
Analysis of Failure Correlation Impact on Peer-to-Peer

Storage Systems

Olivier Dalle, Frédéric Giroire, Julian Monteiro, Stéphane Pérennes
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Abstract—Peer-to-peer storage systems aim to provide a reli-

able long-term storage at low cost. In such systems, peers fail

continuously, hence, the necessity of self-repairing mechanisms

to achieve high durability. In this paper, we propose and study

analytical models that assess the bandwidth consumption and

the probability to lose data of storage systems that use erasure

coded redundancy. We show by simulations that the classical

stochastic approach found in the literature, that models each

block independently, gives a correct approximation of the system

average behavior, but fails to capture its variations over time.

These variations are caused by the simultaneous loss of multiple

data blocks that results from a peer failing (or leaving the

system). We then propose a new stochastic model based on a

fluid approximation that better captures the system behavior. In

addition to its expectation, it gives a correct estimation of its

standard deviation. This new model is validated by simulations.

I. INTRODUCTION

In this paper, we study peer-to-peer storage systems that
have high durability requirements (i.e., backup systems or
long-term storage systems), like Intermemory [9], CFS [6],
Farsite [4], OceanStore [11], PAST [22], Glacier [10], Total-
Recall [3] or Carbonite [5]. Such distributed storage systems
are prone to disk failures (or peers that permanently leave
the network). Hence, redundancy data need to be introduced
to ensure high durability over a long period of time. This
could be done by the trivial replication of data [6], [22] or
by Erasure Codes [16], [25] (e.g., Reed Solomon or Tornado)
as used by some RAID schemes [18]. In the later, the system
splits the user data (files, raw data, etc.) into data blocks, and
then generates a set of redundant erasure coded fragments that
are spread among participant peers. We focus on the analysis
of systems that use Erasure Codes, as they are usually more
efficient in terms of storage overhead than the replication [25].

To ensure durability, the system must have a self-repairing
mechanism that maintains a minimum number of redundant
fragments available in the network, even after multiple failures.
Designing such a system raises fundamental questions: How
much resource (bandwidth and storage space) is necessary
to maintain this redundancy and to ensure a given level of
reliability? What is the probability that a particular system
configuration results in a data loss over a given time period?

To address those questions, we first consider a Markov
Chain Model (MCM), similar to those found in the litera-
ture [20], [1], [7], that represents the behavior of a single
data block. This chain allows to compute the average behavior
of the system accurately. Simulations confirm our analytical

results, but also indicate that the variations around the average
behavior (i.e., the standard deviation) are much higher than
those estimated by the MCM.

These variations are explained by the fact that when a disk
failure occurs (or a peer permanently leaves the system) many
data fragments are lost at the same time. This correlation
induces large peaks in the bandwidth consumption. In addition,
when the bandwidth is limited, those peaks tend to slow down
the repairing process, resulting in data loss. Indeed, when the
repairing time is longer, a damaged block is more likely to lose
its remaining redundancy fragments to a point where it cannot
be repaired. The consequence is that a bandwidth provisioning
decision not taking into account these variations would lead
to an erroneous design which in turn would introduce a risk
of losing a significant amount of data.

In order to take into account this phenomenon, we propose
a new stochastic Fluid Model, that does not represent a
single block anymore, but the whole system. We provide a
mathematical analysis of this model by giving a method to
compute all the moments of its associated stationary dis-
tribution. Simulations show that the Fluid Model predicts
the system very well (1% margin). Moreover, this model is
scalable since its complexity is proportional to the erasure
code length and does not depend on the number of peers.

To the best of our knowledge, this paper is the first study
to propose an analytical model that takes into account the
correlations between data block failures. Along with failure
correlation, we also point out the impact of disk age hetero-
geneity on the system, and propose a new shuffling policy and
a biased reconstruction policy to reduce this impact.

The remainder of this paper is organized as follows: after
presenting the related work, we describe the system character-
istics in the next section. In Section III we define the Markov
Chain Model that estimates the average system behavior. We
then compare this analytical model with an extensive set
of simulations in Section IV, along with a discussion about
its deficiencies. We then propose a Fluid Model that better
captures the system variations, followed with its analysis,
validation and some avenues for future research in Section V.
Finally, our concluding remarks are in Section VI.

Related work.

The literature about P2P storage systems is abundant and
several systems have been proposed. However, few analytical



models have been studied to estimate accurately the behav-
ior of those systems (data durability, resource usage, e.g.,
bandwidth) and understand the trade-offs between the system
parameters.

DHT based systems have been studied formally without the
storage layer [14], but they have different requirements (e.g.
network connectivity instead of data durability). The behavior
of a storage system using full replication is studied in [20],
where a Markov Chain Model is used to derive the lifetime
of the system, and other practical metrics like storage and
bandwidth overhead. Similarly, Datta and Aberer in [7] study
analytical models for different maintenance strategies.

In [25], [15], the authors show that, in most cases, erasure
codes use an order of magnitude less bandwidth and storage
than replication to provide similar system durability. In [1],
the authors also use a Markovian analysis to evaluate the
performance of systems using Erasure codes for two different
schemes of data recovery (centralized vs. distributed) and
estimate the data lifetime and availability. In [8], Dimakis et
al. show that other kinds of codes, as network coding, can be
used to lower the system resource usage. In all these models,
block failures are considered independent.

