

Theorem 3 Let n = p + k, k ≤ 1
48 log2 n, for n large enough, we have:

N(p, 0, k) ≤ n +
3

4
n

Proof. Let us take G = (V1, V2, E) a bipartite (n, 3, d = 1
12) − V −expander

of large girth g ≥ 4
3 log n(for existence see Section A.2). Let α = 4

d = 48 and
k such that k ≤ d · g

2 ≤ g
12 and k.(2αk + 1) ≤ n.

To each vertex of V1, we connect a node with one input and two outputs.
Such a switch is said to be of type T . To each vertex of V2, we connect
an input. We choose a subset S of k nodes in V2 such that the distance
between any two of them is at least α · k (see Definition 1). By the choice
of k we can choose the nodes in S one by one after removing all the nodes
at distance less than αk of already chosen nodes (at each step we remove at
most 2αk +1 new nodes). We remove the inputs of all nodes of S obtaining a
(p = n−k, 0, k)−network that we call N = (V,E, i, o). The proof of validity
of N is given in Appendix A.3. !

4 Graph Robustness: A new approach to the de-

sign of valid networks

The construction of valid networks is related to a more general expansion
property of graphs, especially to what can be seen as a ’bounded expansion
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property’ or expansion property only for sets of bounded size. We call this
property robustness.

Definition 2 (α-robustness) The α-robustness, robα of a graph G is the

maximum value r, such that for every subset X ⊂ V (G) with |X| ≤ |X|
2 we

have δ(X) ≥ min(r,α|X|)

For α = 1 we just say robustness. There are two main problems: on one
hand we want to understand the behaviour of the robustness for a general
graph, which means giving some upper bounds, for instance showing the
existence of subsets which violate the α−robustness. This problem covers
in particular the problem of bisection-width, studied by several authors (see
for example [Alo93] and [MP01]), which has several important applications.
On the other hand for many applications one would like to be able to find
graphs of large robustness (α−robustness). First examples of such graphs
are expanders of expansion factor c which give graphs with c−robustness
equal to n

2 where n is the number of vertices. For d-regular graphs we have:

- If G is d-connected, robd = 1 and robd−1 = 2. robd−2 = g where g is
the double girth of the graph (minimum size of a cycle with a chord).

- for α ≤ 1
2 (d − 2

√
d − 1), robα(G) = n

2 for Ramanujan graphs.

- for α > d
2 − c

√
d where c is some absolute constant depending only on

d, α−robustness is strictly smaller than n
2 .(see Alon [Alo93])

- for α > 1
3 + ϵ the α−robustness of a 3-regular graph is strictly smaller

than n
2 , the same is true for α > 4

5 + ϵ and for 4-regular graphs (see
Monien-Preis [MP01])

Remark that since it is NP hard to compute double girth of a graph, com-
puting rob2(G) is an NP hard problem. The same is true for any α.

4.1 Robustness of random 4-regular graphs

In this section G(k, n) is the probability space of all graphs on n vertices that
are the union of k disjoint Hamiltonian cycles, all graphs occurring with same
probability. By Gk,n we denote an element of G(k, n). This probability space
is equivalent to the probability space of random 2k-regular graphs [GKW04].

Theorem 4 Random 4-regular graphs have 1-robustness n
14 with high prob-

ability.
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Proof. (Sketch, more details can be find in appendix) Let G be a graph of
G(k, n) and S a subset of V with s vertices. On the cycles C1, C2, . . . Ck

constituting G, S can be described as a set of continuous intervals. For
i = 1, . . . k, let mi(S) be the number of intervals that S defines on Ci. Then
δ(S) = 2

∑

i=1,2,...k mi(S)
For a given cyclic permutation π, if I(s,m) denotes the number of sets

of s elements defining m segments on the cycle associated to π, we have:

I(s,m) =

(

s − 1

m − 1

)(

n − s

m

)

+

(

n − s − 1

m − 1

)(

s

m

)

=

(

s

m

)(

n − s

m

)

(
m

s
+

m

n − s
)

(1)
Given a random cyclic permutation π, we denote by P (s,m) the probability
that a set S with s elements defines m segments on the cycle associated to
π. Since the probability does not depend on S, but only on s, P (s,m) is
well defined. We have:

P (s,m) = I(s,m)/

(

n

s

)

=

(

s
m

)(

n−s
m

)

(m
s + m

n−s)
(

n
s

) (2)

Prob(δ(S) = 2x) =
∑

k1,...,kk|k1+k2+...+kk=x

ΠI(s, ki)/

(

n

s

)k

(3)

We say a set is bad if δ(S) < min(s, n − s, r). By the above equations we
can estimate the probability of having bad sets. The following two lemmas
finally complete the proof of our Theorem.

