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Abstract

Forecasting Abnormal Human Behavior (AHB) aims to
predict unusual behavior in advance by analyzing early
patterns of normal human interactions. Unlike typical ac-
tion prediction methods, this task focuses on observing only
normal interactions to predict both, short and long term
future abnormal behavior. Despite its affirmative impact
on society, AHB prediction remains under-explored in cur-
rent research. This is primarily due to the challenges in-
volved in anticipating complex human behaviors and in-
teractions with surrounding agents in real-world situations.
Further, there exists an underlying uncertainty between the
early normal patterns and the future abnormal behaviour,
thereby making the prediction harder. To address these
challenges, we introduce a novel transformer model that
improves early interaction modeling by accounting for un-
certainties in both, observations and future outcomes. To
the best of our knowledge, we are the first to explore the
task. Therefore, we present a new comprehensive dataset
referred to as “AHB-F”† , which features real-world sce-
narios with complex human interactions. The AHB-F has
a deterministic evaluation protocol that ensures only nor-
mal frames to be observed for long- and short-term future
prediction. We extensively evaluate and compare compet-
itive action anticipation methods on our benchmark. Our
results show that our method consistently outperforms ex-
isting action anticipation approaches, both in quantitative
and qualitative evaluations.

1. Introduction
Abnormal human behavior (AHB) has the ability to

cause harm for humans and associated property. Such be-
havior is rare and often comprises complex patterns, mak-
ing them difficult to understand. Recently, video analysis
methods [5,34,41,46] have focused on detecting anomalies
either in offline (after they occur) or online (as they hap-
pen) mode to assist with investigations or provide alerts.

†Code, Models, Dataset: https://github.com/snehashismajhi/AHB-F
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Figure 1. In (a): Illustrates three interaction cases in abnormal hu-
man behavior that can be challenging due to divergent cues. Ab-
normal human-to-human interactions (e.g. arrest), usually has sig-
nificant changes in appearance and motion, while human-to-object
interactions (e.g. shoplifting) tend to be more subtle. However,
some interactions (e.g.protest) have both humans and objects with
a unique spatio-temporal blend. In (b): Our typical framework
that accounts the uncertainty while predicting the future anomaly.

However, these methods do not predict the anomalies before
they happen, thereby fail to facilitate any anomaly preven-
tive measures. Therefore, AHB forecasting/anticipating in
real-world scenarios has a high societal impact, carrying the
premise to minimize casualties and damages through miti-
gatory measures.

Forecasting abnormal human behavior (AHB) incor-
porates two main challenges: (I) understanding complex
AHB, and (II) overcoming uncertainty between current ob-
servations and future events. First, real-world scenarios are

https://github.com/snehashismajhi/AHB-F


unpredictable and ever-changing, rendering it difficult to
analyze complex human behavior and interactions for pre-
dicting abnormal behavior. These situations differ signif-
icantly from everyday life, where interactions are simpler.
In abnormal scenarios, there is a wide range of interactions
shown in Figure 1a, from subtle cues (such as shoplifting,
which involves a few human-object interactions) to more
intuitive ones (such as protests, where there occur dense
human-to-human and human-to-object interactions). Ab-
normal behavior is often accompanied by normal activi-
ties and occurs rarely, which challenges prediction. Sec-
ond, predicting future AHB based on normal interactions
is naturally uncertain in both, short and long-term behav-
ior. For instance, the same normal observation can result in
multiple plausible continuations. Despite the importance of
forecasting AHB, few methods exist that can handle these
uncertainties and complexities in real-world, dynamic situ-
ations.

Motivated by this, we use an encoder-decoder frame-
work shown in Figure 1b to process past interactions and
predict future AHB. Our past encoder introduces a new
transformer model, referred to as “Space-time Interaction
aware Transformer (SIaT)”, with two key components: (i)
Interaction Modules (TIM/OIM) and (ii) Normalcy Uncer-
tainty Latent Learner (NULL). These components helps for
capturing early human interaction patterns and handle the
uncertainty between normal interactions to future abnormal
behavior. Deviating from previous methods [42, 45], our
interaction modules separately encode scene-level temporal
context (TIM) and object-level spatial interactions (OIM),
providing a detailed understanding from broader scene dy-
namics to fine object interactions. We use panoptic ob-
ject masks and raw RGB frames to represent objects and
scenes level agents, thereby making both spatially coher-
ent. This enables SIaT to effectively capture correlations
between scene and object interactions. Next, the correlation
encoded normal scene and object semantics are associated
via NULL by considering the uncertainties associated with
normal observations. The NULL module handles the uncer-
tainty by distinguishing between relevant and non-relevant
scene-object associations. Further, it adjusts the flow of in-
formation from the past encoder to the future decoder by
learning latent features that is aligned with future predic-
tions.

