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Abuse: Sharp Cue (An intruder hits an old woman while reading book)

Shoplift: Subtle Cue (A thief steals a laptop from a store while acting normal)

(a) Complex real-world anomalies with multi-modal saliencies
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Arrest: Subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(b) Key difference between previous methods and our PI-VAD
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Figure 1. a): Illustration of abnormal frames and respective multi-modal saliencies in complex real-world scenes. Optical flow captures
distinct abnormal motion in “Abuse” and “Arrest”, while depth and pose detect subtle movements that optical flow may miss. Panoptic
masks and text provide overall scene context. b): Comparison of multi-modal methods with our PI-VAD. PI-VAD requires the five
modalities only during training, significantly reducing computation and enabling real-world applicability.

Abstract

Weakly-supervised methods for video anomaly detection
(VAD) are conventionally based merely on RGB spatio-
temporal features, which continues to limit their reliabil-
ity in real-world scenarios. This is due to the fact that
RGB-features are not sufficiently distinctive in setting apart
categories such as shoplifting from visually similar events.
Therefore, towards robust complex real-world VAD, it is
essential to augment RGB spatio-temporal features by ad-
ditional modalities. Motivated by this, we introduce the
Poly-modal Induced framework for VAD: “PI-VAD” (or
π-VAD), a novel approach that augments RGB representa-
tions by five additional modalities. Specifically, the modal-
ities include sensitivity to fine-grained motion (Pose), three
dimensional scene and entity representation (Depth), sur-
rounding objects (Panoptic masks), global motion (optical
flow), as well as language cues (VLM). Each modality rep-

resents an axis of a polygon, streamlined to add salient
cues to RGB. π-VAD includes two plug-in modules, namely
Pseudo-modality Generation module and Cross Modal In-
duction module, which generate modality-specific prototyp-
ical representation and, thereby, induce multi-modal infor-
mation into RGB cues. These modules operate by per-
forming anomaly-aware auxiliary tasks and necessitate five
modality backbones – only during training. Notably, π-
VAD achieves state-of-the-art accuracy on three prominent
VAD datasets encompassing real-world scenarios, without
requiring the computational overhead of five modality back-
bones at inference.

1. Introduction

Weakly supervised video anomaly detection (WSVAD)
aims to predict frame-level anomaly scores using only
video-level labels, avoiding the need for detailed frame-
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by-frame annotation. WSVAD methods [5, 23, 26, 31, 39]
are effective for detecting large-scale scene anomalies, like
explosions or road accidents, by training on both normal
and anomalous videos to improve generalization in diverse
real-world settings. However, they often struggle with more
complex, human-centered anomalies such as “shoplifting”,
“stealing”, and “abuse”, where human interactions and sub-
tle actions are involved. This limitation stems from the fact
that most current methods rely on single-modality (video-
only) features, which may not fully capture the complexity
of these scenarios. Towards improving WSVAD in real-
world settings, we place emphasis on including additional
modalities, such as pose, depth, panoptic masks, optical
flow, and language semantics, to facilitate a more nuanced
scene representation. The additional information provided
by these modalities describes detailed human movements,
entity distances, motion dynamics, and context, rendering
WSVAD more effective for detecting complex anomalies.

Despite affirmative implications of multi-modal seman-
tics, their adaptation to WSVAD remains under-explored
in current research. This is majorly due to three reasons:
(i) limited data with limited supervision: while recent
multi-modal foundation models like CLIP [24], IMAGE-
BIND [9] necessitates more than 400 million images for
multi-modal association, the anomaly-detection task inher-
ently deals with sparse and limited data (e.g 810 anomaly
videos in UCF-Crime dataset [26]). Further, the absence
of frame-level labels in WSVAD can lead to ambiguous
multi-modal association; (ii) disparity among modalities:
since each modality captures unique characteristics at var-
ious semantic levels (i.e. from contextual to fine-grained),
there exists an underlying disparity among modalities that
brings to the fore additional challenges in associating the
modalities meaningfully; (iii) increased inference over-
head: common multi-modal foundation models presume
the availability of all modalities during inference as well,
thereby linearly adding multiple modalities to the frame-
work increases the inference overhead significantly, hinder-
ing real-time applicability. These challenges lead us to the
main question: what is the best strategy to combine mul-
tiple disparate modalities to RGB with limited data and
supervision, without compromising the latency?