Lemma 2 (Robustness for small sets) For n large enough any set with
size s ≤ n

14 has border at least s with probability u > 1/2.

Lemma 3 (Robustness for large sets) For n large enough any set with
size s ∈ [ n

14 , 13n
14 ] has border at least n

14 with probability u > 1/2.

!

Remark 1 The same method can be used to obtain lower bounds for α-
robustness for random 4-regular graphs. Here is some numerical results for
some special values of α.

- r 11

25

= n
2 (See Bollobàs [Bol88] for another proof of this result).

- r 11

20

≥ n
2.6 , r 4

5

≥ n
5.7 , r 2

3

≥ n
3.6 , r 3

5

≥ n
3 .
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Using the concept of graph robustness we can extend the results of last
section:

Theorem 5 (cf proof in Appendix) For k ≤ n
7 there exist (p,λ, k)−valid

networks of size 3n.

5 Lower Bounds

In subsection 5.1, we prove a fundamental preliminary theorem, Theorem 6.
Its main point is that N(p,λ, k) ≥ 3

2n + d
2 − ε(n) (where ε(n) tends to zero

when n tends to infinity). Direct applications of this theorem give lower
bounds for general and simplified networks (Theorems 7, 8). We succeed in
obtaining a better bound of n + 2

3n − ε(n) for two cases: when λ goes to
infinity (Theorem 9) and when some kinds of switches are not allowed in
the networks (Theorem 10). Finally (Theorem 11), we increase the bound
to n + 3

4n − ε(n) for another family of networks.

5.1 Preliminary Theorem

Definition 3 (q-quasi-partition, see [DHMP06]) Let G = (V,E) be a
graph and q a positive integer. A q-quasi-partition of G is a family Q =
{A1, A2, . . . , Am} of subsets of V , such that :

(i) for every 1 ≤ i ≤ m, the subgraph G[Ai] induced by Ai is connected;

(ii) for every 1 ≤ i ≤ m, q
2 ≤ |Ai| ≤ q;

(iii) V =
⋃m

i=1 Ai and
∑m

i=1 |Ai| ≤ |V | + |{Ai, |Ai| > 2q
3 }|.

Lemma 4 ([DHMP06]) Let q be a positive integer and G be a connected
graph of order at least q

2 . Then G admits a q-quasi-partition.

Remark 2 • If G has several connected components of size at least q
2 ,

applying the lemma to each component and using the additivity of both
sides of Equation (iii) gives us a q−quasi-partition of G.

• Let Q be a quasi-partition of G as in Lemma 4. Let t = |{Ai, |Ai| >
2q
3 }| and v = |V |. Then we have: m ≤ 2(v+t)

q and t ≤ v
2q
3
−1

.

For the proof of Theorem 6 we need to define large and small H−components
of R the associated graph of N .
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Definition 4 [H-component, large and small H-components, adja-
cent H-components] We consider a (p,λ, k)-network and its associated
graph R (cf Section 2 for definition). We take H the subgraph of R which
contains only the edges of type E0. An H-component of R is a connected
component of H. An H-component is said large (respectively small) if it
has more than (resp. strictly less than) q switches, with q the greatest in-

teger satisfying 2(q + (2q + 2)q) + 2 ≤ k − 1. Remark that q ∼
√

k
2 . Two

H-components C1 and C2 are said adjacent if there exists an edge of R with
one R−switch in C1 and the other in C2.

Proposition 2 (See proof in appendix)

1. A small H-component has no outgoing edge of kind E2.

2. A small H-component has no input inside.

3. Two small H-components are not adjacent.

Theorem 6 (preliminary Theorem) In a valid network N with k ≤ n
2 ,

we have

N(p,λ, k) ≥
(

3

2
n − (k − λ)

) (

1 − 7

2
√

k
+ O

(

1

k

))

+
d

2

(

1 +
7

2
√

k
+ O

(

1

k

))

where n = p + k.