II. SYSTEM DESCRIPTION

The detailed characteristics of the studied P2P storage
system are presented in this section. We consider a system
designed for data archival, in this case the user data is
immutable and stays for ever in the system. The peers could be
desktop computers, enterprise servers or brick storage devices
that stay turned on almost permanently. Furthermore, since
in this paper we are not interested in studying the effects of
increasing the system storage load, we make the simplifying
assumption that the amount of data stored in the system is
constant over the time.

Handling Churn. The system tolerates transient failures [24],
where a peer can leave the system for short periods of time, as
for example during restarts or power outages: If a peer stays
disconnected for a time smaller than a given timeout (few
hours), the system does not do anything [21]. Otherwise, the
peer is considered to have failed permanently.

Permanent Peer Failures. Peers are subject to failures, mainly
disk crashes. When a peer failure occurs, all the fragments
stored on its disk are lost and the peer disk is replaced by a
new empty disk. Following other works in the literature [20],
[1], [13], these events occurs independently of one another,
according to a memoryless process. We note α = 1/MTTF

the probability for a given peer to experience a failure during a
time step, with MTTF the Mean Time To Failure of a disk. It is
important to note that if, for a single disk, this is a rare event, a
system with thousands of disks continuously experiences such
failures [19]. As a consequence, it is essential to the system
to monitor the blocks’ state and maintain the redundancy by
reconstructing lost fragments.

TABLE I
SUMMARY OF MAIN NOTATIONS.

N # of peers
s # of fragments in the initial block
r # of redundancy fragments

n = s + r # of fragments in a system block
r(b) # of remaining redundancy fragments of block b
r0 reconstruction threshold value
l size of a fragment in bytes
B total number of blocks in the system
τ time step of the model
α probability for a disk to failure during a time step

δ(i) probability for a block at level i to lose one fragment
γ probability for a block to be reconstructed after a time step

(γ = 1/θ)

Introduction of Erasure Coded redundancy. The user data is
divided into user data blocks. Each user data block is, in turn,
sub-divided into s equally sized fragments to which are added
r fragments of redundancy, using Erasure Codes (see [16]).
Each system block has then n = s+r fragments that are spread
and stored on n different peers chosen at random among all
peers in the system. Any subset of s fragments chosen among
the initial s+ r is sufficient to recover (reconstruct) the block.

System monitoring. The system needs to continuously mon-
itor the block’s redundancy level to decide if the repairing
process needs to start. We consider systems that implement
a threshold-based policy (often called Lazy Repair [3], [7]).
When the number of available redundancy fragments of a
block b drops to a threshold value r0, its reconstruction starts.
Note that, higher threshold values mean lower probability
to lose data, but higher bandwidth consumption. The case
r0 = r − 1 is a special case called the eager policy, where
a block is reconstructed as soon as a fragment is lost. This
monitoring process can be done either in a centralized way
or in a distributed way, using a Distributed Hash Table
(DHT) [21].

Block Reconstruction. To rebuild a block b, a peer is chosen
uniformly at random to carry out the reconstruction. It is
done in three consecutive phases: in the first, retrieval, it has
to download s of the remaining fragments; then, recoding,
it rebuilds the block; and finally, sending, it spreads the
r − r(b) missing fragments in the network. The amount of
data transmitted per block is then (s+ r− r(b))l in total, with
r(b) the number of remaining redundancy fragments of block
b and l the size of a fragment. A summary of the notations
used throughout this paper is given in Table I.

Since the amount of traffic induced by the reconstruction
transfers is much higher than the monitoring traffic, this
later can be considered negligible here. Thus, the bandwidth
consumption studied here is due solely to the reconstruction
process.

III. MARKOV CHAIN MODEL

In this section, we present the Markov Chain Model that
we evaluate in the rest of the paper. This chain represents
the behavior of P2P storage systems and models a single data
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Fig. 1. Markov chain modeling the behavior of one block. Solid and
dashed lines respectively represent failure and reconstruction events. Loops
are omitted. Dead blocks are reinjected in the system with probability 1.

block, following the approaches found in the literature [1],
[7]. We derive the average values of the system behavior
(probability of data loss and average bandwidth consumption)
from its stationary distribution.

Markov Chain States and Transitions. The behavior of a
single block is modeled by a finite discrete time Markov Chain
with time step τ . The chain1 (as depicted in Figure 1) has r+2
states, that represent the r+1 levels of redundancy of a block
b, and a Dead state. Three different kinds of states can be
distinguished:

• Non critical: when r0 + 1 ≤ r(b) ≤ r;
• Critical: when 0 ≤ r(b) ≤ r0;
• Dead: when the block has less than s fragments.
A block can be affected by two different kinds of events:

peer failures and reconstructions. The probability for a block
at level i to lose one fragment during a time step is denoted
by δ(i) and is given by

δ(i) := (s + i)α(1− α)s+i−1

(recall that α is the the probability for a peer to experience a
failure during the time step). A block with no more redundancy
fragments may die with probability δ(0). Note that the transi-
tion time of the system, τ , can be small enough to ensure that
only one disk failure happens per time step. The simultaneous
loss of several fragments is emulated by successive fragment
losses.