Motivated by the above, we introduce a novel Poly-
modal Induced Transformer for weakly-supervised video
anomaly detection, called PI-VAD (or π-VAD). Deviat-
ing from all WSVAD benchmarks, π-VAD synthesizes la-
tent embeddings from five complementary modalities —
pose, depth, panoptic segmentation, optical flow, and lan-
guage semantics — to augment and enrich RGB-based anal-
ysis. π-VAD comprises two novel plugin modules that inte-
grate seamlessly into a WSVAD framework: (i) the Pseudo
Modality Generation (PMG) module, and (ii) the Cross
Modal Induction (CMI) module. The PMG module gener-

ates synthetic, modality-specific prototype embeddings di-
rectly from RGB features, capturing each modality’s dis-
tinctive characteristics. This approach mitigates inference
latency by circumventing the need for individual modality
backbones, thus preserving π-VAD operational efficiency.

The CMI module aligns uncoupled modalities within a
unified, RGB-anchored embedding space through a double-
alignment process. Initially, it constructs semantic associ-
ations between each modality and RGB via a contrastive
alignment objective, ensuring cohesive integration of multi-
modal embeddings. CMI leverages a pre-trained VAD
model to guide the aligned multi-modal representations to-
wards a unified task-aware and aligned representation, en-
suring that the learned alignments are contextually relevant
to anomaly detection. This distillation process injects π-
VAD with a nuanced, semantically grounded multi-modal
representation, enabling robust anomaly detection even un-
der limited data and supervision. Moreover, the architecture
of π-VAD facilitates the scalable incorporation of additional
modalities without exacerbating latency constraints. To our
knowledge, π-VAD is the first framework to harness the full
spectrum of multi-modal representations within WSVAD,
setting a new paradigm for complex anomaly detection in
video analysis.

To summarize, our contributions are three-fold.
• We introduce π-VAD, a novel multi-modal method that

harnesses five or more modalities to seamlessly infuse
critical multi-modal cues into RGB cues, thereby enhanc-
ing the weakly-supervised video anomaly detection.

• We present two-plugin modules that are designed to syn-
thesize multi-modal prototypes and learn effective associ-
ations to RGB. These plugin modules perform anomaly-
aware auxiliary task to generate and bind meaningful
multi-modal representations

• We provide an exhaustive experimental analysis to vali-
date the robustness of π-VAD on UCF-Crime [26], XD-
Violence [31], and MSAD [41]. The results suggest that
π-VAD outperforms previous prominent approaches.

2. Related Work
Weakly supervised video anomaly detection methods [5,
16, 19, 20, 23, 26, 29, 31, 36, 38, 39, 42] rely on training
models with video-level weak annotations, which include
both normal and anomalous data. The foundational work
by Sultani et al. [26] introduced a deep multiple instance
learning (MIL) ranking framework for video anomaly de-
tection. Since then, numerous adaptations of this approach
have been developed. For instance, Tian et al. [28] intro-
duced a feature magnitude learning function to better iden-
tify anomalous instances. Chen et al. [4] proposed a feature
amplification mechanism with a amplitude contrast loss to
enhance the discriminative capabilities of features. Lv et
al. [18] introduced an Unbiased Multiple Instance Learn-



ing (UMIL) framework to create unbiased anomaly classi-
fiers. However, these one-stage methods often concentrate
on highly discriminative segments while overlooking the
ambiguous and subtle ones. To address this, recent work has
shifted towards pseudo-label-based, two-stage self-training
methods [5, 14] to improve the accuracy of anomaly scores.
Li et al. [14] introduced a multi-sequence learning tech-
nique to iteratively refine anomaly scores by progressively
shortening selected sequences. However, these methods
rely on single-modal video information and do not incor-
porate corresponding multi-modal data. Recently, cross-
modal approaches have started to incorporate information
from multiple modalities to improve the accuracy of dis-
criminative features and pseudo-labels, although they pri-
marily use text-based anomaly categories and miss the
richer semantic information of anomalous events.