Towards validating our method, we find that widely
adopted benchmark datasets [6, 16] entail activities of daily
living and there is no benchmark that has real-world AHB.
Addressing this limitation, we provide a larger-scale di-
versified dataset, denoted Abnormal Human Behaviour-
Forecast (AHB-F) with a dedicated evaluation protocol for
long and short-term anticipation. Thanks to the latter, our
SIaT can portray its robustness towards AHB anticipation
and related results suggest that our model consistently out-

performs state-of-the-art action anticipation approaches.
To summarize, our contributions are in three-folds.
• We introduce a novel affirmative task named “Ab-

normal Human Behavior Anticipation” in real-world
videos to promote mitigatory measures in serious
crimes. Towards this, we present a benchmark dataset,
“AHB-F” with dedicated evaluation protocol for long
and short term anticipation.

• We propose a novel transformer “SIaT” that effectively
encodes the early human interactions by considering
uncertainty of observation and future predictions.

• We provide exhaustive experimental analysis to cor-
roborate the robustness of SIaT in AHB-F dataset. The
obtained results outline that SIaT outperforms previ-
ous approaches in many scenarios considered.

2. Related Work
Action Anticipation: This task has been investigated in
both third-person videos [1, 2, 12, 30, 37] and egocentric
videos [6, 7, 11, 14, 28]. Standard approaches are generally
categorized into LSTM/RNN-based methods [7, 33] and
transformer-based methods. LSTM-based approaches [10,
24] typically utilize a rolling LSTM to encode the ob-
served video and maintain an updated summary. For in-
ference, an unrolling LSTM is initialized with the hidden
and cell states of the rolling LSTM to predict the next ac-
tion. Often LSTM struggle with capturing long-horizon
temporal dependencies. Recently, transformer-based ap-
proaches [14, 28] have gained attention, leveraging global
attention mechanisms [13], modeling appearance changes
in human-object interactions [32], conditioning on inten-
tion [23], and hierarchical feature aggregation [23]. Fur-
ther, due to their ability to capture long-range dependen-
cies, LSTR [42], TesTra [45], FUTR [13], OADTR [40],
JOADAA [15] have benefited from the transformer back-
bones to address the tasks of action anticipation. However,
these architectures are suitable only for simple activities and
simple datasets, which is not applicable to real-world sce-
narios that have multiple actions occurring at the same time.

Video Anomaly Understanding: This task is majorly
studied along the horizon of online and offline anomaly
detection. Prominent methods are based on weakly-
supervised multiple instance learning. The video anomaly
detection (VAD) [5,9,18,20–22,26,34,38,41,43,44,46,48]
methods widely use UCF-Crime [34], XD-Violence [41],
ShanghaiTech [19], IITB-Corridor [31] datasets. One cru-
cial aspect in real-world VAD is to learn discriminative fea-
tures for normal and anomaly segments. As a classical ap-
proach, authors in [44] and [48] utilize TCN [17] and op-
tical flow motion [35] cues to capture the sharp anoma-
lies only. In contrast, authors in [36] proposed an MTN
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Figure 2. Illustration VAD Vs. VAA: Suppose the current time
step is t. For online VAD, a parametrized model f(θ) can predict
normal (N) or anomaly (A) for the current t based on observed
time stamps t− i . . . t− 1, t, where i represents the observed du-
ration. However, for our VAA we predict what kind of anomaly
will occur in the future in a range of [t+1, t+2,. . . , t+k] where k
represents anticipation duration. Further, we comprehend the short
and long-term anticipation to identify the potential re-occurrence
of an anomaly in the long future.

network for global context relation between normal and
anomaly segments. Recently, Zhou et al. [47] and Chen
et al. [3] adopt transformer-based global-local and focus-
glance blocks, respectively, to capture long and short-term
temporal dependencies in normal and anomalous videos.
However, as [3, 36, 47] follow a magnitude-based opti-
mization, they mostly encourage the sharp abnormal cues
of scene anomalies. Thus, they tend to overlook the subtle
cues of human anomalies and hence fail to detect them.

