Algorithms for Constructing Stable Manifolds of Stationary Solutions
GERALD MooREf & EVELYNE HUBERTE

Abstract. Algorithms for computing stable manifolds of hyperbolic stationary solutions of
autonomous systems are of two types: either the aim is to compute a single point on the man-
ifold or the entire (local) manifold. Traditionally only indirect methods have been considered,
i.e. first the continuous problem is discretised by a one-step scheme and then the Liapunov-
Perron or Hadamard graph transform are applied to the resulting discrete dynamical system.
We will consider different variants of these indirect methods but also algorithms of the above

two types which are applied directly to the continuous problem.

1. Introduction

We consider an autonomous system
(1.1) u=F(u) F:R" —R"

possessing a hyperbolic stationary solution, which without loss of generality we assume to be the origin; i.e.
F(0) = 0, F is differentiable at the origin with A = F’(0), and the m x m matrix A has no zero or purely
imaginary eigenvalues. Our basic condition on the growth of F'is that 3 4 > 0 such that

(1.2) G(x) = F(x) — Ax = O(|x[|"*"),

where [|.]|| denotes the Euclidean norm. [The precise conditions required for different results are stated in
section 6.] Hence v = 1 for a generic smooth F, but we may have v > 1 if certain higher-order terms are
missing or v < 1 if F lacks smoothness.

Our aim in this paper is to introduce new algorithms for approximating the local stable and unstable
manifolds of zero for (1.1). We shall also describe the behaviour of certain algorithms in terms of 4. For the
rest of this introduction, we briefly describe the elementary properties of these manifolds, for more details
see [12]. They are denoted by W} . & W respectively and defined, for a neighbourhood U of the origin, by

Wi.={xeld :St)xeld Vt>0: tli}m S(t)x = 0}

and

We.={xeld:St)xeld Vvt<0: t_l}iI_Il S(t)x = 0},
where S(t)x is the solution of (1.1) at time ¢ for initial value x. We make frequent use of the decomposition
R =@ EY

where the stable subspace £° is the invariant subspace of A corresponding to those eigenvalues with negative
real part, while the unstable subspace £* is the invariant subspace of A corresponding to those eigenvalues
with positive real part. These subspaces have dimensions p* & p* = m — p® respectively, and we use P?*
& P" to denote the projections induced by the above direct sum. W} & W}, are p* & p* dimensional

manifolds respectively and can be parametrised by £° & &% near the origin: hence we may write
Wi, ={€+2°(&) where & € & and 2° : £ — £V}

and
WE.={n+2z%(n) wheren €& and z¥ : Y — E°},
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where /" = {x € &/" . ||x|| < £}. The manifolds, and thus also the functions z* & =", are as smooth as
F. In addition, the invariant subspaces are tangent to the corresponding manifolds at the origin and so the
linearisations of both z* & z" are zero at the origin. Since the invariant subspaces and manifolds interchange
if we replace F with —F in (1.1), it is sufficient to consider only the computation of W}, ..

The contents of the paper are as follows. In section 2 we consider the traditional constructive
methods for obtaining W, ., upon which the theorems for its existence are based. Where possible we also
introduce new algorithms which make sense in the continuous framework of (1.1). TIn the past, however,
W;,. has usually been approximated indirectly, by first using a difference scheme to replace (1.1) by a
discrete dynamical system and then applying the traditional algorithms. In section 3, therefore, we compare
both classical and new indirect methods. An alternative to this approach is to consider the direct [6,32]
approximation of W} , i.e. without first introducing a discrete analogue of (1.1). We split algorithms of
this type between sections 4 and 5; the former consisting of methods which compute a single point on the
manifold, while the latter is devoted to constructing the whole manifold. Finally, the proofs of various
convergence results have been grouped together in section 6.

2. Classical Algorithms and Variants

In this section we consider the traditional methods for computing a single point on the manifold or construct-
ing the whole manifold. All these procedures are iterative in character, and we are particularly concerned
with how the convergence rates depend on the nonlinearity of F and the dynamic behaviour of (1.1). The
former is measured by the constant 4 in (1.2), while the latter depends on the constants «, 8 defined by

(2.1) o —Re(A) > a > 0 for all eigenvalues A of A with negative real part,
. . Re(A) > 7 > 0 for all eigenvalues A of A with positive real part.

[As with (1.2), we shall define o, 8 more precisely in section 6.]