Multi-modal video representation learning leverages
multiple modalities—such as RGB, depth, text, audio, and
poses—to create richer representations. This approach is
commonly based on two techniques: contrastive loss and
knowledge distillation. Contrastive loss, as used in models
like CLIP [24], creates a shared embedding space across
different modalities by aligning similar features closely.
Knowledge distillation, on the other hand, transfers knowl-
edge between modalities, allowing a salient modality like
text to help a modality like RGB learn more effectively.
Some methods, like ViFiCLIP [25] and CoCLR [15], com-
bine contrastive learning with knowledge distillation to fine-
tune alignments across modalities, while also making cross-
modal learning more efficient. However, these techniques
require large-scale datasets to effectively learn multi-modal
representations, while video anomaly datasets are inher-
ently sparse and small scale. To leverage cross-modal in-
formation with limited data, we generate pseudo-modalities
during training and apply contrastive loss and knowledge
distillation to guide the shared feature space semantically.

3. Preliminaries: Uni-modal WSVAD Method
In this section, we briefly describe the working principle
of existing uni-modal WSVAD methods. Uni-modal WS-
VAD focuses solely on the RGB modality for both train-
ing and inference. The video V is first divided into non-
overlapping snippets of 16 frames, resulting in T snippets.
A pre-trained 3D convolutional network (e.g., I3D [1]) is
then used to extract features from each snippet, forming
a feature map FRGB ∈ RT×D, where D is the feature
dimension. Given FRGB , the goal of the uni-modal WS-
VAD method is to train an RGB task encoder that can pre-
dict frame-level anomaly scores while only having access
to video-level labels during training.

Deviating from standard uni-modal WSVAD, in this
work we explore the multi-modal (i.e. two or more modal-
ities) representation learning ability in WSVAD task. We

aim to answer questions such as: how many modalities
are required to represent real-world complex anoma-
lies? With limited dataset and supervision, is it possi-
ble for a model to effectively learn from more than five
modalities and use only RGB for inference? While multi-
modal methods of action understanding [6–8] can be appli-
cable to the WSVAD task, their effectiveness depends on the
amount of labeled data available. Therefore, we propose a
novel multi-modal framework that can effectively associate
more than five modalities to RGB for the WSVAD task.

4. Proposed π-VAD
In this section, we introduce our Poly-modal Induced Trans-
former for weakly-supervised video anomaly detection, re-
ferred to as π-VAD (illustrated in Figure 2). π-VAD adopts
a teacher-student architecture incorporating a novel poly-
modal inductor. While the teacher and student share an
identical functional architecture, the teacher is pre-trained
on the WSVAD task and remains frozen, and the student is
randomly initialized.

4.1. Poly-modal Inductor (PI)
The objective of the poly-modal inductor (illustrated in
Figure 2a) is to enhance the student’s RGB representa-
tion by promoting the learning of discriminative features
for anomalous events within a cohesive multi-modal fea-
ture space. This is enforced by two key modules of poly-
modal inductor: (i) Pseudo Modality Generation (PMG)
module learns anomaly relevant synthetic approximation of
the actual modalities component, (ii) Cross Modal Induc-
tion (CMI) module facilitates the semantic alignment be-
tween the multi-modal encodings from PMG and the RGB
embeddings of the student while ensuring that the align-
ment is pertinent to WSVAD. As visible in Figure 2b, the
poly-modal inductor is adaptable and can be integrated at
various blocks of the teacher-student architecture; however,
we deliberately position it in the initial and final blocks to
capture both low and high-level multi-modal features effec-
tively. Further, regardless of the student’s specific block,
the poly-modal inductor processes the output representation
from Block-i of the student F∗ ∈ RT×Di and injects the re-
fined multi-modal feature F∗

M ∈ RT×Di into Block i+1 of
the student, thereby enhancing the student’s ability to learn
discriminative representation for anomaly detection.