When a block becomes critical (r(b) ≤ r0), the recon-
struction starts. The reconstruction is modeled as follows2:
the average duration of a reconstruction being noted θ, at
each time step, a critical block has a probability γ := 1/θ

to be rebuilt. In that case it goes to the top (r). Note that
we also assume that the blocks that lose a fragment during a
time step cannot be reconstructed during the same time step.
If a block loses more than r(b) + 1 redundancy fragments
before being reconstructed, it goes to the Dead state. In our

1For the sake of clarity, we do not describe here the most accurate and
complex chain, but rather a simplified version (where unlikely transitions
are ignored). They give very good approximations and provide the intuition
of the system behavior. We actually use a more sophisticated chain in our
computations.

2A Poisson reconstruction time is used, for mathematical tractability, and
because we think it approximates well the random nature of network delays.
Note that most other types of reconstruction could be captured by MCMs.
For example, a reconstruction lasting a deterministic time can be modeled by
labeling the states of a critical block by the progress of the reconstruction.

model, due to the stability assumption (the number of blocks
is constant), a dead block is replaced immediately. This purely
formal assumption does not affect the system behavior because
dead blocks are rare events, but it makes the analysis more
tractable.

Stationary distribution. The finite Markov chain presented
above is irreducible and aperiodic. Hence, the probability to
be in a state converges towards a unique stationary distribution
denoted by P , where P (i) is the stationary probability to
be in state i. The stationary distribution can be computed
exactly in time polynomial in n by finding the eigenvector with
eigenvalue 1. The complexity is independent of the number of
blocks B or of the number of peers N .

Expression of the Bounds for a Simplified Chain. To give an
intuition of the system behavior in function of the parameters,
we present here explicit closed formulas for a simplified chain.
In this chain, the probability for a block to lose a fragment
is the same for all states i, given by δ = δ(r). Note that
this simplified chain is “pessimistic”, in the sense that the
probability to lose a fragment in any state is higher than for the
former chain, and gives upper bounds for the studied metrics.
For space reasons, the calculus are not shown here.

The average number of blocks lost during a time step is
given by:

#dead ≈ (
ρ

1 + ρ
)
r0+1

· δ

r − r0 + ρ
B,

with ρ := δ
γ(1−δ) the ratio between failure and reconstruction

rates. Note that the number of dead decreases exponentially
with the threshold value r0. Notice also that higher ratios of
ρ mean more dead.

Similarly we get the average number of blocks under
reconstruction during a time step (it is the sum of blocks at
level 0 ≤ i ≤ r0):

#reconstructions ≈ ρ

r − r0 + ρ
B.

We see that the number of reconstructions is almost propor-
tional to the inverse of r − r0. As a matter of fact, dividing
r0 by 2 roughly leads to reconstruct the block after twice as
many fragment losses. Note that it gives an estimation of the
bandwidth needed by the system.

IV. STUDY OF CORRELATION EFFECTS

In this section, we compare the system behavior estimated
from the MCM with the results of simulations. We point out
the deficiencies of the MCM to model the simultaneous loss
of fragments when a disk fails. We show in Section IV-D
the significant impact of this correlation on the variations of
bandwidth usage, even for a large system. In Section IV-E,
we examine a provisioning scenario and show that, when not
taken into account, this variation could lead to a very high
loss rate.



A. Simulation Model (SM)
We developed a custom cycle-based simulator to evaluate

several characteristics of a real system. The simulator does
not aim at capturing the low level details of the network (such
as packet level communication, traffic congestion or latency),
but it focuses on the global evolution of block’s states in the
presence of peer failures and reconstructions.

The simulator monitors precisely the evolution of the blocks
in the system, that is, their state at each time. For each disk,
it stores a list of all the blocks having a fragment on it. When
a disk failure occurs, the simulator updates the state of the
blocks having lost a fragment. Precisely, during each cycle
the simulator performs three phases:

1) generate disk failures;
2) handle the reconstruction of critical blocks:

a) for each block, test if its reconstruction is over;
b) if so, choose peers randomly to spread the rebuilt

missing fragments;
3) ensure the stability of the system:

• reintroduce fragments of the dead blocks;
• replace crashed disks with new empty ones.

Initialization phase. At the beginning, all blocks have s + r

fragments in the network (full redundancy). The fragments
are uniformly distributed at random among nodes. Thus, each
node starts with an average of B(s+ r)/N fragments, with B

the total number of blocks.
Note that during the first phase of the simulation, the system

is in a transient phase. The cycles corresponding to this phase
are not considered in the results given in following section. We
focus on the properties of the stationary phase of the system.

Monitored metrics. The main metrics monitored by the
simulator are the number of reconstructions in progress (hence
the bandwidth usage), the number of dead blocks, and the
redundancy level of blocks (hence the number of available
fragments).

At the end of each cycle, a trace is generated containing all
this information. The bandwidth consumption, BW , is cal-
culated using the number of on-going reconstructions during
each cycle. As shown in Section II, to reconstruct a block b,
the system needs to transmit (s + r − r(b))l amount of data.
Thus, to estimate the total bandwidth consumption, we sum
over all blocks in reconstruction, Brec, and we divide by the
time step τ and by the average reconstruction cycles for one
block, θ. It is assumed that the use of bandwidth is evenly
distributed over the reconstruction time. We get then

BW =
l ·

�
b∈Brec

(s + r − r(b))
τ · θ .