Proof. The complete proof is presented in appendix ??. Here we just give
an idea. Applying Lemma 4 and Remark 5.1, the union of the large H-
components of R admits a q-quasi-partition Q = {A1, . . . , Am}. So each
Aj is connected and of size q

2 ≤ |Aj | ≤ q. Using proposition 2 and the cut
criterion applied to Bj, we can prove o(Bj) < k (Indeed, if o(Bj) ≥ k, the
cut criterion reduces to δ(Bj) ≥ k. Furthermore Aj is connected and of size
less than q, so it has at most 2q +2 outgoing edges and the number of small
H−components of Bj is at most 2q+2. As the size of a small H−component
is less than q, the number of vertices in Bj is at most q + (2q + 2)q. Hence
the number of outgoing edges δ(Bj) is at most 2(q + (2q + 2)q) + 2. By our
choice of q it gives k ≤ δ(Bj) ≤ 2(q + (2q + 2)q) + 2 ≤ k − 1 a contradiction,
consequently o(Bj) < k).
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The cut criterion is now equivalent to δ(Bj) ≥ i(Bj). Using the connec-
tivity of Bj we can find an upper bound for δ(Bj) in terms of different type
of vertices inside Bj. Putting all these bounds together, we obtain

2
m

∑

j=1

|Aj | + 2m ≥ 3n − d − 2(k − λ) (4)

The family {Aj} forms a quasi-partition of R. Let t := |{Aj , |Aj | > 2q
3 }|

and v the number of vertices of R. Then by Remark 5.1 we have m ≤ 2(v+t)
q

and t ≤ v
2q
3
−1

By definition of a quasi-partition:
∑m

i=j |Aj | ≤ v+|{Aj , |Aj | >

2q
3 }| = v + t.

Putting all these equations into Equation 4 gives after simplification:

N(p,λ, k) ≥
(

3

2
n − (k − λ)

)(

1 − 7

2
√

k
+ O

(

1

k

))

+
d

2

(

1 +
7

2
√

k
+ O

(

1

k

))

!

5.2 Lower Bounds

All the proofs of the theorems of this section can be found in Appendix.
Here n is p + k.

Theorem 7 (λ = 0) In a valid network R, when k → ∞ with k ≤ n
2 , we

have
N(p, 0, k) ≥ n +

n

2
+ O(

n√
k
).

In particular, we obtain a tight bound for networks with λ = 0 (see upper
bound in Section 3.3).

Theorem 8 In the simplified case, when k → ∞ with k ≤ n
2 , we have

N(p,λ, k) ≥ 2n + O( n√
k
).

Theorem 9 When λ → ∞ and k → ∞, N(p,λ, k) ≥ n + 2
3n + O( n√

λ
).

Theorem 10 When λ ≥ 1 and no switches of kinds Vi and Vo are allowed,
when k → ∞ with k ≤ n

2 , we have N(p,λ, k) ≥ n + 2
3n + O( n√

k
).
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Theorem 11 Let N be a network of N switches with the associated graph
R = (V = A ∪ B,E) such that R is bipartite, all vertices of A have exactly
one output and all vertices of B exactly one input in the original network.

N ≥ n +
3

4
n + O(

n√
k
).

6 Conclusion

In this paper we propose constructions of valid (p,λ, k)−networks and give
lower bounds on their size. The design problem appears to be driven by two
constraints: a local one in which small patterns are forbidden and another
one which is related to some global expansion property of the network. This
led us to define an expansion parameter of a graph: the α−robustness. This
parameter is a generalization of the usual edge-expansion. Using graphs of
2−robustness equal to Θ(log n) we have constructed almost optimal simpli-
fied networks. Similarly when k ≤ n

7 , using graphs of large 1−robustness
we have proposed good simplified networks. Despite many answer for small
values of k (k ≤ n

7 ), little is known when k is larg.
To obtain our lower bounds, we present a powerful technique: quasi-partitioning.
We think that this technique can potentially have other applications to de-
rive lower bounds for problems of the same kind.
Some interesting open questions are:

- For a fixed α, find explicit constructions of nice α-robust graphs,
graphs having large α−robustness.

- Is there a very explicit construction as the new Zig-Zag product of [OR02]
providing nice robust graphs? Does the Zig-Zag product preserve the
robustness?

- What is the maximum bisection-width of a 4−regular graph? In [MP01]
it’s shown that the maximal bisection width of 4-regular graphs on n
vertices is at most 2n

5 . This shows that the α−robustness is < n
2 for

α > 4
5 . Is it possible to obtain same results for larger values of α

ensuring a maximal robustness of size at most n
3 , for example?

