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We  propose  a  stochastic  individual-based  model  of graph-structured  population,  viewed as  a simple
model  of  clonal  plants.  The  dynamics  is  modeled  in  continuous  time  and  space,  and  focuses  on  the  effects
of the  network  structure  of  the  plant  on  the  growth  strategy  of  ramets.  This  model  is coupled  with  an
explicit  advection-diffusion  dynamics  for resources.  After  giving  a simulation  scheme  of  the model,  the
ndividual-based model (IBM)
lonal plant
symptotic analysis

capacity  of  the model  to reproduce  specific  features  of clonal  plants,  such  as  their  efficiency  to  forage
resources  and colonize  an  empty  field  by  means  of  phalanx  or guerrilla  strategies,  is numerically  studied.
Next,  we  propose  a  large  population  approximation  of  the  model  for  phalanx-type  populations,  taking  the
form of  an  advection-diffusion  partial  differential  equation  for population  densities,  where  the influence
of  the  local  graph  structure  of the  plant  takes  the  form  of  a nonlinear  dependence  in the gradient  of

resources.

. Introduction

Individual-based models (IBMs) are in constant development
n computational ecology (DeAngelis and Gross, 1992; Dieckmann
t al., 2000; Grimm and Railsback, 2005). These models aim
o represent the dynamics of populations, and in contrast with
onventional models where the population is represented as an
ggregate state such as the population size or the total biomass,
hey explicitly describe each individual as well as each mechanism
cting on these individuals. In this sense, conventional models cor-
espond to a macroscopic approach and IBMs to a microscopic one.
uch a description of an ecosystem at the scale of the individual
sually rely on stochastic mechanisms reflecting the interactions
f the individual with its neighbors and its environment.

Among plant communities, those involving a clonal reproduc-
ion constitute an interesting challenge in terms of modeling. In

ost clonal plants, growth can be processed horizontally via the
evelopment of modified stems, rhizomes or stolons, connect-

ng ramets (van Groenendael et al., 1996). Ramets are potentially

utonomous new individuals and possess aerial and below-ground
rgans in order to sample and uptake resources, like water, light,
rganic nutrients, nitrates or phosphorus (van Groenendael et al.,

� This work received support from the French national research agency (ANR)
ithin the SYSCOMM project ANR-08-SYSC-012.
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1996; Klimeš  et al., 1997). This network structure provides the abil-
ity to colonize space (Harper, 1981; Hutchings, 1999), and allows
the exchange of resources and information (Marshall, 1990; Stuefer
et al., 2004; Wijesinghe and Hutchings, 1997; Hutchings, 1999;
Charpentier and Stuefer, 1999; Klimeš  et al., 1997). In particu-
lar, this network structure implies strong spatial constraints to
the architecture of a clonal plant network that have traditionally
been classified along a gradient from phalanx to guerrilla strate-
gies (Lovett-Doust, 1981). Phalanx strategies comprise clonal plants
with dense network structures with short spacers and resulting
in an interrupted front of aggregated ramets with a slow radial
propagation (Cheplick, 1997; Humphrey and Pyke, 1998). On the
contrary, guerrilla strategies produce long and poorly ramified con-
nections which favor space colonization.

The graph structure allows clonal plants to colonize space in
order to locate the most favorable areas in terms of resources
(spatial colonization sensu Wildová et al., 2007), and exploit the
resources in these sites in order to favor the growth of new ram-
ets (potential descendants) in these areas (space occupation sensu
Wildová et al., 2007). Spatial structure of the interacting species
should be therefore a key element of the dynamics of plant com-
munities.

IBMs generate spatial patterns and dynamics at the scale of
plant communities from local interactions between individuals,
which are the processes involved in real communities. A sound

model in Plant Ecology should be spatial and individually based.
Two main categories of IBMs can be distinguished: “realistic IBMs”
which take into account a large number of mechanisms, and “sim-
ple IBMs” which focus on a specific feature of the ecosystem and

dx.doi.org/10.1016/j.ecolmodel.2012.03.017
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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eglect the others. The first category of models aims for realistic
ocal population structure, whereas the second category can be
sed to study the influence of a specific feature of the ecosystem
n large spatial scales.

For clonal plants, almost all the IBMs studied in the literature
elong to the realistic category. Most of them are developed on
patial grids (square of hexagonal, for example), representing the
ossible locations of each element of the plant (Dieckmann et al.,
999; Kun and Oborny, 2003; Oborny, 1994; Oborny et al., 2000,
001; Oborny and Kun, 2002; Winkler and Klotz, 1997; Winkler
t al., 1999; Winkler and Fischer, 2002; Winkler and Stöcklin, 2002).
ome models also rely on continuous space domains, where indi-
iduals or plant elements can be located at any place in space
Herben and Suzuki, 2002; Herben and Novoplansky, 2008).

The latter continuous space models belong to a class of models
ell developed in the more general context of Plant Ecology (Bolker

nd Pacala, 1999; Dieckmann et al., 2000; Brown and Bolker, 2004;
olker, 2004; Fournier and Méléard, 2004; Birch and Young, 2006).
any of these models (except those of Herben and Suzuki, 2002;
erben and Novoplansky, 2008) belong to the class of simple mod-
ls, because simple IBMs in continuous space and time are within
he scope of numerical and mathematical analysis on large spatial
cales, whereas IBMs on grids are much harder to study math-
matically. IBMs on continuous space were originally developed
nd studied for adaptive dynamics in evolutionary biology, where
lants locations are replaced by individuals’ phenotypic quanti-
ative characters (Metz et al., 1996; Dieckmann and Law, 1996;
hampagnat et al., 2006; Méléard and Tran, 2009; Champagnat and
éléard, 2011).
IBMs are useful for studying local structures in plant commu-

ities, e.g. for development or behavioral studies. However, they
re of little practical help for studies at the scale of a field, where
ne could want to study the competitive exclusion or coexistence
f species (Bolker and Pacala, 1999), or simply compute long time
tatistics of the model, like the mean, equilibrium relative abun-
ance of species. A proficient answer to such questions typically
equires us to combine statistical and large time numerical studies,
nd are hence out of reach of an IBM using usual numerical power
Mony et al., 2011). For such problems, one typically uses partial
ifferential equation (PDE) models (El Hamidi et al., 2012), but
sually no aspect of the local architecture of the plants is included

n the PDE.
The aim of this work is to construct a simple IBM in contin-

ous space and time for clonal plants, which can be numerically
nd mathematically studied at the scale of a grassland, and which
an make the link between realistic IBMs and PDE models on large
cales.