Despite decent progresses on action anticipation and
video anomaly understanding tasks, prior methods have not
explored real-world video anomaly anticipation. Motivated
by this, in this work we aim to provide a new transformer
method that extends the ability of traditional methods to
anticipate anomalies in real-world scenarios. Further, to
promote research in this domain, we provide a benchmark
dataset and evaluation protocol to predict long and short fu-
ture events.

3. Preliminaries

The objective of the video anomaly anticipation (VAA)
task differs significantly from offline and online video
anomaly detection (VAD) tasks. This is because either of-
fline or online VAD can only provide anomaly prediction
probability for a snippet that has already appeared or ap-
pearing currently. In contrast, VAA can answer uncertain-
ties like: (i) Whether an anomaly will occur in the near

future? (Short Anticipation), (ii) If yes, What kind of
anomaly is likely to occur? (anomaly class), (iii) Is there
a chance of re-occurrence of the same anomaly in a fu-
ture time window? (long Anticipation). We illustrate and
compare VAD and our VAA tasks in Figure 2.

Note that classical daily living action anticipation meth-
ods can be applicable to VAA tasks. However, their ap-
proach to model the early/past trend may not directly benefit
VAA due to the unique characteristics of real-world AHB.
Therefore, in the next section we propose a novel trans-
former that can effectively encode the early trends of AHB
and there by predicts the future abnormalities.

4. Proposed Method

In this section, we present our Space-time Interaction
aware Transformer (SIaT) shown in Figure 3a that acts as a
past-encoder to learn the early behavioral trends of humans
via their interaction with the other environmental agents
for anticipating AHB. This is accomplished by introducing
scene and object-based vision-language representations into
the SIaT via Feature Encoder. The SIaT has two key build-
ing blocks: (I) Interaction Module that constitutes two iden-
tical modules with different functionalities, namely Tempo-
ral Interaction Module (TIM) and Object Interaction Mod-
ule (OIM) to dissociatively capture the scene-level global
temporal interactions and object-level local spatial interac-
tions respectively; (ii) Normal Uncertainty Latent Learner
(NULL) associates the interaction encoded scene and object
semantics by exploiting the inherent uncertainty associated
with normal observation to future AHB. Next, we proceed
to provide a concise description on the feature representa-
tion and then each building block of SIaT.

4.1. Feature Representation

For a given temporal observation duration (t), we extract
scene and object features from the Scene Encoder (SE) and
Object Encoder (OE). The OE first extracts the frame-level
panoptic masks with the corresponding text labels of k ob-
jects from Mask2former [4] and stacks them along the tem-
poral dimension (t). Then we extract object-level d0 dimen-
sional vision language features from CLIP [29] Image and
Text encoder to obtain FO ∈ Rt×k×d0 and Ftxt ∈ Rt×k×d0

respectively. Then the SE extracts d0 dimensional frame-
level spatial features from CLIP [29] Image encoder and
stacks them along the t dimension to obtain a global scene
feature map FS ∈ Rt×d0.

4.2. Interaction Modules (T/O-IM)

The aim of interaction modules (T/O-IM) (shown in Fig-
ure 3a) is to learn low-level discriminative representations
for future AHB w.r.t normal ongoing events by effectively
encoding the global and local interactions in the temporal
interaction module (T-IM) and object interaction module
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Figure 3. In (a) An overview of proposed Spatial Interaction aware Transformer (SIaT): It has two key components: (i) Interaction
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inputs the uncertainty encoded latent representation of the past (i.e. θ1 and θ2) is taken as input along with the anticipation queries (AQ) to
predict the future event. In (c), operators used in (a) and (b) are defined.