- What is the minimum number of switches or edges in an n-superselector
(see [Hav06, Sch06] for some constructions)?
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A Annexe

A.1 Upper Bounds

A.2 Expanders

An expander (see [DH00] or [Mur03] for a survey) is a highly connected sparse
graph. They are used in various fields of computer science and mathematics. For
example in constructions of error-correcting codes with efficient encoding and de-
coding algorithms, derandomization of random algorithms, construction of finitely
generated groups which cannot be embedded uniformly in a Hilbert space, ... but
they also have applications in areas directly related to the subject of this paper as
design of explicit superefficient networks and explicit construction of graphs with
large girth (length of the smallest cycle). We present here known results about
expanders that are used in proof of Sections 3.1, 3.2 and 3.3. The formal defini-
tion of an expander is as follows: an (n, r, c)-E-expander is a finite r-regular graph
G = (V, E) with n vertices such that for any set A of vertices of G with |A| ≤ |V |/2
we have δ(A) ≥ c|A|. Well known examples of expanders are Ramanujan graphs
(for more on Ramanujan graphs see [Mor94]). Explicit constructions of Ramanujan
graphs are known for r of the form r = q + 1, with q a prime power (in particular
for r = 3 and r = 4, which are of special interest in our case). More precisely there
exist explicit constructions of an infinite family Gi = (Vi, Ei) of ramanujan graphs

such that |Vi| →
i→∞

∞ with an expansion factor c ≥ 1 − 4(r−1)
r2 . It gives c ≥ 1

4

for 4−regular graphs and c ≥ 1
9 for 3-regular graphs. The girth of the graphs of

this family satisfies: g(Gi) ≥ 2
3 logq |Vi| There also exist a family Hi = (Wi, Fi) of

explicit bipartite Ramanujan graphs of girth: g(Hi) ≥ 4
3 logq |Wi|. Probabilistic ar-

guments show the existence of graphs, for any large order of networks (and not only
for the specific values of both families), with the same properties of girth and even
better expansion factor : for 4-regular graphs, expanders c ≥ 11

25 exist (see [Bol88]).

A.3 Cut Criterion for the Associated Graph

To simplify the proofs of validity of Sections 3.1, 3.2 and 3.3, it is better to work
directly on the associated graph R of the (p, λ, k)−network N = ((V, E), i, o). More
precisely, it means that, when applying the cut criterion on N , it would be sufficient
to consider only subsets of R.

We introduce another notion of excess, ε′, defined for all W ⊂ V as ε′(W ) :=
δ(W ) + o(W ) − min(k, o(W )) − i(W ). Note that ε′(W ) ≤ ε(W ). Hence, if, for all
W ⊂ V , ε′(W ) ≥ 0, the network is valid. But we have no more an equivalence.
The good property of ε′ is that, if a switch D is a doublon, ε′(W ∪ {D}) ≤ ε′(W ).
So it is enough to verify the cut criterion for subsets W of N consisting of a set of
R−switches plus all the doublons on the edges of type E1 and E2 incident to the
R−switches.

Definition 5 (V -Expander) An (n, r, d)-V -expander is a finite r-regular graph G =
(V, E) with |V | = n (|V1| = |V2| = n in case of a bipartite graph and V = V1 ∪
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V2) such that for any subset A of vertices (A ⊂ I when G is bipartite), the set of
neighbors of A, Γ(A) = {v ∈ V |(v, u) ∈ E for some u ∈ V } satisfies

|Γ(A)| ≥ |A| + d(1 − |A|/n)|A|

Proof. 1
Let us prove that the constructed network is valid. We use the cut criterion

on R, which is in that case exactly G. Remark first that the network is symmetric
in inputs and outputs and that for any subset W ⊂ V of vertices, i(W ) = o(W ).
Hence we have

ε′(W ) = δ(W ) − min(k, o(W )).

Furthermore, note that when a network is symmetric, it is sufficient to verify the
cut criterion only for subsets W with |W | ≤ |V |/2.

- If |W | ≥ k
c then, by the expansion property, there are at least k edges between

W and W and so ε′(W ) ≥ 0.

- Otherwise, if |W | < k
c ≤ g, we have |W | < g and thus W is acyclic. There

are at most |W |− 1 edges inside W and, as G is 4-regular, we have δ(W ) ≥
2|W |+2. Let eF (W ) be the number of edges of F incident to a node of W , by
construction o(W ) = eF (W ). As the cycles of F are disjoint, eF (W ) ≤ 2|W |.
Hence δ(W ) ≥ eF (W ) = o(W ), that is ε′(W ) ≥ 0.

The (p, k, k)−network is valid. !

Proof. 1 We use the cut criterion on the associated graph following Section A.3.
As the construction is symmetric in inputs and outputs, it is sufficient to consider
connected subsets W ∈ V with |W | ≤ ⌈ |V |

2 ⌉. The cut criterion is implied by

ε′(W ) = δ(W ) + o(W ) − min(o(W ), k) − i(W ) ≥ 0

We now distinguish two cases for W .