Simulation suite and default parameters. A large number of
simulations with different sets of parameters were performed.
Unless otherwise explicitly indicated, the default parameter
values are the following: a medium size system with N =
5000 peers (different scenarios with N spanning from 25 to

TABLE II
COMPARISON OF THE RESULTS OBTAINED USING THE SM AND MCM,

FOR DIFFERENT VALUES OF RECONSTRUCTION THRESHOLD r0 .

(a) Average bandwidth usage (in Mbits/s)
r0 1 2 3 4 5
SM 0.94 1.26 1.77 2.78 5.56
MCM 0.94 1.26 1.78 2.78 5.57

(b) Fraction of Data Loss Per Year (%)
r0 1 2 3 4 5
SM 1.31 1.06·10−1 1.13 · 10−2 1.56 · 10−3 3.33 · 10−4

MCM 1.33 1.09·10−1 1.10 · 10−2 1.37 · 10−3 2.44 · 10−4

1 million of peers are also evaluated); the size of a user
data block is 3.6MB, thus, with s = 9 and r = 6 the size
of a fragment is l = 400KB, and the system data block is
6MB (with this redundancy we have a space overhead of
66%); the reconstruction threshold value is set to r0 = 3.
The system-wide number of blocks is then B = 5 · 105 (i.e.,
2.86TB), which leads to an average of 600MB per disk3.
Disk capacity is chosen to be 5 fold the average amount
of data per disk, i.e., 3GB. The average time to reconstruct
a block is θ = 12 hours. It includes the timeout delay to
detect that a peer has disappeared (temporary churn) and the
delay to perform the reconstruction, i.e., the time to collect
the remaining fragments, to recalculate the erasure code and
redistribute the missing fragments. The average lifetime of a
disk or Mean Time To Failures (MTTF) is assumed to be
1 year (see e.g. [19], [23] for a discussion). In general, the
simulation time Tsim was chosen to be 10 years, with a time
step of one hour, which leads to 87600 cycles.

B. Average System Behavior
We compare here, for different sets of parameters, the

average behavior of the system given by the Simulation Model
(SM) and the one predicted from the analysis of the MCM.
Table II presents a representative subset of our experiments
where the value of the reconstruction threshold r0 varies from
1 to 5.

We observe that the MCM gives a very precise estimation
of the average bandwidth consumption (Table II-(a)) and of
the fraction of data loss per year (Table II-(b)), except for
values of r0 close to r. The reason is that for these values
the probability to lose a block becomes very small and these
values are an average over rare events.

Remark on data loss. In practice the system parameters
are set in a way that the probability of a data loss is very
low (e.g., in the order of 10−20). However, it is difficult to
simulate such rare events in a reasonable time. To solve this
issue, we deliberately chose less realistic values to evaluate
the probability to lose data. In particular, the MTTF of disks
was set as low as 90 days and θ raised to 24 hours.

3To be able to execute the simulations in a reasonable amount of time, we
choose a system with disk size 100 times smaller than the one expected in
practice As a matter of fact, to simulate 5000 peers with small disks of size
5GB, the simulator needs to deal with 30 millions of fragments. Hence, the
importance to propose scalable analytical models that can accurately estimate
the behavior of very large systems.
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C. The problem of correlation

Figure 2 shows an histogram with the distribution of the
bandwidth consumption over time. In the top plot we have the
results obtained using the Simulation Model (SM), and in the
bottom, a system equivalent to the MCM, with independent
fragment failures. As previously stated, the average value of
both systems are very close (5.55 versus 5.50 Mbits/s). How-
ever, the variations around this average are totally different.
The standard deviation is 2.23 Mbits/s in the SM, to compare
with only 0.1 Mbits/s in the MCM. This difference is explained
by the fact that a disk failure impacts simultaneously all the
blocks that have fragments stored on it. Therefore, when a
failure happens, many blocks lose one fragment at the same
time. Moreover, an important proportion of these blocks needs
to start the reconstruction, which induces high peaks in the
bandwidth consumption.

Note that the standard deviation of the independent model
can be deduced directly from the MCM. Each block has a
probability p =

�r0
i=0 P (i) of being in reconstruction, with

P the stationary distribution of the MCM. Hence, the total
number of blocks in reconstruction is the sum of independent
variables and follows a binomial distribution of parameters B

and p. This distribution is very concentrated around its mean
Bp and the standard deviation is given by

�
Bp(1− p).

We conclude that modeling the behavior of a single block
using the MCM and extrapolating the results to the whole
system do not lead to an accurate representation of the system.