(O-IM) respectively. This is enforced by dissociatively en-
coding scene and object-relevant sharp and subtle precursor
clues via T-IM and O-IM. For this, T-IM first aims to high-
light the temporal saliencies of the observation by encoding
the cross temporal interactions among coarse-grained scene
(FS ∈ Rt×d0) and fine-grained object FO ∈ Rt×k×d0 level
feature maps. While processing the FO ∈ Rt×k×d0 in T-
IM, a spatial-pooling operation is applied on k dimension
of FO to suppress the object appearance features and en-
courage the object-specific fine motion features. Next, O-
IM aims to promote the salient object features out of many
irrelevant ones by encoding their spatial interactions with
the surroundings. Although individual object mask features
(FO ∈ Rt×k×d0) are empowered with fine-grained repre-
sentations, they are contextually sparse. Further, encoding
the object interaction with sparse context leads to a partial
understanding of the complex interactions (e.g. ambiguity
between arrest and fighting w/o a policeman as context).
Due to this, CLIP pre-trained object-level textual feature
Ftxt ∈ Rt×k×d0 is taken into consideration for infusing rich
contextual information while encoding critical object inter-
actions in O-IM. When processing both fine-grained FO and
contextual Ftxt in O-IM, a temporal-pooling operation is
applied on t dimension of FO and Ftxt to suppress the ob-
ject motion features and focus on the object appearance and

spatial location features. Although T-IM and O-IM encodes
two distinct features, they are functionally identical.
Functionality of T/O-IM: Primarily, the T/O-IM learns
the temporal and object level spatial interaction by en-
coding the cross-correlation between the respective fine-
grained(fi.) and contextual (co,)representations. First, indi-
vidual fine-grained and contextual feature maps (i.e. fi. and
co.) are processed in parallel via g(fi.) and f(co.) for all
pair self-correlation-encoding. In practice, f() and g() are
the standard multi-head self attention layers. Next, for com-
puting the cross-interactions between coarse and fine latent
features obtained from f(co.) and g(fi.) cross-attention op-
erator is applied by treating the contextual latent features as
the key and value and the fine-grained latent features as
the query. The temporal and object interaction encoded
outputs of T-IM and O-IM is represented by eT ∈ Rt×d1

and eO ∈ Rk×d1, where t is the observation length k is the
associated objects and d1 is the embedding dimension.

4.3. Normalcy Uncertainty Latent Learner (NULL)

The goal of Normalcy Uncertainty Latent Learner
(NULL) is to exploit the uncertainty in normal observa-
tion while associating the object-centric spatial interaction
embedding eO ∈ Rk×d1 to each scene-centric temporal
interaction in eT ∈ Rt×d1. The exploration of observa-



tional uncertainty begins with computing two kinds of la-
tent weights w.r.t. future events, i.e. (i) relevant (P ) and
(ii) opponent (1 − P ) for the normal temporal regions of
the past eT ∈ Rt×d1 through an uncertainty estima-
tor (α). α can be seen as a multi-layer perceptron where
the final layer has single unit with sigmoid activation to
compute relevant (P ) latent weights independently across
t. The opponent (1 − P ) latent weights are computed by
simple minus operation with P . Here, by uncertainty, we
mean if P and 1 − P are equivalent, there exist no core-
lation between the observation o the future event and if P
and 1− P are divergent, ateleast some portion of the nor-
mal has strong correlation to the future events. Next, the
two types of latent weights are multiplied separately by
Hadamard-product (·) with the input eT to generate
the relevant and opponent embedding of normal observa-
tion i.e. β1 ∈ Rt×d1 and β2 ∈ Rt×d1 respectively. Now the
idea is to associate the object spatial interaction embedding
eO ∈ Rk×d1 to β1 and β2 to identify the relevant and oppo-
nent associations, out of which one association encouraged
for anticipation. For this, two cross attention layers
are used distinctively to obtain θ1 ∈ Rt×d1 and θ2 ∈ Rt×d1

for corresponding β1 and β2.
Further, to ensure better calibration among the relevant

and opponent associations (i.e. θ1 and θ2) while considering
the uncertainties, we aim to produce smaller gap between
the NULL outcome embedding and actual predicted action
of the future Â (obtained from (2)). This is enforced by
employing (1) as in below.

LU (θ1, θ2, Â) = ∥
t∑

i=1

(θ1)− Â∥︸ ︷︷ ︸
Lrelevent

+ ∥
t∑

i=1

(θ2)− Â∥︸ ︷︷ ︸
Lopponent

(1)

Thus, the perfect calibration occurs when one of the estima-
tion θ1 or θ2 perfectly matches the actual action prediction.