We  chose to construct an IBM which focuses on the influence
f the graph on the horizontal growth strategy (rate of creation
f new connections, new ramets, and the location of new ramets)
hrough a stochastic IBM in continuous time and space, coupled
ith the graph structure of the plant. In view of the crucial influence

f resources exchange between ramets on the space coloniza-
ion and the localization of favorable areas, we couple our IBM
ith resources distributed over continuous space, following an

dvection-diffusion deterministic dynamics. This model is tested
n the framework of the phalanx-guerrilla continuum of growth
trategies, and we provide exact large population approximations
s partial differential equations for the local population density.

. Dynamics of the plant and of the resources
At time t the clonal plant is represented as a set of nodes (ram-
ts) that may  be connected by links (rhizomes or stolons), see Fig. 1.
n this simplified representation of a clonal plant, ramets are rep-
esented by points in the plane, and connection by straight lines
Fig. 1. The plant is represented as a set of nodes connected by links. The nodes can
be  seen as ramets and the links as rhizomes.

between two ramets. All ramets and connections are assumed to
be identical in terms of demographic parameters and resource con-
sumption. Age and growth are neglected, and connections do not
uptake resources or incorporate biomass. The influence of other
above ground and below ground aspects of the plant are not physi-
cally modeled. They are only expressed through the birth and death
parameters and the interaction with resources described below.

The state of the nodes is described by the following finite mea-
sure:

�t =
Nt∑
i=1

ıxi
t

(1)

where xi
t ∈ R

2 is position of the ith node and Nt total number
of nodes; ıx denotes the Dirac measure centered on the point
x. The measure �t describes the distribution of nodes over the
space D  ⊂ R

2 of spatial positions. We  consider for simplicity D  =
[x(1)

min, x(1)
max] × [x(2)

min, x(2)
max]. The measure �t is a counting measure:

�t(D) is the total number Nt of individuals and, for all subdomain B
of D, �t(B) =

∑Nt
i=11B(xi

t) is the number of individuals in B.
For any node at position x we  define the set of indices of the

nodes connected to x:

J(t, x) = {i = 1, . . . , Nt; x and xi
t are connected}. (2)

The plant grows in a resource landscape (see Fig. 2). At each
time t, this resource landscape is represented by r(t, x) ∈ [0, rmax]
the available resources at position x ∈ D. The nodes accessing high
levels of resources r(t, x) are more likely to give birth to new nodes.

2.1. Birth and death rates

Each node of �t in position x may  disappear at a death rate �(t,
x) and give birth to a new node at a birth rate �(t, x). These rates
are per capita rates. Global death and birth rates at population level
are respectively:

�t =
Nt∑
i=1

�(t, xi
t), �t =

Nt∑
i=1

�(t, xi
t). (3a)

The global event rate is:

�t + �t. (3b)

Basically, the per capita rates depend on the local availability
of resources: we suppose that the birth rate �(t, x) is an increasing
function of r(t, x) and the death rate is a decreasing function of r(t,
x). For example:

�(t, x) = 1{|J(t,x)|≤Nmax} (�0 + �1r(t, x)), (4a)
�(t, x) = �0 + �1[rmax − r(t, x)] (4b)

where |J(t, x)| is the cardinal of the set J(t, x) and Nmax is the maxi-
mum  number of connections per node. In IBMs on hexagonal grids,
one usually has Nmax = 6 or sometimes less (for example, a ramet
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Fig. 3. The nodes evolve in a resource landscape (black/white: high/ low resource
availability). The nodes accessing high levels of resources are more likely to give

1
|J(t, x)|

∑
i∈J(t,x)

xi
t − x

|xi
t − x|

. (6)

θ

g(|v|)

reference direction

node x

new node x + v

dt,xf(κ, θ)

new shoot angle p.d.f. new shoot lenght p.d.f.
ig. 2. Snapshot of the resource landscape r(t, x) ∈ [0, rmax] at a given time t. The
esource dynamics is modeled as an advection diffusion transport equation (10a)
nd (10b) in interaction with the dynamics of the nodes.

ever has more than 3 connections in Oborny and Englert, 2012).
ote that the continuous space formalism does not require any

estriction on the number of connections from a ramet (one could
ake Nmax =+ ∞). This would lead to more realistic graph structures
or sympodial species which display several buds developing from

 ramet. Similarly as for models with density-dependent compe-
ition, the local limitation of resources due to ramet consumption
see below) prevents an excessive local growth of the number of
onnections and ramets, and hence implicitly impose a limit on the
umber of neighbors of each ramet.

When a node is added to the population, it is always linked with
he mother node, and the set of connections J(t, xi

t) corresponding
o the mother node and the new node are modified accordingly. In
ddition, when a node x is removed from population, all connec-
ions to x are suppressed from all the sets J(t, xi

t) (see Fig. 3).

.2. Dispersion kernel

We have chosen to focus on the effects of the graph structure of
he plant on its horizontal growth strategy, and for simplicity, only
n the choice of the position of a new ramet relative to its “father
amet”, also called dispersion kernel.

A node at position x at time t gives birth to a new node at position
 = x + v according to the p.d.f. Dt,x(v). We  propose the following
istribution:

t,x(v) = f (�, (dt,x, v))g(‖v‖) (5)

here

(i) (dt,x, v) is the angle between a preferred “direction of reference”
dt,x and the direction of the new shoot v, f(�, �) is a p.d.f. on [− �,
�) centered on the angle 0 and with concentration parameter �.
For f we choose the Von Mises distribution (circular normal dis-

tribution) with location parameter 0 and a given concentration
parameter. The concentration parameter may  depend on ‖dt,x‖
and when ‖dt,x ‖ = 0, f is chosen as the uniform distribution, i.e.
� = 0.
birth to new nodes (t1→ t2→ t3). Simultaneously the node and the link between
this node and the mother node are created. When a node disappears all the links
connected with it simultaneously disappear (t3→ t4).

(ii) g(‖v‖) is the p.d.f. on the length ‖v‖ of the connection (see Fig. 4);
g is chosen as the log-normal distribution.

The preferred direction of reference should capture the effect
of the local graph structure of the plant on its horizontal growth.
Through their foraging ability, plants are able to explore space
and preferentially develop ramets in favorable sites (van Kleunen
and Fischer, 2001), resulting in a preferential directional growth.
Such sites could be here sites with the lowest densities of ramets
(competitive avoidance sensu Novoplansky, 2009) or sites with the
highest resource level. In our model, we  assume that growth takes
place preferentially in the direction of higher resource level. How-
ever, since our model couples plants and resources dynamics, areas
with high resource densities and low density of ramets are actually
implicitly correlated.