D. Correlation and the System Size

The impact of data loss correlation shown above actually
depends on the amount of fragments stored on the disk. A
somewhat extreme case is when the number of peers is equal
to the number of fragments of a block at full redundancy,
that is N = s + r. In such a system all the blocks lose one
fragment whenever a disk crashes and all the blocks follow the
same trajectory. Almost at the opposite, when the disk contains
few fragments (the extreme being each disk contains at most
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Fig. 3. Standard deviation of bandwidth usage versus system size.

one fragment), trajectories do get independent and the system
does not deviate from its mean. These two extreme examples
illustrate the fact, that the impact of correlation depends on
the ratio between the number of fragments per disk and the
number of peers (a peer failure simultaneously impacts about
(s + r)B/N fragments). In an extremely large system, the
dynamic gets closer to the independent case. The following
simulations confirm this intuition.

To illustrate it, we simulate systems with a fixed amount
of data (same number of blocks), but with varying number
of peers (between 25 and 1 million) and varying number
of fragments per disk. The number of blocks is 2.5 · 105.
It corresponds to 3.75 · 106 fragments. Figure 3 shows the
standard deviation given by SM and MCM. The standard
deviation of MCM is very far from the SM. This is obvious
for small systems: 0.069 vs 7.7 for 100 peers. But this is true
even for large systems: the deviation is still 5 times higher for
a system with 50, 000 peers. The deviation of the dependent
system decreases monotonically with the system size toward
the limit obtained for the independent system. In this example,
when the number of peers reaches 1 million, both standard
deviations are of the same order. As expected, the standard
deviation of the MCM is almost constant, as it depends only
on the number of blocks which is constant here.

E. Bandwidth Provisioning and Loss of Data
We show that the data loss correlation has a strong impact

on the variations of the bandwidth usage. But do these
variations really affect the system reliability? What happens
if the amount of bandwidth available, or allowed by the
user application, is limited? To answer these questions, we
simulate different scenarios with bandwidth limitation. This
limit varies from µ to µ + 10σ, with µ and σ respectively the
expectation and the standard deviation given by the MCM.
In these experiments, when the bandwidth is not sufficient to
carry out all the reconstruction demands, a queue is used to
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store the blocks to be rebuilt. The reconstructions then start in
FIFO order when bandwidth is available.

Figure 4 shows the cumulative number of dead blocks
for different limits of bandwidth. We see that limiting the
bandwidth has very strong impact. Between µ (5.5 Mbits/s)
and µ+5σ (6.04 Mbits/s), the number of dead blocks dropped
from 4.3 · 103 in the former to 196 in the later. If we have no
limit on the bandwidth, we also computed that the cumulative
number of dead drops to 11, which is respectively 400 and 18
times less than the former cases.

Note that for all these experiments, the available bandwidth
is greater than the average bandwidth given by the MCM.
Hence, it is only the fact of delaying some block recon-
structions that increases the probability to lose fragments. As
a consequence, provisioning the system based on a model
assuming block independence, as the MCM, could lead to
disastrous effects. As a matter of fact, in the MCM, the
bandwidth usage is very concentrated around its mean. For
example, the probability to exceed µ+5σ is less than 5.810−7.
A provisioning of this amount of bandwidth seems a very safe
one. But as we see in Figure 4, such a dimensioning would
lead to data loss. Therefore, it is very important to have a
model that takes data loss correlation into account.

V. A NEW STOCHASTIC MODEL

The discussion above shows that the system cannot be seen
as a set of independent blocks; so we need to model the
system globally. For this purpose, we propose in this section
a new approximated model based on a fluid approximation.
We provide a theoretical analysis in Section V-B, giving its
average behavior, the variation from its mean and a way to
compute any of its moments. In Section V-C, we show by
means of simulations that it models very closely the variations
of a realistic system.

A. The New Model
We need to model the whole system. Block states could

be fully described by a vector encoding the location of its

fragments. This would lead to a gigantic Markov Chain (with
around N (s+r)B states) which is too big to compute its sta-
tionary distribution. Therefore, we propose a new Markovian
Approximated Model whose purpose is too approximate this
gigantic chain.

The Approximated Model. The Approximated Model is
derived from the following observation: fragments are spread
randomly during the initialization phase and whenever a
reconstruction occurs. Hence, we make the following approx-
imation:

(A) At any time the fragments of a block are randomly
placed into the system4.

In such a case, the state of a block is fully described by its level
of redundancy and blocks at the same level are equivalent.
Hence a Markov Chain that counts how many blocks are at
each level can be used. The system is described by a vector
B(t) = (B0(t), · · · , Br(t)) where Bi(t) is the number of
blocks at level i at time t. This discrete chain can be formally
described, but it is still too large for practical use (it has
(r + 1)B states). However since many blocks are in the same
state, we use a fluid approximation for that chain (see [12],
[2] for references on fluid models).

Fluid approximation for large systems. The process to
distribute the fragments among the disks follows a multinomial
distribution during time (Assumption (A)). When the number
of blocks B is large compared to N , as in practical systems,
the multinomial distribution is very concentrated around its
mean: the standard error of the number of fragments per disk
is of order O( 1√

B/N
). The fluid approximation consists in

neglecting these variations around the mean and considering
that, at each time step, the proportion of blocks affected
by the reconstructions and peer faults is exactly the average
proportion.

We present here this stochastic Fluid Model, with discrete
time step τ . The system is described by the state vector X(t) =
(X0(t), · · · , Xr(t)), where Xi(t) counts the fraction of blocks
that are in state i at discrete time t (i.e., X(t) = B(t)/B).
The evolution of the state vector is then modelled as follows.
First, we define two matrices: R, which represents the effects
of the reconstruction process on the state vector,

R =





1 γ · · · γ
. . .