4.4. Anticipation Decoder
The decoder takes learnable tokens as input, referred to

as anticipation queries (AQ) and the outputs of NULL i.e.
θ1, θ2 (shown in ) to predict the future labels. It also learns
the long-term action relation between the observed and fu-
ture anomaly via self attention and cross attention. The
anomaly queries are embedded with M learnable queries
AQ ∈ RM×d1. The temporal orders of the queries are fixed
to be equivalent to that of the future anomalies, i.e., the ith

query corresponds to the ith future anomaly. The decoder
consists of two parallel multi-head cross attention (CA), and
MLP (as classifer). The final output of decoder is computed
by following (2) and the output logits Â are then softmax
activated.

Â = MLP (concat(CA(θ2, g(AQ), CA(θ1, f(AQ))))) (2)

Training Objective: For future decoder, he M number of
AQ are matched to the N number of ground-truth actions

to apply action anticipation loss LA. The LA loss is de-
fined with standard cross-entropy between action A
and logits Â. The SIaT transformer along with the future
decoder are trained jointly with Ltotal = λ1LA(Â, A) +
λ2LU (θ1, θ2, Â), where λ1 and λ2 are weighting factors.

5. Our Benchmark Dataset and Evaluation

The experiments are explicitly conducted on our Abnor-
mal Human Behaviour Forecast dataset (AHB-F) only as
this is the only dataset depicting such task. We also propose
a deterministic evaluation protocol to evaluate our method.

5.1. AHB-F Dataset

We collect AHB-F with a aim address the common
limitations of video anomaly datasets, i.e. : (I) Events
performed by actors with simple background, (II) Single-
type anomaly datasets such as only fighting, (III) lack of
temporally annotated videos. Thus to combat (I), AHB-
F collects real-world videos with actual anomaly occur-
rences with dynamic backgrounds (such as a streets, shops,
corridor, banks etc.). Further, to handle (II), AHB-F in-
cludes videos containing 26 categories of human anomalies
recorded in CCTV scenarios. In order to accumulate those
types of anomaly categories, AHB combines 5 major real-
world CCTV scenario datasets (UCF-Crime [34], LAD-
2000 [39], UCF-CrimeV2 [25], UBI [8], CCTV-Fight [27])
and selects those abnormal videos where the anomaly is
triggered by (or impacts) humans. As a result, AHB-F con-
sists of 1470 untrimmed videos in total. Next, to ensure an
unbiased train-test protocol, 75% and 25% of each category
are reserved for training and testing, which is collectively
1091 and 379 videos respectively. In term of size, AHB-F
is as big as the commonly used action anticipation datasets
(like Breakfast) and AHB-F has 2.5× times larger action
categories than the existing Breakfast dataset [16]. In AHB-
F, the average video length is 102.4 and 94.13 seconds in
train and test sets. Similarly, the average anomaly length is
around 43.8 and 42.5 seconds with an average number of in-
stances 1.6 and 1.8 in train and test sets. Since our objective
is to observe the normal frames and anticipate the future ab-
normal frames, we almost balance the train and test sets in
term of average anomaly lengths and instances. In order to
address (III), we combine the annotations made by [25, 39]
and rectified noisy annotations to provide the complete tem-
poral labels for all videos of AHB-F. Further, as shown in
Figure 4c, the abnormal videos are marked with three kinds
of abnormal interactions, such as : Human-to-Human (H-
H), Human-to-Object (H-O), and Human-to-(Human and
Object) (H-HO). These interactions are marked by care-
fully observing the abnormal attributes (such as human, ob-
ject trajectories, their associated interactions). The intro-
duction of AHB-F will promote anomaly anticipation for
ine-grained and subtle human anomalies.
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Figure 4. AHB-F dataset properties: (a) Category-wise video distribution in train and test set, (b) Diversity visualization of abnormal
categories in word cloud, (c) Analysis of average video lengths, anomaly length and no of anomaly instances.