• case 1: |W | ≤ 2k
c ≤ g

As o(W ) − min(o(W ), k) ≥ 0, we have

ε′(W ) ≥ δ(W ) − i(W ).

so it is sufficient to prove δ(W ) ≥ i(W ) As |W | ≤ g, there are no cycles
inside W and therefore there are |W | − 1 edges inside; G is 3−regular so
δ(W ) = |W | + 2. Furthermore, i(W ) = v1(W ) + d so we have to prove that
v2(W ) + 2 ≥ d.

Consider a doublon D incident to W and its associated edge e(D) = (v1(D), v2(D))
with v1(D) ∈ V1 and v2(D) ∈ V2. If v2(D) ∈ W , associate D with v2(D). If
v2(D) /∈ W , then v1(D) ∈ W . Associate to D a neighboor of v1(D) ∈ W . As
the distance of two edges of F is at least 3, different doublons have different
associate vertices in V2 ∩ W . So v2(W ) ≥ d.
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A1

S
X

Γ(A1)
v ∈ Su ∈ S

X

F (X)

= X ∪ Γ(A1)
\S

X

Figure 3: Sketch of proof of Theorem 3

• case 2: |W | ≥ 2k
c , by definition of ε′ we have

ε′ ≥ δ(W ) + o(W ) − k − i(W ).

– if i(W ) − o(W ) ≤ k, by the expansion property, we have δ(W ) ≥ 2k ≥
i(W ) − o(W ) + k

– if i(W ) − o(W ) ≥ k, since the graph is bipartite, there is at least
3(i(W ) − o(W )) outgoing edges. So ε′(W ) ≥ 2(i(W ) − o(W )) − k ≥
k > 0.

!

Proof. 3 To prove that this network is valid let X be a connected subset of V . Let
X = V1∪V2\X , A1 = X∩V1, SX = S∩Γ(A1)∩X . We define Z(X) = X∪Γ(A1)\SX
(Figure 3).

Z = Z(X) is connected. We also have ε(Z) ≤ ε(X) so it is sufficient to verify
the cut criterion for Z (same principles as in Section A.3). Let A2 = Z ∩ V2.

We distinguish four cases for |A1|:

• |A1| ≤ k
2 : as o(Z) = 2|A1| ≤ k and ε(Z) ≥ δ(Z) − i(Z), we have δ(Z) ≥

3|A2|− 3|A1| and i(Z) ≤ |A2| + |A1|. Furthermore there is no cycle in Z so
|A2| ≥ 2|A1|. Hence ε(Z) ≥ 0.

• k
2 ≤ |A1| ≤ k

d ≤ g
2 :

we have ε = δ(Z)+o−i−k and i ≤ |A1|+|A2|. So ε(Z) ≥ δ(Z)−A2+A1−k.
As Z contains no cycle δ(Z) ≥ 3|A2| − 3|A1| so ε ≥ 2|A2| − 2|A1| − k ≥
2|A1|− k ≥ 0. We use again that |A2| ≥ 2|A1|.
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• k
d ≤ |A1| ≤ n − k

d :

in this case, ε ≥ δ(Z)−|A2|+|A1|−k and δ(Z) ≥ 3(|A2|−|A1|) = |A2|−|A1|+
2(|A2|− |A1|), so we have ε ≥ 2(|A2|− |A1|)− k. Furthermore |A2|− |A1| ≥
ΓG(A1)−k, because at most k nodes of ΓG(A1) are in S \A2 (where ΓG(A1)
is the neighborhood of A1 in G) By the expansion property we have:

|ΓG(A1)| ≥ |A1| + d(1 − |A1|/n)|A1|

In this case d(1− |A1|/n) ≥ 2k. So |ΓG(A1)|− |A1| ≥ 2k. So |A2|− |A1| ≥ k.
It implies ε ≥ 0.

• n − k
d ≤ |A1|:

we can assume that Z is connected (see the remarks on Proposition 1). As
the nodes in S are at distance at least αk and αk > k

d , Z contains at most
one node in S. Hence i ≥ |A2|− k + 1 + |A1| and ε ≥ δ(Z)− |A2|+ |A1|− 1.
Because of the connectivity of Z and the 3−regularity |A2| > |A1|. So ε ≥ 0.

!

A.4 Lower Bounds

Proof. 2 Let C be a small H-component. We will apply the cut criterion of Sec-
tion A.3 to the set C̃ of N obtained from C by adding in N the doublons of the
edges of type E1 and E2 incident to R−switches of C.