4.2. Pseudo Modality Generation Module
The Pseudo Modality Generation (PMG) module aims to
synthetically derive embeddings for pose (êP ∈ RT×dP ),
depth (êD ∈ RT×dD ), panoptic masks ( ˆeM ∈ RT×dM ),
optical flow (êO ∈ RT×dO ), and text ( ˆetxt ∈ RT×dtxt) di-
rectly from the student’s intermediate RGB feature repre-
sentation F∗ ∈ RT×Di . This approach fulfills two key ob-
jectives: (i) eliminating the reliance on multi-modal back-



(a) Overview of π-VAD (b) Poly-modal Inductor (PI)

Figure 2. (a) Overview of Poly-modal Induced VAD (π-VAD): In the training phase, π-VAD uses a teacher-student approach, where
a poly-modal inductor enhances the student’s RGB representation by generating and associating five distinct modalities. Note that the
teacher’s weights remain fixed during training. At inference, the student and poly-modal inductor operate independently to detect video
anomalies. (b) Poly-modal Inductor (PI): PI refines the student’s intermediate feature, F∗, by generating pseudo-modalities through a
modality generation module (PMG). These generated modalities are then combined with F∗ to produce an enhanced feature set, F∗

M .

bones (e.g., SAM, yolov7, etc.) within the poly-modal in-
ductor during inference; (ii) since multi-modal embeddings
can introduce redundancy, noise, or even conflicting infor-
mation, this approach selectively retains only the multi-
modal cues essential to the WSVAD task.

To enforce these objectives, we design PMG that can be
seen as an encoder-decoder structure. As shown in Figure 2,
PMG has one encoder and five parallel decoders D1, D2,
. . ., D5. We deliberately kept one encoder to learn shared
RGB features for all the modalities. The six decoders op-
erate in a mutually exclusive manner to generate the six
modalities. The encoder has a 1D-convolutional layer to
project RGB embeddings to a low-dimensional latent space.

For each modality decoder, a single linear layer trans-
lates the RGB latent representation to a modality-specific
RGB representation, maintaining the latent space’s dimen-
sionality. By doing this, we generate diverse views of the
same RGB embeddings, enhancing the information con-
tained in the embeddings that is relevant to a specific modal-
ity while suppressing possible noise. Subsequently, a 1D
convolution layer is used as a decoder to generate the
modality embeddings êj , where j ∈ {P,D,M,O, txt}.

Training the PMG requires ground-truth embeddings
ej , where j ∈ {P,D,M,O, txt} from the correspond-
ing modality decoders. We utilize the intermediate em-
beddings of YOLOV7-pose [30], DepthAnythingV2 [33],

SAM [12], RAFT [27] and VifiCLIP [25] to represent
pose, depth, panoptic mask, optical flow and text modal-
ity ground-truths. The combined training objective for the
PMG is

LPMG =

5∑
j=1

1

dj

dj∑
k=1

( ˆej,k − ej,k)
2,where j ∈ {P, D, M, O, txt}.

(1)
Once PMG is trained with LPMG, it has the ability

to precisely generate pseudo modalities which are subse-
quently used in PI to augment the RGB representation of
the student.

4.3. Cross Modal Induction Module
In this stage, Cross Modal Induction (CMI) combines the
generated pseudo-modalities êj with the RGB embeddings
F∗, aiming to create a shared representation space that pro-
motes all relevant features for the task. It aligns the pseudo-
modalities from the PMG with the RGB embeddings, which
contain critical visual information from the current video
snippet Ti. Our aim is to ensure that the most relevant
modalities for Ti converge with the RGB embeddings in a
cohesive representation space, thereby strengthening multi-
modal associations. By aligning these diverse modalities,
the PMG produces modality embeddings informed by the
RGB data, enhancing relevant information and filtering out



irrelevant details. This joint representation is essential for
the WSVAD task, as it improves the model’s ability to uti-
lize multi-modal insights effectively.