The classical method for determining a particular point on the stable manifold is the variation-of-
constants approach of Liapunov & Perron [26]. The point z* (&) on the manifold is obtained by solving (1.1)
with boundary conditions

(2.2) Pfu(0) = ¢ and lim¢ 00 P*u(t) = 0,
which forces lim;— oo u(t) = 0 and so z°(€) is given by P*u(0). By using the equivalent equation
it~ An = G(u),
we may re-write (1.1/2.2) in the form
W Aw= PGwty)  w(0) =

£
y— Ay = P'G(w +Yy) lim y(¢) = 0,

t— 00

(2.3)

where w = P®u and y = P"u is a notation used throughout this paper. Hence an approximate Newton
iteration method for solving (1.1/2.2) is
w) _ Aw®) = psg(w(k—l) + y(k—l)) W(k)(o) —¢

v — ay®) = prG(wED 4 yBDy dim y® () =0,

t— 00

(2.4)

starting from u(®) = 0. For ¢ sufficiently small, a solution of (2.3) is the trajectory in W} . starting from
u(0) = & + z°(¢) and iteration (2.4) converges to it at an O(||€||Y) rate, as is proved in section 6.1. The
traditional way of presenting the initial value problems (2.3) and (2.4) is to apply the variation-of-constants
formula and thus obtain

w(t) = ele —1—/0 eA(t_s)PsG(w(s) +y(s))ds
y(t) == [ AT PGl +y(s) ds

2



or

u(t) = et'¢ + /t eA(t_s)PsG(u(s)) ds — /00 eA(t_s)P“G(u(s)) ds
0 t

and

t
wi(t) = edtg 4 / (At=2) ps G (wk=D(5) + y =1 (s)) ds
0

y B () = _/ A=) prG(w =1 (s) + y* =1 (s)) ds
t

or

t 00
u(k)(t) =eMe+ / eA(t_s)PsG(u(k_l)(s)) ds — / eA(t_s)P“G(u(k_l)(s)) ds.
0 t

In section 6.2 we also measure the error induced by replacing (2.2) with the more practical truncated
boundary conditions

(2.5) Pfu(0) = ¢ and PUu(T) =0,

for some T > 0. This follows from establishing that the solution of (1.1) and (2.2) satisfies
|PUa(T)]| = O]+ e~ 0leT),

Hence, if 1 is the solution of (1.1) and (2.5), we have

d

=) = F(w) — F()

with boundary conditions
Pla-al0)=0 and  Pifu—a](T) = O(¢] e 10T,

which leads to
[u—i1](0) = O(||¢||' 7 e~ A1 +OT),

To recapitulate then, the Liapunov-Perron method 1s just an approximate Newton method, which
may be written in a neat form because the linear differential operator

v — Av

decouples stable and unstable components. Hence a new iteration method is obtained if one realises that
(1.1) approxzimately decouples in the neighbourhood of the origin and consequently the nonlinear Gauss-Seidel
iteration

wF) — psF(w(k) + y(k—l)) W(k)(o) —¢

(2.6) v = prR(w®) 4 y(®) Jim y® (1) =0,
starting from y(®) = 0, is a good idea. (2.6) consists of solving an initial value problem for w and a final
value problem for y at each iteration. The system of equations is of 2-cyclic form, with the coupling terms
O(||€]]"), and so the rate of convergence is O(||€]|?7), as is proved in section 6.3.

The classical algorithm for calculating the whole manifold is the Hadamard graph transform method
[14], which computes a sequence of mappings (graphs) z(*) : £ £ with limp_ o 2F) = 2°. Tt relies on
the attractivity of W}, as t — —oo in (1.1). Usually this algorithm is described for one step of a discrete
dynamical system [28], but we wish to consider more general forms. Thus given z*), and we start from
z(9) = 0, we compute z(*+1) by, for each & € £, solving (1.1) with boundary conditions

[olel

(2.7) Pu(0)=¢  and PUa(T) = 2% (P*u(T)),
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and setting z(k“)(ﬁ) = P"u(0). Any T > 0 can be used but convergence is obviously more rapid for larger
T, with T = oo giving z(!) = z°. Note that z(¥) (&) computed with T is the same as 71 (&) computed
with &7, which is also identical with the approximation obtained from the Liapunov-Perron approach with
truncated boundary condition P*u(T) = 0 where T' = kT. This then indicates that the rate of convergence
of the Hadamard method is

(2.8) Il|z* — 2®)||| = O(e~ [H+1e+ART)

where

(el

VA = max
i = s

Note that each iteration still involves the solution of nonlinear boundary value problems, although now over
an interval of finite length T, and so an inner iteration is necessary.

This last remark connects the Hadamard method with an alternative strategy, due to Perron [27],
for computing a sequence of graphs whose limit is z°, and Perron’s algorithm only requires the solution of
initial value problems. Thus, to solve (1.1/2.7), it is natural to use the Gauss-Seidel approach of (2.6) and
compute

a) w® = psF(W(Z) + y(f—l)) W(Z)(O) —¢

2.9
. b) 3O = PEWO +y0)  yO(T) =20 (wO(T)),

with limg_ o y(z)(O) = z(k“)(ﬁ). Ay is required in (2.9a) for £ = 1, but this may be obtained implicitly
since the best way of starting our inner iteration is by solving

w) = PRw) 4 20(w)) wh(0) =¢.