As k ≤ p and |C| ≤ q ≈
√

k
2 , o(C) ≤ k

2 ≤ p so, the cut criterion reduces to

δ(C̃) ≥ i(C̃)

Let e1 (res. e2) be the number of outgoing edges of kind E1 (resp. E2) incident to
R−switches of C.

- By definition of H and of the small components, δ(C̃) = e1 + e2. We have
i(C̃) ≥ e1+2e2+i(C). So by the cut criterion e2 = 0 proving 1) and i(C) = 0
proving 2).

- Let C ′ be an other small H−component. If C and C ′ are joined by f ≥ 1
edges, then let W = C̃∪C̃′, we have i(W ) ≥ e1+e′1−f and δ(W ) ≤ e1+e′1−2f
so δ(W ) < i(W ) which gives a contradiction.

!

Proof. 7 The proof follows directly from Theorem 6 !

Proof. 8 First remark that a direct applications of the cut criterion show that as
soon as λ ≥ 1, T is empty. This means that in this proof and the following we
will not consider switches of T . Now the proof follows from Theorem 6 and from
d = n − (k − λ) in the simplified case. !
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Proof. 9 We show here that, when λ → ∞, N(p, λ, k) ≥ n + 2
3n + O( n√

λ
) (Theo-

rem 9). We first give a bound for the number of switches of types Vi and Vo using
the following remark:

Lemma 5 When λ → ∞ and k → ∞,
{

vi ≤ N − 3
2n − d

2 − k−λ
2 + λO( n√

k
)

vo ≤ N − 3
2 (n − k + λ) − d

2 + k − λ−k
2 + O( n√

λ
)

Proof. Imagine we have a valid (p, λ, k)−network with N switches and vi nodes
in Vi. We obtain a valid (p, 0, k)−network after removing any λ inputs. This new
network has at least vi −λ switches of kind Vi. By Remark 3 we may remove these
switches and obtain a valid (p, 0, k)−network with N − vi +λ switches. Theorem 6
gives

N − vi + λ ≥ 3

2
n +

d

2
+

k − λ

2
+ O(

n√
k

).

So the result holds. Symmetry (in the sense of swapping inputs and outputs gives
a valid (p, k, λ)−network) gives the second equation. !

The switch partition and the two equations ??, ?? give here

N = 2n − (k − λ) − vi − vo − d + s

Lemma 5 gives

N ≥ 2n − (k − λ) − d + s − 2N + 3n + d

+ O(
n√
k

) + O(
n√
λ

) − 3

2
(k − λ) − λ − k

N ≥ 5

3
n + O(

n√
k

) + O(
n√
λ

) − 5

2
k +

λ

2
.

!

Proof. 10 We first have the following remark:

Remark 3 Notice that when λ = 0, switches of type Vi are not present in a min-
imal valid (p, λ, k)−network. As shown in Figure 4, they may be removed to form
a new valid (p, λ, k)−network with vi less switches.

Proof. Direct by the cut criterion. !

When vi = vo = 0, the input equation (Equation ??) becomes n = d + si and the
output equation (Equation ??) becomes n = d + so. So si = so and the switch
partition equation (Equation ??) gives

N = 2n − d. (5)
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Figure 4: When λ = 0, switches of kind Vi may be removed.

Theorem 6 gives

2n − d ≥ 3

2
n +

d

2
+ O(

n√
k

)

n

3
≥ d + O(

n√
k

).

Equation 5 gives

N ≥ 5

3
n + O(

n√
k

).

!

Proof. ?? We are given a ternary bipartite graph R = (V = A ∪ B, E) such that
all vertices of A have an output and all vertices of B have an input. The vertices
of B are partitioned in two sets B1, B0. A vertex of B1 is adjacent to an edge of
type E1 or E2, not those of B0.

For subset X ⊂ A we use the following notations : Bi(X) = Γ(X)∩Bi, i = 0, 1
and bi = |Bi|.

Let X be a subset of A such that F (X) = X∪Γ(X) is connected, and 6|X | ≤ k
so we have less than k outputs. To fullfill the cut-criterion for small subsets (less
than k outputs), we need

b0(X) ≥ b1(X) − 3 + 3cF (X) (6)

where cF (X) is the feed back edge set of the subgraph induced by F (X).
We aim at proving that this can happen only if b0 + O( 1√

k
) ≥ 2b1.