To achieve this, we learn a shared latent space between
each modality and the RGB embeddings by applying a
snippet-level, bi-directional InfoNCE contrastive loss [22].
This loss is applied between each pseudo-modality embed-
ding êj (where j ∈ {P,D,M,O, txt}) and the RGB em-
bedding F∗. The bi-directional approach provides a more
balanced measure of similarity between positive and nega-
tive pairs. Since the contrastive loss is applied at the snippet
level, we treat representations from the same snippet index
Ti (i.e., F∗(Ti) and êj(Ti)) as positive pairs, and represen-
tations from different snippets as negative pairs. This en-
courages similarity in positive pairs and discourages simi-
larity in negative pairs. The similarity between embeddings
is computed as: sim(F∗(Ti), êj(Ti)) =

F∗(Ti)·êj(Ti)
∥F∗(Ti)∥∥êj(Ti)∥

and the contrastive alignment loss is defined as

LInfoNCE = − 1

T

T∑
i=1

log
exp

(
sim(F∗(Ti),êj(Ti)

τ

)
∑T

k=1,i ̸=k exp
(

sim(F∗(Ti),êj(Tk)

τ

)
(2)

Lalign =

5∑
i=1

LInfoNCE , i ∈ {P, D, M, O, txt} (3)

Next, we aim to identify and prioritize the most rele-
vant modalities for each snippet by reducing cross-modal
conflicts and noise, resulting in task-oriented multi-modal
embeddings. First, we concatenate the aligned embed-
dings from each modality along the embedding dimension.
Then, we use a stack of transformer blocks to highlight the
most pertinent modalities by explicitly encoding the cross-
correlations among them. Additionally, the RGB embed-
dings F ∗ from the student model are added between the
transformer blocks to enhance the RGB representation with
contextually relevant information from multiple modalities.

Second, we guide the final multi-modal output from the
last transformer block, F∗

M ∈ RT×Di , towards a task-
specific representation for WSVAD. This ensures that rel-
evant modalities are produced in the PMG with minimal
noise, and that the alignment between salient modalities
and RGB is optimized for WSVAD with minimal cross-
modal conflict. This is achieved through a distillation pro-
cess, which minimizes the difference between F∗

M and the
teacher’s pre-trained features at the same stage, Fteach ∈
RT×Di . The distillation loss guiding this minimization is
defined as:

Ldistill =
1

Di

Di∑
k=1

(F∗
Mk −Fteachk)

2. (4)

4.4. π-VAD Optimization
π-VAD is optimized in two steps. In the first step, the stu-
dent model, PMG module, and CMI module are warmed up
with the LPMG, Lalign, and Ldistill respectively. This en-
sures that all the components are correctly initialized before
optimizing for the actual task and thereby it avoids possi-
ble pitfalls in which one of the modalities overpowers the
others independently to what information adds to the RGB
embeddings. The loss function for the first step is:

Lfirst = LPMG + Lalign + Ldistill. (5)

In the second step, the model is trained on the WS-
VAD task with the standard MIL loss function used in UR-
DMU [40]. In order to avoid the decoupling of the aligned
modalities, the final training objective is:

Lsecond = LMIL + λ1Lalign + λ2Ldistill + LPMG (6)

where λ1 and λ2 are hyper parameters that allows us to
balance the impact of the distillation and alignment compo-
nents on the training process. The LPMG is not balanced
by a factor to ensure that the pseudo-modalities generated
remain bounded to the ground-truth modalities throughout
the training process.

5. Experiments
We conduct extensive experiments on two of the most
common and challenging VAD datasets publicly available,
UCF-Crime [26] and XD-Violence [31]. For each dataset
we extract the pose, depth, semantic, textual and motion
features. The audio features contained in the XD-Violence
dataset are considered as an additional modality and aligned
via PI with the others. Additionally, we test our approach
on the MSAD dataset [41], a recently published dataset that
contains real-world anomalous videos collected in a more
diverse set of scenarios compared to UCF-Crime.

We follow the established evaluation protocols [18, 26,
31, 32] to measure the performance of π-VAD on the
datasets. For additional information on the experimental
settings, we refer to Section A of the appendix.