5.2. Evaluation Metrics
In order to provide a more robust evaluation that suffices

our objective (i.e. observe normal to anticipate anomaly),
we provide a dedicated evaluation protocol different from
traditional action anticipation methods [1]. Briefly, action
anticipation methods are evaluated based on α1 ∈ [0.2, 0.3]
and α2 ∈ [0.1, 0.2, 0.3, 0.5], where α1, α2 denote the per-
centages of frames of a video that are used as observa-
tion and future prediction, respectively. However, in our
case such percentage of frames division may include part
of anomaly frames in the observation set, which will vio-
late our evaluation objective. Thus, we provide an evalu-
ation protocol which utilizes deterministic reference points
(Dref ) in a video to separate the observation and future pre-
diction frames. Here, all frames prior and post to the Dref

can be defined as observation and future prediction frames.
Further, the Dref in a video is placed in such away that the
observation frames contain only normal frames and the fu-
ture prediction frames contain a mixture of both anomaly
and normal frames that ensures our evaluation objective.
Kindly not that, in test set a video can have at least 1 and
at max 3 Dref points to cover all the anomaly instances
in the videos. Following previous work, we aim to utilize
frame-level Top-1 mean average precision (mAP) for the
entire test-set. Moreover, another crucial aspect of evalua-
tion lies in covering varying anticipation duration. For this,
we provide 2 long-short performance indicators to explic-
itly evaluate the anticipation performance for long and short
duration of future. The ”short indicator” reports the mean
mAP for future 1st to 3rd seconds, where as ”long indica-
tor” computes the mean mAP for future 4th to 8th seconds.
By this, the long-short indicators cover all the anomaly in-
stances with varying length.
6. Ablation Study

In this section, we conduct a series of ablation studies on
the AHB-F dataset to assess the robustness of our approach.

Effectiveness of SIaT: As shown in Table 1b, we verify
the impact of each component in SIaT by evaluating them
in terms of AHB long-short anticipation performances. As
a baseline set of experiments, we report initial anticipa-
tion performances by first stacking the future decoder on
top of scene and object encoders. Then we incorporated

the TIM and OIM modules independently to the respec-
tive baseline. By doing this, we obtained approx +2% and
+3% on short and long metric with TIM which shows the
relevance of temporal interaction in long-term AHB antic-
ipation. Similarly, we obtained approx +4.5% and +1.5%
on short and long metric which corroborate the necessity of
object interaction encoding in short AHB prediction. Now
to, complement both long and short AHB prediction, TIM
and OIM modules are utilized together and obtained at least
+8.5% performance gain from initial baseline experiments.
Next, to take the normalcy uncertainty into account, we in-
tegrated NULL module along with TIM and OIM and ob-
tained at least +3.5% performance gain in long and short
AHB prediction. The significant performance gain by in-
dividual components have demonstrated their robustness in
AHB anticipation.
How much of observation frames are required?: To an-
swer this, we conduct experiments in Table 1c using various
number of observation frames in SIaT. We start with 50 ob-
servation frames and linearly increase it to see the impact
on long-short performance metric. We observe that the per-
formance grows up till 200 frames and then the it tend to
degrade slight to moderate by further increasing the num-
ber of observation frames. This can be intuitive as we ac-
cumulate long past information with more increased frame
numbers and the information from long past may be noisy
for future AHB, thereby the performance tend to decline.
Relevance of TEXT based semantics: From Table 1d,
we observe the impact of infusing CLIP based text seman-
tics into SIaT. From Table 1b, we verified that incorporation
of OIM significantly improves the short term anticipation
performance and it is possible due to the text based semantic
injection to improve object interaction representation. As a
result, when comparing to with out text semantics, the text
feature improves both short and long term performance by
at least +1.5% which corroborates it’s relevance to the task.
7. State-of-the-art (SoTA) Comparison

To investigate the advantage of our proposed method
in the abnormal behavior anticipation task, we extensively
compare our approach (SIaT) with existing action anticipa-
tion methods in Table 1a and Figure 5. To validate the ef-
fectiveness of SIaT, we replace our past encoder and future



Methods
Short (Top-1 mAP %) Long (Top-1 mAP %)

1 sec. 2 sec. 3 sec. Avg 4 sec. 8 sec. Avg

Exp-1: SoTA with Scene Feature
OADTR [40] 62.37 61.58 62.11 62.02 61.58 56.10 58.84
FUTR [13] 62.53 59.89 60.42 60.94 61.21 55.67 58.44
LSTR [42] 62.16 60.94 61.46 61.52 62.47 58.16 60.31

JOADAA [15] 61.21 61.21 61.47 61.29 60.02 55.67 57.84
TesTra [45] 62.53 61.21 63.32 62.35 62.00 58.00 60.00