Let Y be a set of y vertices of B0 such that Y ∪ Γ(Y ) is connected. We have
|Γ(Y )| = 2y + 1 − cF (Y ) There is 3y + 3 − 3c edges comming out of F (Y ), say αy
toward vertices of type B0 and 3y + 3 − 3c − αy toward vertices of type B1. In G
we consider the connected subgraph induced by Z = F (Y ) ∪ (Γ(F (Y ) ∩ B1). We
have (6−α)y +3−3cF (Y ) edges inside Z, so the number of vertices in Γ(F (Y )∩B1

is (6 − α)y + 3 − 3cF (Y ) − y − (2y + 1 − cF (Y )) − cZ = (3 − α)y + 2 − 2cF (Y ) − cZ .
If we take X = Γ(Y ) in Equation 6 we obtain:

(α + 1)y ≥ b0(X) ≥ b1(X) − 3 + 3cF (X)

≥ (3 − α)y + 2 − 2cF (Y ) − cZ − 3 + 3cF (X)

≥ (3 − α)y − 1 − 2cF (Y ) + 2cF (X)
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where in the last inequality we use the fact that cZ ≤ cF (X) and because cF (Y ) ≤
cF (X) we have:

α ≥ 1 − 1

2y

We consider all the connected components of the graph induced by B0 ∪A and
we take a q-quasi-partition of the big components for some q, q = O(k) such that
all components are of the form F (Y ) for some Y subset of B0. Now we count the
edges going to B0 and B1.

For one component D of the quasi-partition with y vertices of B0, we find at
least (3 + α)y ≥ 4y − 1

2 edges toward B0 and at most 2y + 7
2 edges toward B1 with

one extremity in D.
Globally, if m is the number of components and up to some small number of

recounting (Quasi-partition arguments) we get 4|A| − m
2 = 3b0 edges toward B0

and 2A + 7m
2 = 3b1 edges toward B1.

Hence b0 ≥ 2b1 + O( 1√
k
).

!

A.5 Robustness

Proof. 1 The number of ways to write a number t as the ordered sum of p non null
integers is cut(t, p) =

(t+p−1
p−1

)

.
Starting from the vertex 0 of the cycle, the set S can be encoded by giving two

sequences of numbers : the ordered list of the lengths of the segments in S and the
ordered list of the lengths of the segments in S.

• If 0 belong to S then S is associated with exactly m segments on the path
all having length at least 1, and S is associated to m + 1 segments, all the
segments of S but the last one have all length at least 1 and the last segment
can have length 0.

So S can be encoded by dividing |S| − m = n − s − m into m + 1 non null
numbers. There is exactly cut(n − s − m, m + 1) way of doing it.

We write S as the ordered sum of m non null numbers, there is cut(s−m, m) =
(

s−1
m−1

)

possibilities.

This gives: cut(n − s − m, m + 1) · cut(s − m, m) =
( s−1
m−1

)(n−s
m

)

• If 0 is in S, then the situation is symmetric, so we only need to change s by
n− s, i.e. we replace cut(n− s− m, m + 1)cut(s− m, m) by cut(s− m, m +
1)cut(n− s − m, m) =

(

s
m

)(

n−s−1
m−1

)

.

!

Proof. 2 Consider a bipartite graph whose vertices are the sets of s elements and the
(n−1)! cyclic permutations. We put an edge between a set and a cyclic permutation
if the set defines m segments on the cycle associated to the permutation. This graph
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is a “regular bipartite graph”, where sets have degree ∆ and the permutations
degree is I(s, m). Counting the edges of the graph we get ∆ = (n−1)!I(s,m)

(n

s)
.

Now, the probability for a set to be adjacent to a permutation is ∆/(n − 1)!.
So given a set S with s elements, the probability that S defines exactly m segments
on a cycle C is I(s, m)/

(n
s

)

. Then lemma 1 gives the result. !

Proof. 3 The result follows from those three points :

• the probability S defines ki segments on a random cycle Ci is I(s, ki)

• the cycles constituting G(n, m) are independents

• |Γ(S)| = 2
∑

1,2,...m ki.

!

Proof. 2
Let W (n, s) be the probability there is a set of size s ≤ r with border less than

s, W (n, s) ≤
(n

s

)
∑

r≤s/2

∑

m1+m2=r I(s, m1)I(s, m2)/
(n

s

)2
.