The information about the spatial location of the neighbors of a
node at position x at time t can be summarized by the vector
f(κ, θ) g( v )

Fig. 4. The dispersion kernel (5) is the product of the angle probability density func-
tion  f, the Von Mises distribution, and the length probability density function g, the
log-normal distribution.
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hen there is single neighbor, this vector gives the direction of
he connection between the ramets and its “mother ramet”. When
here are more neighbors, this is simply the mean vector of the
irections of each connections leaving the ramet. If one wants to
odel a preferred direction of growth in unexplored directions, one

hould favor dispersal in the opposite direction of this vector.
The information about the resource flow entering the ramet

t x through connections can be summarized by the (positive or
egative) number

1
|J(t, x)|

∑
i∈J(t,x)

[r(t, xi
t) − r(t, x)]. (7)

his formula assumes that the flow of resources in a connection is
roportional to the resource difference between the two ramets.
ne could also assume that the flow is proportional to the gradient
f resources along the connection, leading to the formula

1
|J(t, x)|

∑
i∈J(t,x)

r(t, xi
t) − r(t, x)

|xi
t − x|

. (8)

ne could for example assume that the range of dispersal from the
amet is positively influenced by one of these two  resource flows.

We  have chosen in this work to focus on a compromise between
hese two effects, based both on positions and resources:

t,x = 1
|J(t, x)|

∑
i∈J(t,x)

r(t, xi
t) − r(t, x)

|xi
t − x|2

[xi
t − x]. (9)

his is an approximation of the resource gradient based on the val-
es of r(t, x) at x and at the positions of all connected nodes (see
ig. 5).

The way dt,x approaches ∇r(t, x) can be made more precise as
ollows: using the approximation r(t, xi

t) − r(t, x) ≈ ∇r(t, x) · (xi
t −

) for all i ∈ J(t, x), valid if the connections are short enough, we
lways have dt,x · ∇ r(t, x) ≥ 0. In addition, in the case where the
osition of each xi

t for i ∈ J(t, x) is uniformly distributed on a circle

entered at x (i.e. if f(�, �) is the uniform p.d.f. on [− �, �)), a simple
omputation gives E(dt,x) = (�/2)∇r(t, x).

In order to keep the population inside the domain D  we simply
gnore the new node y = x + v when y /∈ D.

ig. 5. A node in position x will give birth to a new node in position x + v in an
pproximation of the gradient of the resources, see (9).
l Modelling 234 (2012) 93– 105

2.3. Interactions between nodes and resources

The natural way to model resource concentration is as a density
function r(t, x) over the domain D. Coupling (discrete) individ-
ual dynamics with resource density dynamics is a non-standard
problem which requires a choice. We  propose the following
model:

∂tr(t, x) = div(a(x)∇r(t, x)) + b(x) · ∇r(t, x) − r(t, x)˛
Nt∑
i=1

	xi
t
(x)

(10a)

with r(0, x) = r0(x) and

	y(x) = exp

(
− 1

2
2
r
|x − y|2

)
. (10b)

In the absence of plants, the resource concentration r(t, x) follows
a classical advection/diffusion equation. The last term of (10a) rep-
resents the resource consumption of the ramets. We  assume a rate
of resource intake proportional to the local resource concentration
during the whole lifetime of each ramet. In addition, we  model with
the function 	 the fact that resource consumption is not local. The
parameter 
r can then be interpreted as the mean range of roots of
a ramet in the species.

The PDE (10a) and (10b) has to be coupled with appropriate
boundary conditions. We  assume here that the boundary of the
domain D is a natural boundary that cannot be crossed by the
plants, because of the absence of resources. This corresponds to
the Dirichlet boundary condition

r(t, x) = 0, ∀x ∈ ∂D.

Of course, other resource consumption models can be considered.
For example, consumption can be assumed to occur also at birth,
leading to the following resource update at a birth of a ramet at
position y and time t:

r(t, x) = r(t−, x) (1 − ˛′	y(x)).

One could also take into account the plant decomposition at
position y after its death at time t by updating the resource con-
centration according to

r(t, x) = r(t−, x) (1 + ˛′′	y(x)),

which corresponds to an instantaneous plant decomposition.

3. Numerical approximation of the IBM

We now describe the simulation algorithm: starting from the
state

�Tk−1
=

NTk−1∑
i=1

ıxi
Tk−1

at last event time Tk−1, we  first sample the time of the next event
(birth or death):

Tk = Tk−1 + S with S∼Exp(�Tk−1
+ �Tk−1

) (11)

and �Tk−1
and �Tk−1

defined by (3a). The next event:

• is a birth event with probability
�Tk−1

�Tk−1
+ �Tk−1

.
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Then sample ı̂  according to{
�(Tk−1, xi

Tk−1
)

�Tk−1

; i = 1, . . . , NTk−1

}

and v according to the p.d.f. D
Tk−1,xı̂

Tk−1

(v), finally let:

�Tk
= �Tk−1

+ ı(xı̂
Tk−1

+v)

and update the sets of connections J(Tk, x) accordingly;
is a death event with probability

�Tk−1

�Tk−1
+ �Tk−1

.

Then sample ı̂  according to{
�(Tk−1, xi

Tk−1
)

�Tk−1

; i = 1, . . . , NTk−1

}
,

let:

�Tk
= �Tk−1

− ı
xı̂

Tk−1

and update the sets of connections J(Tk, x) accordingly.

Note that this algorithm is valid if the rates �(t, xi
t) and �(t, xi

t)
re approximately constant for t ∈ [Tk−1, Tk−1 + S). If it is not the
ase, we should make use of an acceptance/rejection algorithm
Fournier and Méléard, 2004; Campillo and Joannides, 2009). In
arallel, we should numerically integrate the PDE (10a), for exam-
le with implicit or explicit finite-difference schemes. In practice,

f Tk− Tk−1 is small enough, which is usually the case if the popu-
ation is large, a single time step of the finite-difference scheme is
ufficient. Note also that, in order to compute the birth and death
ates � and �, one needs to interpolate the resource concentration
t each ramet position from the resource concentrations on the
iscretization grid. The algorithm is presented in Algorithm 1.

lgorithm 1. Gillespie algorithm. Here we use the notation x ∈ �t

nstead of xi for i = 1 · · · Nt.

T0 ← 0, �0, r(0,  x) given
for k = 0, 1, . . . do

compute the rates �(Tk, x), �(Tk, x), for x ∈ �Tk

�←
∑

x∈�Tk

�(Tk, x), � ←
∑

x∈�Tk

�(Tk, x)

Tk+1 ← Tk + S with S∼Exp(� + �)
if rand() < �/(� + �) then

sample x according to {�(Tk, x)/�; x ∈ �Tk
}

sample v according to DTk,x(v)
�Tk+1

← �Tk
+ ıx+v [birth]

else
sample x according to {�(Tk, x)/�; x ∈ �Tk

}
�Tk+1

← �Tk
− ıx [death]

end if
compute r(Tk+1, x) [numerical approximation of (10a)]

end for

Because the model contains no grid structure, this algorithm is
articularly simple to implement. The state of the process can be

oded as a list of each individual’s location and the labels of its
eighbors.