Exp-2: SoTA with Object Feature
OADTR [40] 50.65 51.18 51.18 51.00 50.65 46.96 48.80
FUTR [13] 59.10 58.31 55.40 57.60 55.40 50.65 53.02
LSTR [42] 54.96 56.05 54.21 55.06 56.74 51.96 54.35

JOADAA [15] 55.93 56.46 55.40 55.93 55.14 49.07 52.10
TesTra [45] 55.40 56.20 54.35 55.31 55.14 51.48 53.31

Exp-3: SoTA with concat(Scene,Object) Feature
OADTR [40] 63.07 62.40 62.58 62.68 62.06 59.13 60.59
FUTR [13] 61.47 61.21 61.74 61.47 62.79 56.46 59.62
LSTR [42] 63.06 62.00 63.06 62.70 63.06 59.63 61.34

JOADAA [15] 62.79 62.79 62.53 62.70 62.00 57.51 59.75
TesTra [45] 63.85 63.32 62.80 63.32 62.53 59.10 60.81

SIaT (ours) 65.96 64.64 63.85 64.81 63.85 59.63 61.74

(a) State-of-the-art comparison of method with benchmark methods in AHB-F datasets.

Scene Object NULL Top-1 mAP %
SE TIM OE OIM Short Long
✓ - - - - 54.32 50.71
✓ ✓ - - - 56.21 53.54
- - ✓ - - 51.33 48.63
- - ✓ ✓ - 55.82 50.11
✓ ✓ ✓ ✓ - 59.47 58.06
✓ ✓ ✓ ✓ ✓ 64.81 61.74

(b) Impact of each component in SIaT framework on long short
anticipation.

Observation Top-1 mAP %
Frames Short Long

50 56.11 47.30
100 61.26 55.65
150 63.93 59.97
200 64.81 61.74
250 63.52 60.11
300 61.06 58.11
350 61.06 56.24

(c) Study of observation frames required for AHB prediction.

Text w/o Text Top-1 mAP %
Short Long

✓ - 64.81 61.47
- ✓ 62.53 60.97

(d) Study to showcase the relevance of text in anticipation performance.

Table 1. Experimental results to showcase quantitative superiority compared to state-of-the-art methods and to portray the robustness in
ablation studies.

decoder with previous methods. For fair comparison we
kept the network optimization of SoTA unchanged and the
backbone feature encoder CLIP [29] are kept same for all
the SoTA methods. CLIP has the ability to encode object-
centric features which is essential for our assumptions (i.e.
encoding normal interactions to predict future anomaly).

Baseline Implementations and Quantitative Compar-
ison: For the baseline set of experiments, we select
widely used action anticipation SoTA methods: FUTR [13],
OADTR [40], LSTR [42], TesTra [45], and JOADAA [15].
As shown in Table 1a, we perform three sequential experi-
ments with different input features to analyse and compare
SoTA methods, i.e. Exp-1: with only scene feature ob-
tained from CLIP, Exp-2: with only object feature obtained
from Mask2Former followed by CLIP, Exp-3: with con-
catenated scene and object features.

Observation from Exp-1: Methods like OADTR [40],
LSTR [42], TesTra [45] gives decent initial performance in
short term prediction as they reasonably encode the obser-
vation via complex transformer blocks. Further, methods
like LSTR, TesTra have additional memory units to retain
few abnormal precursors. As a result, they perform better
w.r.t other SoTA in short term anticipation. However, in
long-term anticipation their results are quite low. This is
potentially due to: (I) existing methods ignore the under-
lying uncertainty between the observation and long future,
(II) the scene features FS do not carry enough fine-grained
object representation that may be involved in the abnormal-

ity in the long future.
Observation from Exp-2: Although object features car-

ries the individual fine-grained object representations, but
it majorly lacks the collective context of the event hap-
pening in the scene. As a result, in short-term indicator,
SoTA methods (OADTR [40], JOADAA [15]) completely
relying on transformer for observation context understand-
ing severely fail with object only features. However, SoTA
methods (LSTR [42], TesTra [45]) with precursor memory
units have relatively less performance drop w.r.t. others in
short-term anticipation.