1
1− γ

. . .
1− γ





4Assumption (A) is indeed an approximation since the fragments of a block
whose last reconstruction occurred at time T0 can only be located on the disks
that where in the system at time T0 and never got faulty since. The correct
statement is that the fragments of a block with age T−T0 are randomly spread
on disks with age at least T − T0. Nevertheless we assume that (A) holds.



and F �, the effects of a disk fault,

F �(t) =





1− µr(t) µ0(t)

µr(t)
. . .
. . .

. . .

. . .
. . .

µ1(t) 1− µ0(t)





where µi(t) is the fraction of blocks in state i affected by a
failure. We then express a transition of the system as

X(t + 1) = M(t)·X(t),

with M(t) a random product defined as follows

M(t) =
�

RF � with prob. f (disk fault);
R with prob. 1− f (recons. only),

where f is the probability to experience a disk failure during
a time step. At each time step, if no disk failure occurs, we
only account for the effects of reconstructions; otherwise the
disk failure effect is added. Henceforth, we note F = RF � for
simplicity.

The model makes the following assumptions:
- At most one disk can fail during a time step (note that

it is sufficient to choose τ small enough to ensure that
multiple failures almost never happen).

- During a time step, a failure happens with probability
f = αN .

- Whenever there is a failure, a block at level i has
probability µi(t) to lose a fragment. This is indeed
hypothesis (A). A first approach is then to consider that
each disk contains a proportion 1/N of fragments (i.e.,
about B(s+r)/N ), then the probability to lose a fragment
at level i (assuming a fault) is µi(t) = s+i

N . It corresponds
to a first Simple Fluid Model (SFM).

Our first simulation experiments showed that this approxima-
tion already gives good results, but we can still refine it further
as follows.

Disk age and number of fragments in a disk. When a disk
fails, it is replaced by a new empty disk. Since disks fill up
during the system life, a newly replaced disk is empty, while
an old disk contains many fragments. Disk age and disk size
distributions can be approximated closely for systems with
large number of blocks. When a block is reconstructed, each
of the rebuilt fragment is sent on a random peer. Hence, at
each time step, the distribution of the rebuilt fragments among
the peers follows a multinomial distribution, with parameters
the number of rebuilt fragments and 1/N . As the multinomial
distribution is very concentrated around its mean, the filling
up process can be approximated by a affine process of its age,
in which, at each time step, each disk gets in average the
number of reconstructed fragments divided by the number of
peers. The age of death follows a geometric law of parameter
α, as at each time step a disk has a probability α to experience
a fault. That is,

Pr[death age = k] = (1− α)k−1
α.

Hence, disks with very heterogeneous number of fragments are
present in the system. This strong heterogeneity of the number
of fragments per disk may have a significant influence on the
variations of the system. As a matter of fact, when the system
experiences a disk failure, we may lose a lot of fragments if the
disk was almost full, but a lot less for a young disk. Therefore,
we propose a refinement of the Simple Fluid Model to take
these variations into account.

Fluid Model (FM). We can take the disk size distribution into
account and modify µi(t) accordingly. This can be done by
setting

µi(t) =
(s + i)z(t)

N
,

where z(t) is the disk filling ratio and is taken according to
the distribution of the numbers of fragments in a disk:

Pr[z(t) = kC(α,kmax)
α ] = (1− α)k−1α, for 1 ≤ k < kmax,

P r[z(t) = kmaxC(α,kmax)
α ] = 1− (1− α)kmax ,

where kmax and C(α, kmax) are defined below. z(t) follows
a normalized truncated geometric distribution. The distribu-
tion is truncated to model full disks and kmax is indirectly
given by the maximum number of fragments per disk DS :
DS = αkmaxB(s + r)/N , where αB(s + r) is roughly the
average number of fragments reconstructed per time step.
Hence, kmax represents the number of time steps to fill up a
disk. The distribution is normalized to have an average filling
ratio of 1: C(α, kmax)/α is the expectation of a truncated
geometric distribution of parameter α for 1 ≤ k ≤ kmax. We
have C(α, kmax) = 1− (1− α)kmax − kmax(1− α)kmax−1 +
αkmax(1−α)kmax−1. Note that 1 is a good approximation of
C for large kmax.

Note that the model is scalable since its size is s+r and the
random transition matrix at time t can be computed in time
O((s + r)2). Finally, let us summarize the new notations that
will be used throughout this section:

f probability to have a disk failure during a time step
(f = αN )

µi probability for a block in state i to be affected
by a failure

B. Analysis

We present a theoretical analysis that allows to compute all
the moments of the stationary distribution of the Fluid Model.
The analysis boils down to the analysis of a random matrix (or
matrix distribution), M(t). Note that we do not give a closed
formal solution to this difficult problem because there exists
no general theory to get the distribution of a random product
of two matrices. It is not surprising since, for example, only
determining if the infinite product of two matrices is null is
an undecidable problem [17].



Expression of the expectation of the Simple Fluid Model.