Since I(s, m1)I(s, m2) ≤ I(s, m1+m2
2 ), we have

W (n, s) =
∑

r≤s/2

∑

m1+m2=r

I(s, m1)I(s, m2)/

(

n

s

)

≤
∑

r≤s/2

r(I(s, r/2))2/

(

n

s

)

.
Now since r ≤ s/2, we have I(s, r/2) ≤ I(s, s/4) and W (n, s) ≤ s2

8 (I(s, s/4))2 /
(n

s

)

.
Replacing I(s, s/4) by its value we get:

W (n, s) ≤ s2

8

(

s

s/4

)2 (n − s

s/4

)2

/

(

n

s

)

For the following we need the following rather sharp form of Stirling’s formula
proved by Robbins(1955):

n! =
(n

e

)n √
2πneαn

where 1
12n+1 < αn < 1

12n

Putting this formula in the above inequality we obtain:

W (n, s) ≤ s3s(n − s)3n−3s

( s
4 )s(3s

4 )
3s

2 (n − 5s
4 )2n− 5s

2 nn
β

Where β =
16 (n−s)

√
s(n−s)

3π
√

2πn (4n−5s)
.eγ and

γ = 3αs + 3αn−s − 4α s

4
− 2α 3s

4
− 2αn− 5s

4
− αn
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and αi is a real number in the interval [ 1
12i+1 , 1

12i ]. Let

X(n, s) =
s3s(n − s)3n−3s

( s
4 )s(3s

4 )
3s

2 (n − 5s
4 )2n− 5s

2 nn
β

Suppose n = a · s then we have:

X(n, s) =

(

(a − 1)3(a−1)

1
4 .(3

4 )
3
2 .(a − 5

4 )2a− 5
2 .aa

)s

β

Let

g(a) =
(a − 1)3(a−1)

1
4 .(3

4 )
3
2 .(a − 5

4 )2a− 5
2 .aa

then we have:

X(n, s) = g(a)s.β

Remember that

β =
16 (n − s)

√

s(n − s)

3π
√

2πn (4n − 5s)
.eγ

It’s now easy to see that g is decreasing and g(13.80 . . . ) so g(14) < 1 and we
have

• for s ∈ [− 4 log n
log(g(14)) ,

n
14 ] we have

X(n, s) ≤ C.
1

n4
β = O(

1

n2
).

and so

W (n, s) ≤ C.
1

n2

for some constant C.

• for s ≤ − 4 log n
log(g(14)) we have a ≥ C. n

log n for some constant C. Then we have

X(n, s) ≤ C.(n/s)−
s

2 .β

For some constant C. It’s clear then that for s ≥ 4, we have: X(n, s) ≤ C. 1
n

for some constant C.

• It’s easy to show that W (n, s) = 0 for s = 1, 2, 3 because the graph connec-
tivity is 4 with probability 1.
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Then we have

∑

s≤ n

14

W (n, s) ≤
∑

− 4 log n

log(g(14)) ≤s≤ n

14

X(n, s)+
∑

s≤− 4 log n

log(g(14))

X(n, s) < C.n.
1

n2
+C. log(n).

1

n
<

1

2
.

for n large enough. !

Proof. 3
A set larger than n

14 is bad when its border is smaller than n
14 .

Let first W ′(n, s) be the probability that there exists a set with size s ≥ r
with border less than r, W ′(n, s) ≤

∑

i≤ n

28

∑

k1+k2=i I(s, k1)I(s, k2)/
(n

s

)

. and so

W ′(n, s) ≤ ( n

14 )2

8

(

I(s, n
56 )
)2

/
(n

s

)

.

Let for a ∈ [ 1
14 , 1 − 1

14 ]

δ(a) =

(

(

a.n
n

56

)(

(1−a)n
n

56

)

)2

(

n
a.n

)

Then

W ′(n, an) ≤ 1

8
(

n

14
)2δ(a)

Again using the same methods than the one we used in the last section we obtain
W ′(n, a) ≤ h(a)nβ′ where β′ is a rational function on n and a and h defined below:

h(a) =
a3a (1 − a)3−3a

( 1
56 )

1
14 (a − 1

56 )2a− 1
28 (1 − a − 1

56 )2−2a− 1
28

β′

Since h( 1
14 ) < 1, with h decreasing

W ′(n, an) ≤ h(
1

14
)nβ′

As β′ is rational we have for n large enough W ′(n, an) < 1
2n so

∑

s∈[ n

14 , 13n

14 ]

W ′(n, s) <
1

2

and the lemma is proved. !

Proof. 5 Suppose given a 4−regular Hamiltonian graph G of robustness n
7 on 2n

vertices. Extract a complete matching from a Hamiltonian cycle and add a doublon
to every edge of this matching. It’s now straightforward to show that the resulting
network is valid. This gives a valid (p = n − k, k, k)-network on 3n nodes. !