Note also that this algorithm can be very costly when the popu-
ation size is large, as it requires us to compute the sums � and � at
l Modelling 234 (2012) 93– 105 97

each time step. Another possibility is to use an acceptance/ rejection
procedure (Fournier and Méléard, 2004) in order to replace this sum
by a random sampling of the individual to which the next event will
apply. The drawback is that some (and sometimes many) of these
events may  actually be void, leading to an increase of the number of
time steps in the simulation. In practice, there is a significant gain
of numerical cost for very large populations.

4. Simulation

We  simulated through this model the growth of two contrasted
growth forms: guerrillas and phalanx growth strategies (sensu
Lovett-Doust, 1981) in a heterogeneous resource concentration
landscape. We  implemented both types by suitably adjusting the
parameters of the dispersion kernel in (5):

(i) if the p.d.f. f(�, �) of the shoot angle has a large concentration
parameter and if the p.d.f. g(‖v‖) favors large lengths, then the
model will present the characteristics of a guerrilla plant;

(ii) if the p.d.f. f(�, �) of the shoot angle has a small concentration
parameter and if the p.d.f. g(‖v‖) favors small lengths, then the
model will present the characteristics of a phalanx plant;

see Fig. 6. Examples of resulting plant networks are presented in
Fig. 7 for the case of a maximum number of Nmax = 3 connexions
per node.

These preliminary simulation tests are run for very simple
dynamics of resources: we assume that there is no advection of
resources over the land (b(x) = 0) and that the diffusion coefficient
of resources is constant (a(x) = 
2) in (10a). Since the colonization
occurs on a short time-scale, we  also neglect the plant decomposi-
tion phenomenon by which resources return to the environment.
The resource landscape is chosen multimodal: the resources are
distributed in several patches. Our goal is to test the capabilities of
our clonal plant model to explore space and to adapt its network
according to the distribution of resources.

For the phalanx strategy, we  observe a dense colonization front,
because of the excess of resources. Away from the front, the popula-
tion density stabilizes to a lower level, due to the stabilization of the
resource concentration at a small level. For the guerrilla strategy,
the colonization front is not as clearly delimited, but we still observe
an area with high density where the colonization progresses, and
the stabilization of resources and population densities in already
colonized regions.

One of the main advantages that network structure are believed
to confer to clonal plants is their capacity to adapt their growth
strategy to the local resources landscape, felt either by forag-
ing or physiological integration. This capacity is given in our
IBM by the dependency of the dispersion kernel – more pre-
cisely the shoot angle p.d.f. f – on the estimated resource gradient
dt,x (9).

The efficiency to exploit resources can then be compared with
simulations of IBM involving different dispersion kernels. This is
done in Fig. 8 with the initial resource landscape given by Fig. 3.

This resource map  features several resource-rich areas
(patches), with different levels of resource richness, separated by
resource-poor areas of different width. The arbitrary choice we
made is intended to provide various situations to test the ability
of the clonal plant to (i) cross areas with small resource density
in order to visit new patches and (ii) to uptake resources within a

patch efficiently.

Pure guerrilla strategies are efficient for the first point (because
the plant grows along straight lines), but inefficient for the sec-
ond point. Pure Phalanx strategies are less efficient for the first



98 F. Campillo, N. Champagnat / Ecological Modelling 234 (2012) 93– 105

Fig. 6. If the shoot angle p.d.f. f(�, �) has a small concentration parameter � (resp. large concentration parameter �) and if the p.d.f. g(‖v‖) favors small lengths (resp. large
lengths), then the model will present the characteristics of a phalanx growth strategy (resp. guerrilla growth strategy).

in Fig.
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Fig. 7. Simulation of guerrilla and phalanx behavior descried 

oint, but more efficient for the second point (as they grow in all
irections).

We explore a range of intermediate strategies simply by varying
he concentration of the shoot angle distribution f. A large concen-
ration means that the plant grows nearly along straight lines and
as a very small probability to change its growth direction. A small
oncentration corresponds to the case where the graph structure
as no influence on the population dynamics, i.e. the case where f

s the uniform distribution on [0, 2�).
As expected, the simulations of Fig. 8 show that there is an opti-
al  tradeoff: when the shoot angle p.d.f. is not directive enough
r too directive, the plant fails to reach areas with high level of
esources; in intermediate cases, the plant reaches these areas and
eaches them rapidly.
 6 with a maximum number of Nmax = 3 connections, see (4a).

5.  Large population approximation of the IBM

Individual-based models are a convenient tool for modeling
small-scale ecological systems. However, their simulation is often
costly and can hardly provide relevant field-scale information
in reasonable computational time. This is typically the case for
phalanx-type clonal plants, where the connection length is often
short and the plant architecture is dense. In order to understand
the global interaction between plants and resources and to speed
up the computational time, the search for simpler approximation

models is crucial.

It is natural to seek partial differential equations (PDE) (El
Hamidi et al., 2012) governing the time dynamics of the population
density over space, obtained in a limit of large population. This has



F. Campillo, N. Champagnat / Ecological Modelling 234 (2012) 93– 105 99

shoot angl e p.d.f. f(θ) evolution of th e populatio n siz e (red)
and of th e amount of resou rces (blue)

Fig. 8. Let � be the concentration parameter of the Von Mises distribution f. Taking different values for this parameter (� = 0, 0.1, 0.5, 2, 3) we plot, on the left, the corresponding
shoot angle p.d.f. f(�, �) and, on the right, the time evolution of the size of the population (red) and of the total resource (blue); we suppose that there is no advection of
resources (i.e. b ≡ 0 in (10a)). The simulation is done with the initial resource map of Fig. 3 with high resources spot on the north of the domain, a less important spot in the
south  and 3 negligible spots (left, center and right), the initial plant is located on the left spot. In the first case, � = 0, the plant explore all directions without any preference
(uniform distribution of the shoot angle): by chance the plant reaches the north spot corresponding to the increase of population and the population subsequently decreases.
In  the second case, � = 0.1, the plant first reaches the south spot and then the north spot. In the third case, � = 0.5, the plant rapidly reaches the north spot and then the south
spot.  In the fourth case, � = 2, the plant needs more time to reach the two  important spots. In the last case, the plant does not reach any resource spot and node population
goes  extinct rapidly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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een done under various scalings of the individual parameters for
lants systems without network structure (Fournier and Méléard,
004; Champagnat et al., 2006, 2008). Three main families of scal-

ngs were described in the second paper: in the first scaling, space is
nscaled, leading to a non-local integro-differential equation for the
opulation density; in the second one, space is scaled, and births
nd deaths are accelerated accordingly in order to obtain a PDE
ith local reaction-diffusion; in the last scaling, births and deaths

re even more accelerated, leading to a stochastic reaction-diffusion
DE.