A transition of the system transforms the state vector X =
(X1, · · · , Xn) according to

X(t + 1) = M(t)X(t).

Hence,
E[X(t + 1)] = E[M(t)]E[X(t)].

The expectation of the transition matrix is given by

E[M(t)] = E[fF (t) + (1− f)R] = fE[F (t)] + (1− f)R,

with E[F (t)] = E[RF �(t)] = RE[F �(t)], as F � is independent
of R. We have E[F �(t)] = F �, with F � corresponding to the
fault matrix for an average filling ratio of 1. Therefore, we
obtain the same expectation for the Simple Fluid Model and
the Fluid Model. To summarize, we get

E[M(t)] = fRF
� + (1− f)R.

The linear operator E[M(t)] is a probability matrix and it can
be computationally checked that 1 is the only eigenvalue with
norm one. Hence we have E[X(t)] converges to E0, solution
of the equation

E0 = (fRF
� + (1− f)R)E0.

Note that, since (fRF � + (1 − f)R) is roughly equivalent
to the matrix transition of the MCM, we find that E[X(t)]
converges to the stationary vector of the single block model.
This is expected since expectations are linear.

Expression of the standard deviation of the Simple Fluid

Model. We want to compute the standard deviation of the
state vector X , meaning the standard deviation of each of its
coordinates. We recall that each coordinate corresponds to the
number of blocks in a given state.

Let start by computing E[X2].

X(t + 1)2 = (M(t)X(t))2.

That is

X
2
i =




n�

j1=1

mij1Xj1








�

j2

mij2Xj2



 .

We get
X

2
i =

�

j1,j2

mij1mij2Xj1Xj2 .

Note that, as X2 depends of all the cross-products of Xi and
Xj , we have to compute all their expectations.

Expression of the expectations of the cross-products. We
have

XiXj =

�
n�

k1=1

mik1Xk1

� �
n�

k2=1

mjk2Xk2

�
.

Hence
XiXj =

�

k1,k2

mik1mjk2Xk1Xk2 .

It gives for the expectations:

E[XiXj ] = E[
�

k1,k2

mik1mjk2Xk1Xk2 ].

By linearity and independence (of mij and Xi), we obtain

E[XiXj ] =
�

k1,k2

E[mik1mjk2 ]E[Xk1Xk2 ].

The method is to write a linear system of equations linking the
cross-product expectations at time t + 1 with the expectations
at time t. Let ind be the function [1, n] × [1, n] → [1, n2],
ind(i, j) = (i− 1)n + j. Let us define the matrix N by

Ni�j� = E[mi,k1mj,k2 ],

with i� = ind(i, j) and j� = ind(k1, k2). Note that this matrix
is of dimensions n2 × n2.

We now need to compute E[mi,k1mj,k2 ]. As the matrix of
transition M(t) is stochastic, we have to sum over all possible
disk fillings z(t) to obtain the expectation. If, we note F (k)

the matrix F (t) for a filling ratio equal to k, the definition of
M(t) gives

E[mik1mjk2 ] =
�kmax

k=1 Pr
�
z(t) = kC(α,kmax)

α

� �
fF

(k)
ik1

F
(k)
jk2

�

+(1− f)Rik1Rjk2 .

Ni�j� is then directly derived. Now, if we note Z the vector
of the cross-products (Zind(i,j) = XiXj), we have

E[Z(t + 1)] = N(t)E[Z(t)]

Again, as the linear operator E[Z(t)] is a probability matrix
and because it can be checked that it has no eigenvalue with
norm one other than 1, we have E[Z(t)] converges to E0,
solution of the equation

E0 = N(t)E0.

When Z is computed (by a resolution of a linear system with
n2 variables and equations), we can extract the coefficients
E[X2

i ] and compute the standard deviations with

σ(Xi) =
�

E[X2
i ]− E[Xi]2.

Conclusions for the number of reconstructions and the

bandwidth. The fraction of blocks in reconstruction ξ is equal
to the sum of the fraction of blocks in the states from 0 to r0.
We note ξ =

�r0
i=0 Xi. We have

E[ξ] =
r0�

i=0

E[Xi] and V[ξ] =
r0�

i=0

r0�

j=0

cov[XiXj ].

The covariances can be extracted from the previous computa-
tions (cov[Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ]).

Each reconstruction lasts in average 1/γ, translated in the
model by a probability γ to be reconstructed. Hence the
expectation of the bandwidth BW used by the system during
one time step is

E[BW ] = γ(s + r − r0)lBE[ξ].



Fig. 5. Timeseries of the bandwidth used by SM and FM for 5 years.

Recall that l is the size of a fragment and s+r−r0 is roughly
the number of fragments sent during a reconstruction. We also
get directly the variance

V[BW ] = (γ(s + r − r0)lB)2V[ξ].

Remark: Other moments can be computed similarly, albeit
with additional complexity, as we need to compute all cross-
products (E[X1 . . . Xk] for the k-th moment).

C. Validation of the model

We run an extensive set of simulations to validate the
Fluid Model (FM) for different values of parameters. Figure 5
presents an example of a timeseries of the bandwidth usage.
The top plot is the Simulation Model and the bottom one the
Fluid Model. As expected, the averages of the two models are
almost the same (few tenths of percent). But in addition, we
observe that the variations are now very close as well (2.15
Mbits/s vs. 2.23 Mbits/s).