Observation from Exp-3: Here, methods relying on
large transformer encoder have moderate gain on both long
and short term prediction due to coarse and fine-grained rep-
resentations of the observation. In contrast, we find that
methods (LSTR [42], TesTra [45]) preforming decent in
Exp-1: has little performance gain in long-term predictions.
It means they have almost saturated performances with
scene-only features. Because LSTR and TesTra gives more
priority to the precursor memory units embedding over the
fine-grained object representations. However, having addi-
tional precursor memory units can benefit only short-term
anticipation, but may not contribute to long-term future
events. Thus, modeling the uncertainty between the past
observation to long future and enhancing the fine-grained
object representation by embedding the interaction among
them may be crucial, which is missing in previous SoTA.

Comparison with Exp-3: With the above observation,
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Figure 5. Qualitative results visualization and comparison of our proposed SIaT with five popular stat-of-the-art methods on various cases.
Best viewed in color and with zoomed in.

our SIaT provides a dedicated mechanism to handle un-
certainty between observation to the future and dissocia-
tively encodes the temporal and object interactions. As a
result, SIaT achieves relatively higher performance (at least
+1.15% ) than pure-transformer based SoTA (FUTR [13],
OADTR [40], and JOADAA [15]) as in Exp-3. This im-
provement is significant as it covers 26 abnormal categories
with multiple instances. However, without any additional
memory units, our method is still able to surpass memory
based methods (LSTR [42] and TesTra [45]) marginally (at
least +0.4%) which shows the efficacy of our method in
long-term prediction. Further, comparing with short-term
anticipations, our method significantly (at least +2.11%)
improves from FUTR [13], OADTR [40], JOADAA [15]
and moderately surpasses the memory based methods (at
least +1.49%). This corroborate the efficacy of our method
in long and short term anticipation over SoTA methods.

Qualitative Comparison and Analysis: To bring addi-
tional analytical insights to SoTA performance comparison,
Figure 5 provides a qualitative performance comparison of
our method w.r.t. five selected SoTA in three major inter-
action cases (case-1: Human-Human, case-2: Human-
Object, and case-3:Human-[Human&Object]). From
Figure 5, it is observed that our method is accurate across all
future duration (i.e. 1st to 8th seconds) for human-human
and human-object interactions (case-1,2) anomaly types.
For all video of case-1 and 2, “Fighting-04” (a group of
people fighting inside a bar),“Abuse-020” (a patient is be-
ing physically abused by the care taker), “Shoplifting-016”
(a woman customer stealing a laptop) and “Vandalism-033”
(a man throwing stone repetitively to a house) SIaT has ob-
tained most similar heat map prediction as in GT. But, pure
transformer based methods like FUTR [13], OADTR [40],
JOADAA [15] lack the temporal preciseness in the predic-
tion of “Fighting-04” and to some extends give ambiguous
prediction for “Abuse-020”. However, LSTR [42] and Tes-

Tra [45] encounter similar issues despite additional precur-
sor memory. This could be due to the limited understanding
of the observation by the previous SoTA. Next, the crit-
icality lies in case-3 i.e. Human-[Human&Object] inter-
actions where all entities are interacting together to cause
anomaly. In such a case, all the methods including ours
have some ambiguous prediction and temporal imprecise-
ness due to overlapping cues between the interaction cat-
egories (i.e. Assault may look like fighting, robbery may
look like stealing) and heavy occlusion caused by too much
entity involvement. Along this direction, we believe that
there exist enough scope for further improvements and our
proposed task will serve as a open problem statement to at-
tract wide range of research in this domain.

8. Conclusion
In this work, an affirmative task named “Abnormal Hu-

man Behavior Anticipation” in real-world videos is intro-
duced to promote mitigatory measures in serious crimes.
We aim to accomplish this task by observing normal past
frames only. In pursuit of this, we propose a novel past
encoder, namely SIaT, that facilitates to capture the early
human interaction patterns and model the uncertainty be-
tween normal interactions and future abnormal behavior
predictions. Additionally, we provide a larger-scale diversi-
fied dataset, namely “AHB-F” with a dedicated evaluation
protocol to promote long and short-term anticipation. This
task opens up new directions to analyse complex human ab-
normal behaviours prior to there occurrence in real-world
videos, which is majorly missing in previous methods. By
extensive benchmark evaluation and comparison, our SIaT
achieves competitive performance w.r.t. prior arts.
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