Because of the underlying network structure and the explicit
oupling with resource dynamics, these results do not apply to our
BM. The result we present here is a first attempt to fill this gap. This
s a convergence theorem under appropriate parameter scalings, so

e insist on the fact that the limit is exact. We  give in Appendix A an
rgument justifying this convergence, but we do not provide a full
roof, which would be very technical because our model couples a
tochastic, discrete structure for the population and a deterministic,
ontinuous structure for resource concentrations (see Campillo and
hampagnat, in preparation, for a proof in a graph-structured IBM
ithout resources).

.1. The limit PDE

The more relevant scaling within the context of phalanx-type
lonal plants is the space-scaling and acceleration of births and
eaths which leads to a reaction-diffusion PDE for population den-
ities. It is also the less technical, and we restrict ourselves to this
ase here. Other possible scalings are discussed below. In this case,
he PDE approximation of the IBM takes the following form: denot-
ng by u(t, x) the population density at time t and position x in D,

∂tu(t, x) = ˇ�(�(x)u(t, x)) + (�(t, x) − �(t, x))u(t, x)

− div(�(x)F(x, ∇r(t, x))u(t, x)),

∂tr(t, x) = ∇(a(x)r(t, x)) + b(x) · ∇r(t, x) − ır(t, x)u(t, x),

u(t, x) = r(t, x) = 0, ∀x ∈ ∂D.

(12)

his model is a diffusion-advection PDE for population densities
ith a term of local growth, coupled with an diffusion-advection

DE for resources, where the resource consumption depends
n the local population density u(t, x) and the advection of the
opulation density depends on the local gradient of resources ∇r(t,
). Note that the PDE for u is linear, but depends non-linearly on r
hrough F, � and �. Therefore, this is not strictly speaking a reaction
iffusion PDE as in the competition-colonization plant model of
hampagnat et al. (2006).  Note also that the local growth rate of the
opulation density is given as one could expect by �(t, x) − �(t, x).

The parameters ˇ, � , ı and F appearing in this equation
re obtained as explicit functions of individual parameters in
ppendix A.

.2. The parameter scalings

The PDE (12) is obtained from a large population scaling of our
BM. Hence, we introduce a parameter K which will give the order of
he total number of individuals in the population. The constant K is
elated to the carrying capacity of the system and is also often called
system size” (Metz et al., 1996). We  also fix a parameter 
 ∈]0,
[. We  denote by �K and rK the population measure and resource
oncentration corresponding to the parameter K, and we  scale �K

s

K
t =

1
K

NK
t∑

i=1

ıxi
t
.

l Modelling 234 (2012) 93– 105

First, in order to make the population larger, we need to increase
the quantity of resources available, or equivalently to reduce the
rate of resource consumption per individual:

∂trK (t, x) = div(a(x)∇rK (t, x)) + b(x) · ∇rK (t, x)

− ˛

K
rK (t, x)

NK
t∑

i=1

	 K
xi

t

(x), (13)

which amounts to replacing  ̨ by ˛/K in (10a). We  also apply a space
scaling, which corresponds to the choice

	 K
y (x) = K−
/2 exp

(
− K


2
2
r
|x − y|2

)
.

in the resource dynamics. This means that the typical size of a ramet
(and its roots, stolons excluded) is of order K−
/2 in the new space-
scale. Since the integral of 	 K

y over space remains of order 1, the
total amount of resources consumed per ramet and per unit of time
remains of order 1/K  (because  ̨ has been divided by K). This is
consistent with a total population size of order K.

Concerning the population dynamics, we require that births and
deaths are accelerated as follows:

�K (t, x) = �(t, x) + K
�(x),
�K (t, x) = �(t, x) + K
�(x)

(14)

where � and � may  depend on r as in (4a) and (4b). This means that,
while keeping the growth rate per individual �K− �K = � − � con-
stant, births and deaths are accelerated by the term K
� , where �
is a function that may  depend on x ∈ D. This corresponds to a time-
scale where ramets have short life spans and reproduce rapidly,
while the total population grows or declines on a slower time
scale. In other words, we want to describe the global changes in
the population on an intermediate time scale, after the initial (fast)
colonization of space, but before it stabilizes to a global equilibrium.

Finally, the space scaling must also be applied to the dispersion
kernel, and the preferred dispersion direction must be consistent
with the phalanx-type population we consider: we replace the dis-
persion distribution of (5) by

DK
t,x(v) = 1

K
 g
( ‖v‖

K
/2

)  (
(1 − K−
/2)

(dt,x, v)
2�

+ K−
/2f (�, (dt,x, v))
)

.

(15)

The scaling of the p.d.f. g corresponds to the space scaling of
K−
/2 which was used above for the resource consumption ker-
nel 	 K. The scaling of the p.d.f. f amounts to a uniform dispersion
direction with probability 1 − K−
/2 and otherwise to a dispersion
direction around the preferred direction according to f. This corre-
sponds to a population with nearly no preferred direction, hence
a phalanx-type population. Still, the small probability K−
/2 for a
dispersal along the preferred direction has an effect at large space-
scales on the global behavior of the population, corresponding
to the term F(x, ∇ r(t, x)) in the limit PDE (12). This shows that
even a small asymmetry in the dispersal direction for each ramet
can lead to a non-negligible global effect. Again, this global effect
can be explicitly expressed in terms of the individual parameters
(see Appendix A).

6. Discussion

The construction of a model in any scientific domain has to meet
several contradictory goals and must often be a compromise. The

first goal is of course the faithfulness of its results compared to
the quantitative results of experiments, and as a consequence, the
details and precision that the model should include in all the rele-
vant mechanisms. The second goal is its practical interest in terms
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f prediction, description and analysis of the phenomenon under
tudy. In this respect, we can distinguish several major issues: the
umber of parameters of the model, the difficulty of its numer-

cal implementation, the numerical cost of its simulation and the
ossibility of its mathematical analysis. The tendency to build com-
licated models to describe natural phenomena has to be faced with
he problems of calibration of too many parameters compared with
he amount of data available, the arbitrary choices that must often
e made in the details of the model, and the numerical cost of its
imulation, which can make statistical information or large time
ehaviors out of reach.

The construction of a useful model requires to restrict to the sig-
ificant factors involved in the phenomenon. Of course, the notion
f significant factors is highly dependent of the goals of the study. In
cology, depending on the spatial scale of the study, one may  prefer
o use realistic IBMs which aims to describe realistic local popula-
ion structures, or simple IBMs which focus on a specific feature of
he ecosystem and can be used to study its influence on large space
cales. For clonal plants, the first class of models has received much
ore attention than the second one, and this work is an attempt to

onstruct a simple IBM for clonal plants which can be numerically
nd mathematically studied at the scale of a grassland.