Figure 6 shows the standard deviation of the bandwidth use
in both models for systems with different number of peers and
fixed amount of system data. We see that the values are very
close and differ by only few percents. The average bandwidth
use is about the same in all these experiments and is close
to 1.37 Mbits/s. Note that the variations of the FM and SFM
are of the same order of magnitude, but still differ by around
20 to 40 percent in most cases, showing the impact of the
heterogeneity of disk occupancy, and hence the need for the
Fluid Model.

A summary of results is given in Table III. We see that
the standard error of the two models differs from less than 5
percent for this set of parameters. We conclude that the system
is modeled very closely by the FM.
Influence of the parameters. Note that the standard deviation
does not seem to depend of the value of r0. To give an
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Fig. 6. Bandwidth std. deviation vs number of peers for SM, FM (SFM is
also given for comparison).

TABLE III
STANDARD ERROR OF BANDWIDTH USAGE (STDDEV/MEAN) FOR
DIFFERENT VALUES OF r0 , θ (IN HOURS) AND MTTF (IN YEARS).

r0 1 2 3 4 5
SM 0.35 0.33 0.32 0.31 0.29
FM 0.31 0.31 0.31 0.30 0.29

θ 6 12 24 36
SM 0.61 0.42 0.29 0.24
FM 0.59 0.41 0.27 0.23

MTTF 1 2 3 4 5 6 8 10
SM 0.40 0.58 0.69 0.80 0.90 0.97 1.11 1.54
FM 0.38 0.55 0.67 0.78 0.87 0.96 1.09 1.66

intuition of the influence of the parameters on the system
variations, we provide here a rough estimate of the standard
error of the bandwidth usage. When there is a disk failure,
in average, roughly RD ≈ B(s+r)

N(r−r0)
block reconstructions

start. The average number of reconstructions can then be
estimated by E[R] ≈ fRD. Let us now estimate its variance.
When f is small, there are two cases: either no failure
occurs with probability f and no reconstruction starts, or
there is a failure and RD blocks are reconstructed. The
reconstruction lasts θ time steps. Then the system reconstructs
RD/θ blocks per time step during a time θ. Hence it gives
V[R] ≈ (1 − fθ)E[X]2 + lθ(E[X]/fθ − E[X])2. That is
V[X] ≈ (1− fθ + fθ(1/fθ − 1)2)E[X]2 When fθ is small,
we get

Std. Err.[R] ≈ 1√
αNθ

.

From this approximation, the system variations should be
roughly independent of r0, but inversely proportional to

√
N ,√

θ and proportional to
√

MTTF . These tendencies are seen
in Table III and Figure 6.

D. Model Discussions - Future Directions
We showed that the Fluid Model closely models the be-

havior of the real system. In fact, we see that the non



uniform repartition of the fragments between the different
disks increases the standard deviation of the bandwidth use.
To lower the impact of disk age and to have more uniform
disk fillings, we propose two new policies:

• Shuffling algorithms. At each time step, a proportion of
the fragments in the system are chosen at random and
sent to a random disk. If all fragments are concerned, we
obtain an ideal system with perfectly uniform repartition
of the fragments among the disks. Note that in fact, it
corresponds to the Approximated Model of Section V.
The advantages of such policy are that it lowers the
differences in number of fragments of the disks, but also
decreases the correlation between old blocks that were
more present on old disks. However, a drawback is the
introduction of more network traffic in the system to
redistribute the fragments.

• Biased reconstruction policy. Another way to obtain
more uniform disk fillings is to change the reconstruction
policy. During the last phase of the reconstruction, the
rebuilt fragments are sent to random peers. We propose
to choose these peers not uniformly, but to select with
higher probability disks with less data. By doing so, the
new disks fill up faster. One drawback of this policy, is
that it reinforces the correlation between blocks rebuilt at
the same time. But it has the advantage of not changing
the bandwidth needs.

VI. CONCLUSION

In this paper, we study the bandwidth consumption and
probability to lose data of a peer-to-peer storage system. We
show through simulations and formal analysis that modeling
such a system by independent blocks, each following its own
Markov Chain is very far from reality: if the expectations are
perfectly captured, deviations from the mean are extremely
underestimated. This is due to data loss correlation: a failing
disk affects tens of thousands of blocks. We also show by
simulation that these variations (e.g., in bandwidth usage) can
have a severe impact on the reliability (probability to lose
data).

We then introduce an Approximated Fluid Model that
captures most of the system dynamic. Simulations show that
this model gives very tight results. We believe that the methods
proposed in this paper can be applied in other contexts where
correlation phenomena occur. We are working at adapting
the presented methods to different (non Poissonian) failure
models and different reconstruction models, e.g. deterministic
reconstruction time. It could also be interesting to study data
placement strategies other than random.

This work also raises a more theoretical question. The
fluid models have a simple dynamic, since it is defined as a
random product of two small dimension matrices. Determining
the behavior of such a product is known to be intractable,
but in our specific case we succeeded to get exact formulas
and compute the moments of the distribution. It would be
interesting to find general non trivial conditions (other than
commutability) under which the dynamic can be computed.
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