5.1. SoTA comparison and analysis
To evaluate π-VAD, we place inductor modules at early and
late stages of a UR-DMU [40] model. The results of our
experiments are shown in Table 1. Compared with cur-
rent multi-modal SoTA approaches, π-VAD demonstrates
superior capabilities in both UCF-Crime and XD-Violence
datasets. On UCF-Crime, π-VAD marks a +2.31% im-
provement over multi-modal VadCLIP, and outperforms the
best RGB-based model by +2.75%. It is important to notice
that the AUCA metric, which measures the capabilities of



Model Encoder UCF-Crime XD-Violence
AUC AUCA AP APA

SoTA with multi-modality at inference
HL-Net [31] I3D 82.44 - - -
HSN [21] I3D 85.45 - - -
MACIL-SD [35] I3D+audio - - 83.40 -
UR-DMU I3D+audio - - 81.77 -
TPWNG [34] CLIP 87.79 - 83.68 -
PEMIL [2] I3D+Text 86.83 - 88.21 -
VadCLIP [32] CLIP 88.02 70.23 84.15 -

SoTA with RGB-only at inference

MIL [26]
C3D 75.41 54.25 75.68 78.61
I3D 77.42 - - -

RTFM [28] I3D 84.30 62.96 77.81 78.57
CLAV [5] I3D 86.10 - - -
UR-DMU [40] I3D 86.97 70.81 81.66 83.94
SSRL [13] I3D 87.43 - - -
MSL [14] V-Swin 85.30 - 78.28 -
WSAL [17] I3D 85.38 67.38 - -
ECU [37] V-Swin 86.22 - - -
MGFN [4] V-Swin 86.67 - - -
UMIL [18] CLIP 86.75 68.68 - -
TSA [10] CLIP 87.58 - 82.17 -

π-VAD (Ours) I3D 90.33 77.77 85.37 85.79
(+2.75%) (+6.96%) (+3.20%) (+1.85%)

Table 1. State-of-the-art comparisons on UCF-Crime and XD-
Violence in the WSVAD task. The best results are written in bold.

Model MSAD (NeurIPS’24)
AUC AUCA AP APA

RTFM[28] 86.65 - - -
MGFN[4] 84.96 - - -
TEVAD[3] 86.82 - - -

UR-DMU[40] 85.02 - - -
UR-DMU * 85.78 67.95 67.35 75.30

π-VAD (Ours) 88.68 71.25 71.26 77.86

Table 2. State-of-the-art comparisons on MSAD. * indicates our
own implementation. The best results are written in bold.

the model to detect abnormal events, shows an even larger
improvement over the previous methods. In fact, π-VAD
outscores VadCLIP and UR-DMU, the best scoring multi-
modal and RGB-based methods, by +7.54% and +6.96%
respectively. In Figure 3 we compare the class-wise perfor-
mance of π-VAD with the baseline model (i.e. UR-DMU)
employed as a teacher. π-VAD improves upon the class-
wise AUC scores achieved by UR-DMU in all classes ex-
cept “Abuse”, “Assault” and “Robbery”. Notably, the “Ex-
plosion” class proves to be the most challenging class for
the UR-DMU, with a score of 47.25%. In this class, π-
VAD almost doubles the performance of UR-DMU, which
shows the ability of π-VAD to learn and leverage an exten-
sive poly-modal scene representation towards the detection
of short anomaly events. Significant improvements can be

Figure 3. Class-wise AUC comparison of π-VAD with UR-
DMU [40] on the UCF-Crime dataset.

observed for other challenging classes, such as “Shoplift-
ing” and “Shooting”, where the anomalous events happen
in subtle ways that are more difficult to be detected by an
RGB-only model.

Similar results are observed on the XD-Violence dataset,
where π-VAD improves by +1.22% over the AP score
of VadCLIP. The APA shows comparable improvements,
outperforming UR-DMU by +1.85%. On the more re-
cent MSAD dataset, π-VAD achieves a +1.65% perfor-
mance improvement compared to three available SoTA. It
is a significant boost on MSAD as it contains 14 diverse
scenarios and distinct environmental conditions, presenting
a poignant challenge and benchmark for real-world perfor-
mance. We refer to Section B of the appendix for a more
in-depth analysis of the class-wise performance and contri-
butions from all modalities on these two datasets.

5.2. Components ablation study
We analyze the contribution of the two components, PMG
and CMI of PI on the overall AUC. The core idea behind
CMI is that it’s essential to align disparate modalities to
form comprehensive scene representation, which can then
be adapted for anomaly detection. As shown in Table 3
both alignment and adaptation are necessary to fully har-
ness the multi-modal cues. From Row-1 it can be observed
that when modalities remain decoupled and unguided for
VAD, it under perform compared to the baseline model,
UR-DMU [40]. Likewise, the model struggles to leverage
aligned modalities effectively for the VAD task without a
distillation mechanism. This is likely due to residual noise
overwhelming salient cues, underscoring the critical role of
distillation in filtering and refining the multi-modal cues.