.1. A simple IBM allowing to simulate two clonal growth
trategies

In this work, we presented a simple IBM for clonal plants in
ontinuous time and space, which can be numerically and math-
matically studied on large space-scale. To this aim, we chose a
odeling compromise which consists in substantially simplifying

everal aspects of the local architecture of the plant, while focus-
ng on a single aspect: the influence of the graph structure of the
lant on its horizontal growth strategy. Our goal was to model the

nfluence of the network structure of the plant on its ability to col-
nize space (Harper, 1981; Hutchings, 1999) through the exchange
f resources and information along connections (Marshall, 1990;
tuefer et al., 2004; Wijesinghe and Hutchings, 1997; Hutchings,
999; Charpentier and Stuefer, 1999; Klimeš  et al., 1997). This was
one by constructing a preferred horizontal growth direction based
n the position and resources of the neighbors of a ramet in the
etwork. This preferred growth direction influences the position of
ew ramets. Because of the importance of resources in the horizon-
al growth strategy, we also included an explicit resource dynamics
n the model taking the form of an advection-diffusion partial dif-
erential equation.

Typical network architectures of clonal plants range from pha-
anx to guerrilla strategies (Lovett-Doust, 1981). These strategies
trongly influence the horizontal growth of clonal plants, which in
urn strongly influences their colonization and space occupation
bilities (Wildová et al., 2007). Based on a partly exact simulation
cheme, as the exact IBM scheme is coupled with an approximate
esources dynamics, the numerical study of our IBM was  done in
he context of the colonization of a land with an heterogeneous and
ragmented resource landscape. We  proposed a possible parame-
erization of guerrilla and phalanx strategies in our model, and we
tudied the efficiency of these strategies on the speed of coloniza-
ion and the resource consumption.

We  observed a trade-off between exploration and exploita-
ion inducing contrasted colonization performance of plants. Space
olonization depended on the species clonal dispersal strategy.
uerrilla species were the most efficient at exploring space as their

trategies enable them to colonize space and minimize competi-
ion within the clone (Lovett-Doust, 1981). These differences in the
uccess of these two strategies are consistent with previous studies
Humphrey and Pyke, 1997).
l Modelling 234 (2012) 93– 105 101

The average distance between two connected ramets and the
variance of the gap between the actual and the preferred direc-
tions of growth appear to be particularly important traits for the
plant efficiency. In the present model simulation, we observed
the occurrence of an optimal graph structure for resource con-
sumption, which is intermediate between pure phalanx and pure
guerrilla strategies. The importance of architectural trait in plant
performances has been a key question in clonal plant studies, espe-
cially studied through modeling approaches (Winkler and Schmid,
1995; Wildová et al., 2007; Wong et al., 2011). In particular, angles
between branches have been shown to be a key element for deter-
mining the ability of a plant to handle the trade-off between
intraclonal competition and space colonization (Bell, 1979; Kisljuk
et al., 1996; Wong et al., 2011). The model of Smith and Palmer
(1976) demonstrated that a hexagonal architecture would max-
imize the centrifugal spread and area colonized by the clonal
fragment, while generating gaps within it. Weak variation of this
angle disfavors ramet superposition (Bell and Tomlison, 1980).

6.2. Comparison with other classes of IBMs

IBMs on a grid are a convenient way  to model the spatial con-
straints on the network structure of a plant community without
giving too much care to the underlying mechanisms. For example,
a spatial grid limits the local spatial density of ramets or spacers,
and the complexity of the network structure. This is probably an
important reason for the success of IBMs on grids for clonal plant
modeling.

However, IBMs on grids also have some drawbacks: they can
produce unrealistic structures of the plant (particularly for sym-
podial species), the spatial constraints are modeled in an arbitrary
way, the numerical implementation of the model can be complex
due to the grid structure, and the models can be analyzed only via
simulations.

IBMs in continuous space can answer several of the above men-
tioned drawbacks: the absence of grid can solve the spatial artifacts
of IBMs with grid; the spatial constraints can be modeled as a direct
consequence of the interaction between plants and resources; the
numerical implementation of the model is very simple and its
numerical cost is good (Section 3); finally, provided they are not
too complicated, these models are amenable to exact macroscopic
approximations (Section 5).

However, IBMs in continuous space also have drawbacks, among
which: (i) the graph-structure of the plant can be unrealistic, since
a ramet can produce two  very close new ramets or the local ramet
density could be very high; (ii) it is harder to include a realistic
interaction between ramets and resources, since resource con-
centrations are modeled as continuous variables over continuous
space, whereas individuals are discrete. This last point is a major dif-
ficulty in terms of mathematics and algorithmics but also in terms
of modeling as the structure of the root system, the mechanisms of
resource absorption by roots and the plant decomposition are very
complex. We proposed a simple solution for this problem, proba-
bly unrealistic. Still, one can hope that differences on the resource
consumption mechanisms at the local scale have a small influ-
ence on larger space-scale. This is supported by our mathematical
analysis in Appendix A, where the resource consumption profile
of (10b) only influences the global dynamics of the population
through its mass and its standard deviation 
r. To our knowledge,
the mechanism of resource consumption which we use is the first
one proposed in the context of a discrete population and a resource
landscape over a continuous space.
Our model belongs to the family of simple IBMs: the basic ele-
ments of the plants are ramets and connections between ramets
(rhizomes or stolons), and the above ground and below ground
aspects of the plant are not physically modeled. Of course, this
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akes the model unrealistic concerning the local architecture of
he plant. However, our simulations show that our model is able to
apture global features of the horizontal growth of plants, such as
uerrilla or phalanx growth strategies.

In addition, our model has a much smaller number of parameters
han traditional IBMs for clonal plants (5 parameters for birth and
eath rates: the minimal and maximal birth and death rates and
he maximum number of neighbors; 4 parameters for the dispersal
ernel). This makes our model much easier to calibrate than models
iving more details to the plant structure. One of the most promis-
ng approaches to calibrate IBMs lies in the approximate Bayesian
omputation method (Hartig et al., 2011).

Our purpose was to construct a simple IBM that can be math-
matically analyzed. However, realistic IBMs are a key tool for
tudying local structures in plant communities, e.g. for develop-
ent or behavioral studies. We  can propose various extensions

f our model for future studies: (i) to account for unsuccessful
xploration of space by the stolon, one can add to the model a
robability of actual birth of a new ramet, which could depend on
he local resource concentration; (ii) the birth and death rates (4a)
nd (4b) may  also depend on resource translocation between ram-
ts (Stuefer et al., 2004), for example through incoming flows like
hose defined in (7) or (8);  (iii) one can consider external supply
f resources, either with flux (Neumann) boundary conditions or
ource terms for the resources PDE (10a); (iv) more generally all
nformation on the plant architecture usually included in realis-
ic IBMs could be easily translated in models on continuous space.
or example, one can attach variables to each ramet, like their
ize, age or biomass (for example, resources attached to a ramet
ensu Herben and Novoplansky, 2008), and let the birth and death
arameters depend on these variables. Internal or terminal ramets
ould also be distinguished (Oborny and Englert, 2012). Spacers can
lso disconnect at a given rate (Herben and Novoplansky, 2008),
e characterized by an amount of resources or biomass (physio-

ogical integration sensu Stuefer et al., 2004), or grow linearly in
ontinuous time, similarly as in most of the IBMs of clonal plants
n grids.

.3. Toward PDE models for various types of clonal plants

We proposed a PDE model which approaches the IBM when the
opulation is large, the births and deaths are fast and the size of
amets and spacers is small. This particular scaling is relevant for
lonal plants with phalanx strategies on large space-scales.

The derivation of such a result is usually only possible for simple
BMs, and much easier for IBMs in continuous space. For particle
ystems on grids, similar results exist, but usually under mixing
ssumptions, like fast motion of individuals (Durrett, 1995; Kipnis
nd Landim, 1999). Unfortunately, such assumptions are totally
rrelevant for IBMs of plant dynamics. The difficulty comes from
he fact that, without mixing assumptions, IBMs on grids remain
nfluenced by the geometry of the grid on large space scales (a cel-
brated example in a different context is the Wulff crystal shape in
tatistical mechanics, see Cerf, 2006).

In the class of simple IBMs in continuous space, the first macro-
copic results were obtained using moment equations and their
pproximation by closure methods under various space scalings
Bolker and Pacala, 1999; Dieckmann et al., 1999, 2000; Brown
nd Bolker, 2004; Bolker, 2004). Afterwards, these results were
mproved with exact convergence results to PDEs for population
ensities, using large space-scale and large population asymptotic
Fournier and Méléard, 2004; Champagnat et al., 2006; Campillo

nd Joannides, 2009; Méléard and Tran, 2009). All these results
ere obtained in models without network structure.

Our method, which makes the connection between IBMs with
raph structure in continuous space, and continuous PDE models,
l Modelling 234 (2012) 93– 105

is new and shows how the local details of the model can keep a
non-trivial influence at larger space-scales. In addition, it can be
extended to other scalings of our IBM in the fashion of Champagnat
et al. (2008) and Campillo and Champagnat (in preparation), or
to more complex interactions: (i) the birth, death and dispersion
parameters may  also depend on the mean position of the neighbors
of a ramet (6) or on the flow of resources (7) or (8) entering a ramet;
(ii) one can also scale the population size without scaling space, by
taking 
 = 0 in Section 5; in the limit, the population densities solve
a non-local PDE (as the network is unscaled), and must be expressed
also as a function of the age and parent position of a randomly sam-
pled individual (Campillo and Champagnat, in preparation); (iii) our
scaling can also be applied to guerrilla-type strategies, for which the
preferred growth direction has a strong influence; in this case, the
limit population density solves a pure advection (or transport) PDE,
of very different nature than the reaction-diffusion PDE obtained
for phalanx strategies in Section 5; (iv) one can also handle the
case 
 = 1, where some demographic stochasticity remains in the
limit of large population, in the fashion of the Fleming-Viot process
(Etheridge, 2004; Champagnat et al., 2006).

6.4. Conclusion

By voluntary limiting ourselves to a simple individual-based
model, we  were able to propose a precise asymptotic analysis that
allowed us to approximate, at the scale of the field, the IBM by a PDE
system. This work is the first result that bridges the gap between
IBM and PDE in the context of clonal plant growth.

This scaling is especially valid for clonal plants with phalanx-
type growth. Other scalings can also be considered for guerrilla-
type populations. This is an interesting perspective in terms of
competition models between two  species of clonal plants compet-
ing for common resources. Depending on the scale of study or the
species, it could be pertinent to consider hybrid models, where one
species could be modeled in PDE terms and the other species could
be modeled in IBM terms.

We believe that the dual representation of IBMs, by means of
computer simulation tools and of mathematical formalisms, will
greatly expand in the future.
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Appendix A. Approximation argument for the limit PDE
(12)

Eq. (12) can be derived from the scaling described in Section
5 as follows: we  assume that the initial population state �K

0 con-
verges to some non-trivial measure u0(x)dx on D, i.e. that the initial
population size is of order K and is distributed over space close to
the population density u0(x). Now, assume that K is large and that
at some time t, the population state �K

t is close to the density u(t,
x), and consider some test function � over D. Then, the quantity
At =

∫
D

�(x)�K
t (dx) changes on the time interval [t, t + dt]  due to the

following three effects:

• Each individual close to x ∈ D  gives birth to a number �K(t, x) dt
of individuals, and a proportion �K(t, x) dt die. This gives a local
change of the population density (�K(t, x) − �K(t, x))u(t, x) dt,  and

a change of At given by∫

D

�(x)(�(t, x) − �(t, x))u(t, x) dx dt.
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This gives the first-order change of At. Higher-order changes
(i.e. changes involving derivatives of �) must also be taken into
account.
Among all the births from the individuals around x ∈ D, a propor-
tion 1 − K−
/2 are located symmetrically around x at a distance
K−
/2�, where � is distributed as g(�). Making a Taylor expansion
of � around x, the corresponding change of At is given by

dt

∫
D

dx�K (t, x)u(t, x)

∫ 2�

0

d�

2�

∫ +∞
0

g(�)d�

× 1
2

(�K−
/2v�)′∇2�(x)(�K−
/2v�),

where v� = (cos �, sin �) is the unit vector of direction �. Note that
the first-order term does not appear as it vanishes because of
the symmetry of dispersions. Note also that the scaling of �K in
(14) has been chosen so that it exactly cancels the scaling of the
dispersion distance K−
/2�. Neglecting the smaller order terms,
an easy computation gives a change of At of∫ +∞

0
�2g(�)d�

4

∫
D

��(x)�(x)u(t, x) dx dt.

Among all the births from the individuals around x ∈ D, a propor-
tion K−
/2 are located at x + K−
/2v, where v has distribution (5).
Making again a Taylor expansion of �, we obtain a local change
of At of

dt

∫
D

K−
/2�K (t, x)u(t, x)∇�(x) · K−
/2〈vt,x〉 dx

where 〈vt,x〉 is the mean of vt,x when vt,x has distribution (5),  in
which dt,x has the distribution of the preferred dispersion direc-
tion in the population around x. Of course, this last distribution
is unknown and must be computed (see below).

Putting together all the previous results, we obtain

dAt

dt
=
∫

D

(∫ +∞
0

�2g(�)d�

4
��(x)�(x)u(t, x) + �(x)(�(t, x)

−�(t, x))u(t, x) + ∇�(x)〈vt,x〉�(x)u(t, x)

)
dx

his is the weak formulation of the PDE (12), where we  put

ˇ =

∫ +∞
0

�2g(�)d�

4
, F(x, ∇r(t, x)) = 〈vt,x〉.

he fact that 〈vt,x〉 only depends on x and ∇r(t, x) will be justified
elow.