PMG CMI AUC
Lalign Ldistill

✓ - - 84.66
✓ ✓ - 85.84
✓ - ✓ 86.29

- ✓ ✓ 90.58
✓ ✓ ✓ 90.33

Table 3. Contribution of the reconstruction, alignment and distil-
lation auxiliary tasks on the main VAD task for UCF-Crime.

Reconstructing the modalities at test time leads to a
trade-off between computational cost at inference time and
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Figure 4. Visualization of sample frames and ground truth (green shed) vs. prediction scores (red shed) for various cases in Row-1 and
Row-2. For each plot in Row-2, the X and Y axis denotes the number of frames and corresponding anomaly scores. Row-3 shows the latent
activation learned by multi-modality. We plot the mean value of the normalized modalities activations from the first transformer block of
the late PI module to show the alignment between modalities and their correlation to the predicted abnormal scores.

performance. Without reconstructing the modalities, PI
uses the modality features as input for CMI and obtains a
marginal ≃ 0.25% performance gain. The trade-off be-
tween computational costs and performances is illustrated
in Table 5. Despite requiring more computational and mem-
ory resources than the baseline RGB-only method, π-VAD
achieves real-time performance, processing at 30 frames per
second, making it a viable option for practical deployment.

Early Late Both

AUC 87.14 87.48 90.33

Table 4. Comparison of the effect of the early and late PI on per-
formance for UCF-Crime with all modalities available at training.

UR-DMU Modality Backbones π-VAD

GFLOPs 1.54 2,561.40 19.88
Params. (M) 6.16 2,406.50 82.81

FPS 110.09 - 30.51

AUC 86.97 90.58 90.33

Table 5. Computational cost comparison with the UR-DMU, the
modalities backbones, and the proposed π-VAD.

Further, we observe a complementary effect between
early and late PI, as shown in Table 4. Some anomalies
rely on multi-modal association in low-level RGB features,
while others need high-level associations. To fully capture
all types of anomalies, both early and late PI are essential.
Further discussion continues in Section C of the appendix.

5.3. Qualitative Analysis
To verify our method’s effectiveness, we present qualitative
results in Figure 4 that illustrate various types of anomalies,
including those based on scenes, human actions, and differ-
ing durations. Across these scenarios, our method consis-
tently detects anomalies with high confidence, as shown in
Row-2 of Figure 4. Furthermore, understanding the con-
tribution of each modality to the anomaly scores is essen-
tial. Row-3 shows two key aspects of multi-modal activa-
tion curves: (i) the curve’s amplitude and (ii) its pattern in

the abnormal regions. The amplitude generally reflects each
modality’s importance, with depth being critical in CCTV
applications. Depth helps distinguish between foreground
and background objects, supporting better interaction anal-
ysis and occlusion handling.

For scene-based anomalies like “Burglary-024” and
“Arson-016”, the pose and text modality activation pattern
aligns closely with abnormal regions, due to its strong abil-
ity to capture global context. In cases like “RoadAccident-
127”, all modalities contribute significantly to identify-
ing the anomaly. For human-based anomalies, such as
“Fighting-018” and “Shoplifting-016”, the pose modality
strongly correlates with abnormal regions, and depth com-
plements this by adding spatial context to the 2D key points.
Overall, all five modalities are useful for detecting real-
world CCTV anomalies, with text and panoptic masks be-
ing particularly important for scene-based anomalies, while
pose and depth are key for human-based anomalies.

6. Modality Evaluation
To analyze the impact of each modality of the VAD task and
the interaction between modalities, we focus on the perfor-
mance of the UCF-Crime. We refer to Section B of the ap-
pendix for the modality evaluation of the other two datasets.

6.1. Single Modality Evaluation
To properly evaluate the contributions of the different
modalities, we trained the model with each modality indi-
vidually. Table 6 shows that each modality is able to en-
hance the RGB features and improve the baseline perfor-
mance on the UCF-Crime dataset, with motion having the
largest positive impact for the AUC metric. This is coher-
ent with the intuitive understanding that motion is often the
most important factor in distinguishing between a normal
and an abnormal action. However, the depth modality over-
performs the others by a large margin on AUCA. The class-
wise evaluation for the individual modality contributions in



Modality UCF-Crime
Pose Depth Text Pan. Motion AUC AUCA

- - - - - 86.97 70.81
✓ - - - - 87.65 73.24
- ✓ - - - 87.75 75.14
- - ✓ - - 87.89 69.45
- - - ✓ - 87.71 72.13
- - - - ✓ 87.92 72.04

✓ ✓ - - - 88.14 74.06
✓ ✓ ✓ - - 88.85 75.67
✓ ✓ ✓ ✓ - 90.31 76.47
✓ ✓ ✓ ✓ ✓ 90.33 77.77

Table 6. Modality impact comparisons on UCF-Crime. The best
results are written in bold.

Figure 5 shows that depth is the best modality for the ma-
jority of classes. We conjecture that the scene information
contained in the depth features allows PI to better model
the spatial interactions between entities in the scene. This is
supported by the performance of the depth modality on the
“Explosion” class: people and objects tend to move away
quickly from the source of an explosion, leading to sharp
changes in the depth features.

The text modality exhibits robust performance, second-
best ranking in the AUC metric and excelling in capturing
normal scenarios. We hypothesize that this advantage de-
rives from the ViFiCLIP training, optimized through video-
text pairs in the Kinetics-600 dataset [11]. However, the text
modality underperforms in AUCA, likely due to its incli-
nation to represent coarse-grained normalcy patterns more
effectively than the details of anomaly events.

6.2. Poly-modal Evaluation

Table 6 shows the benefits of combining multiple modalities
for WSVAD, where the performance of π-VAD across the
dataset increases by sequentially adding modalities. Specif-
ically, incorporating textual and panoptic modalities yields
the largest performance gains, as they capture essential real-
world information from large-scale training datasets, en-
riching π-VAD’s implicit scene representation. We hypoth-
esize that this representation is comprehensive enough to
limit additional contributions from the motion modality for
certain types of anomalies, a hypothesis supported by min-
imal class-wise performance gains in Figure 6 and qualita-
tive examples such as “Burglary-024” and “Fighting-018”
in Figure 4. The motion modality is nonetheless crucial
on other classes, such as “Shoplifting”, where anomalous
events are usually subtle and best represented by motion-
based cues after the pose cue.

Furthermore, Figure 6 suggests that the interaction be-
tween different modalities within π-VAD can lead to com-
plementary or contrastive performance for specific anomaly
types. In fact, the modality activations for the “Robbery-

Figure 5. Class-wise AUC comparison between the RGB model
and RGB with one additional modality model on UCF-Crime.

Figure 6. Comparison between the AUC scores of different mix-
tures of modalities in the π-VAD framework for the UCF-Crime
dataset. In red, we highlight the classes on which the modalities
have contrastive features, in green the classes where the modalities
are complementary.

102” example in Figure 4 show that pose is the most rele-
vant modality for the anomalous event in the video, while
the contributions of the other modalities are marginal. This
effect showcases the ability of π-VAD to leverage the rele-
vant modalities for each anomaly type without over-relying
on specific modalities.

7. Conclusion
This paper presents π-VAD, the first poly-modal framework
for WSVAD, significantly advancing video anomaly de-
tection by expanding beyond traditional RGB-based meth-
ods and integrating multiple modalities to address complex
anomaly categories in real-world settings. π-VAD incorpo-
rates five auxiliary modalities, namely pose, depth, panop-
tic masks, optical flow, and text cues, which jointly en-
rich anomaly detection with diverse, fine-grained contex-
tual cues. Both novel integrated modules, Pseudo-modality
Generator and Cross Modal Induction, enable effective
multi-modal learning during training, without imposing ad-
ditional computational burden during inference. π-VAD
sets a new benchmark for robust and efficient weakly-
supervised anomaly detection in real-world applications by
showcasing state-of-the-art results on three major datasets.
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