Before coming to the computation of F, we observe that the last
erm of the PDE (13) for rK may  be written as

˛rK (t, x)

∫
D

	 K
y (x)�K (dy).

eplacing �K(dy) with its limit u(t, y)dy and passing to the limit
→ + ∞ would formally give the second equation of (12) with

 = ˛√ .

2�
r

owever, this requires a sufficient regularity for u(t, x) and a con-
ergence of �K

t (dy) to u(t, y) dy such that space means of �K
t over balls

f diameter of the order of K−
/2 also converge to u(t, x). This is the
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place where a full mathematical proof requires a careful analysis
that we  do not examine here.

Finally, we need to compute the distribution of the preferred
dispersion direction over the population close to a fixed x ∈ D  at a
fixed time t ≥ 0. We  consider one of these ramets chosen at random
and call it RSI (randomly sampled individual) at x, and we divide
the computation into several steps.

A.1. Scaled age distribution of a RSI

Because of the scaling of the death rate �K(t, x), the life span of
the RSI is of order K−
, and the position of its mother ramet is at a
distance of order K−
/2 because of the scaling of the p.d.f. g. Over
these time and space scales, the population densities and resource
concentration can be assumed constant equal to u(t, x) and r(t, x).
We call scaled age of an individual at x at time t, its age multiplied
by K
.

In particular, the ramets alive at time t close to x appeared at an
(approximately) constant rate during a time length of order K−
.
Since they die (approximately) at constant rate K
�(x), the prob-
ability of survival of an individual born at time t − yK−
 is e−y�(x).
Since the birth rate of individuals close to x is approximately con-
stant, we  deduce that the scaled age of a RSI at x is asymptotically
distributed when K→ + ∞ as an exponential random variable with
parameter �(x).

A.2. Number of living offsprings of a RSI

Conditionally on the age K−
y (or the scaled age y) of a RSI at
x, the birth rate at x over the time interval [t − K−
y, t] is (approx-
imately) constant equal to K
�(x). Therefore, the scaled age of all
its offspring is distributed as a Poisson process of parameter �(x)
on the interval [0, y]. In particular, the total number of offsprings
is distributed as a Poisson random variable with parameter y�(x).
Among them, some are already dead at time t.

In order to compute the number of living neighbors of the RSI,
we need to introduce an additional conditioning on the number k
of offspring of a RSI conditioned to have scaled age y. We  use the
following feature of Poisson processes: conditionally of the number
k of offspring of the RSI, their scaled age are distributed as k inde-
pendent and identically distributed (i.i.d.) random variables with
uniform distribution on [0, y]. In other words, conditionally on the
age K−
y of the RSI and the number of its children k, the ages of
its children are distributed as k i.i.d. random variable with uniform
distribution on [0, K−
y].

Since they all die at (approximate) rate K
�(x), the survival prob-
ability of each is

1
K−
y

∫ K−
y

0

e−K
�(x)s ds = 1 − e−y�(x)

y�(x)
.

We denote by px,y the right-hand side of this equation. This leads
to a number of living children of the RSI with binomial distribution
with parameters k and px,y.

A.3. Number of living neighbors of a RSI
Similarly, conditionally on the scaled age y of the RSI, its mother
ramet is still alive at time t with probability e−y�(x).

Therefore, the number N of living neighbors of a RSI at x condi-
tionally on A = y, where A is the scaled age of the RSI, is distributed
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s

P(N = n | A = y)

= e−y�(x)
∑

k≥n−1

e−y�(x) (y�(x))k

k!

(
k
n − 1

)
pn−1

x,y (1 − px,y)k−n+1

+ (1 − e−y�(x))
∑
k≥n

e−y�(x) (y�(x))k

k!

(
k
n

)
pn

x,y(1 − px,y)k−n,

or n ≥ 1 and

(N = 0 | A = y) = (1 − e−y�(x))
∑
k≥0

e−y�(x) (y�(x))k

k!
(1 − px,y)k.

enoting for convenience these quantities qx,y(n), we obtain the
ollowing distribution for the number N of living neighbors of a RSI
t x: for all n ≥ 0,

(N = n) =
∫ +∞

0

�(x)e−y�(x)qx,y(n) dy. (16)

.4. Positions of the neighbors of a RSI

Neglecting the smaller-order terms in (15), we  have

K
t,x ≈

1
K
 g

( ‖v‖
K
/2

)
(dt,x, v)

2�
,

hich means that the direction of dispersal is (approximately) uni-
orm for each birth. This is also the case for the births from the RSI
t x, as well as its mother ramet. Therefore, the positions of all the
eighbors of the RSI at x are i.i.d. and distributed as x + K−
/2�v� ,
here � has p.d.f. g(�) and v� = (cos �, sin �).

.5. Asymptotic distribution of dt,x

Since the length of connections is of order K−
/2, we can
eplace r(t, xi

t) − r(t, x) with ∇r(t, x) · (xi
t − x) in the formula (9) for

he preferred dispersion direction dt,x. Therefore, conditionally on
 = n ≥ 1, the preferred dispersion direction dt,x of a RSI at x is dis-

ributed as

1
n

n∑
i=1

(∇r(t, x) · v�i
)v�i

(17)

here �1, �2, . . . are i.i.d. random variable uniformly distributed on
0, 2�).

Introducing �t,x such that ∇r(t, x) = ‖∇r(t, x)‖v�t,x
, and applying

he rotation of angle −�t,x to the vector (17) yields

1
n

n∑
i=1

cos(�′i)v�′
i

(18)

here the �′
i

are i.i.d. and uniformly distributed on [0, 2�).
Denoting by �(w) dw the distribution of cos(�)v� for � uni-

ormly distributed on [0, 2�), the distribution of the vector (18)
s �*n(nw) dw,  where �*n = � * · · · * � and * denotes the convolu-
ion operator. Therefore, a RSI at x at time t has the following
istribution for its preferred dispersal direction dt,x rotated of the

ngle −�t,x:

(N = 0)ı0(dw) +
∑
n≥1

P(N = n)�∗n(nw)dw
l Modelling 234 (2012) 93– 105

where P(N = n) is given by (16). Denoting by �(dw)  the previous
distribution, we  finally obtain

F(x, ∇r(t, x)) = 〈vt,x〉 =
∫
R2

�(dw)

∫ 2�

0

d�

∫ +∞
0

d��v�t,x+�f (�(‖w‖)

(w, v�))g(�).

Note that the right-hand side only depends on x through the distri-
bution of N, and on ∇r(t, x) through the angle �t,x.
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