Perron’s algorithm fits into this framework by applying only one step of (2.9) and replacing (2.9b) with its
linear approximation

g1 = Ay = PrGw V(D) + 28 (wD(0)) ¥ (T) = o) (w(T)).

Thus, omitting superscripts, there is the explicit formula

24D (g) = e=AT 58 (w (7)) — / A PUG(w(s) + 2 (w(s)))ds,

where

w = P°F(w 4 z") (w)) w(0) =¢,

and in section 6.4 it is proved that

12— 25+ ][] = O~ HHIFDT 1 2)] |7 — 25,

Hence there is no point in using the full Hadamard iteration if €7 is comparable with e~ (L+e+AT 1y fact,
previously, Perron’s approach has only been described for T' = oo, i.e.

2 () = - /0°° e P G(w(s) + 2 (w(s)))ds

and convergence rate O(e7), but we wish to contrast the performance of more general algorithms. A natural

alternative to Perron’s method, which we introduce and call the nonlinear Perron algorithm, is to apply one
full iteration of (2.9), i.e. z(*+1) (&) = y(0) where

b) y=P'Flw+y) y(T) =2 (w(T)).



Now, as expected, the convergence rate established in section 6.5 is

lla* = )] = e T 2 e — 500

3. Indirect Methods

The classical techniques described in the previous section, although constructive, remain infinite-dimensional
and the invariant manifolds have usually been approximated by first discretising (1.1) [4]. Before considering
this approximation, however, it is useful first to develop the corresponding terminology and briefly state the
analogous results for the general discrete dynamical system

(3.1) u, = f(u,_1) f:R1" =R,

where we assume that 0 is a hyperbolic fixed point of f, i.e. £(0) = 0, f is differentiable at the origin with
L = f(0) having no eigenvalues of unit modulus, and 3 4 > 0 such that

(3.2) g(x) = f(x) - Lx = O(|x]"*").
The properties of Wfoc & Wﬁ)c, the local stable and unstable manifolds of (3.1) defined by

Wi.={xel:f"(x)eld Yn>0: lim f"(x) = 0}

n—o0

and

W, = {x el :£"(x) €U ¥Yn<0: lim £'(x) =0},

n——o0

are analogous to those of W} & Wy, [12]. If L has p* eigenvalues with modulus strictly less than 1 and

AU

p* = m — p° eigenvalues with modulus strictly greater than 1, then

R =E &,

where the stable subspace &* and the unstable subspace & are the invariant subspaces corresponding to
these sets of eigenvalues of I, and the respective projections are denoted by Ps & P, Wloc & Wloe are p* &
p* dimensional manifolds respectively and can be parametrised by &% & & near the origin: hence we may
write

W, = {€+2°(€) where & € £ and 2° : £ — £}

and

WE, = {n+2%(n) where n € £ and z¢ : £¥ — £°Y,

where &/% = {x e &/v: [|x]|] < e}. Again the manifolds, and thus also the functions z* & z¥, are as smooth
as f. In addition, the invariant subspaces are tangent to the corresponding manifolds at the origin and so
the linearisations of both z° & z" are zero at the origin.

The classical techniques described in the previous section may also be applied to (3.1). The proofs are
straightforward adaptations of the arguments in section 6, however, and so we merely state the corresponding
results. Confirming numerical results will be given in subsection 3.1.

The Liapunov-Perron approach [21,32] looks for a solution of (3.1) with boundary conditions

(3.3) Piup = € and  lim,_. P'u, =0,

which forces limy, o0 u, = 0 and so z°(€) is given by Ptug. By using the equivalent equation
u, — Lu,_1 = g(u,_1),

where g = f — I, we may re-write (3.1/3) in the form

(3 4) W, — Lwy,_q :psg(wn—l‘i‘YH—l) Wwq :€
' Yn— Lyn_1 =P g(Wn_14yn_1) nli_{go Yn =0,



for ¢ € &

2, and set up the approximate Newton method

(3.5) witl = Lw, = Prg(wiS +yi5Y) wi =¢
' i) — Lyy = Prg(w 5V +y5Y) lim v =0

with starting value {uglo)}j’fzo ={0,...}. For ¢ sufficiently small, a solution of (3.4) is a trajectory {u,}5%,
in W}, starting from ug = £ + 2°(§) and iteration (3.5) converges to it at an O(||€||”) rate. The traditional
way of describing this algorithm is to invoke the discrete variation-of-constants formula and write (3.4) as

n—1
wy, = L"E+ Z LM pig(w; + ;)
7=0
yn == L' Pig(w; +y;)
Jj=n
and (3.5) as
n—1
wik) = re 4 Z L"_l_jpsg(w‘;k_l) + y;k_l))
7=0
n—1—j pu k— k—
yi == i prg(wTY 4y )
Jj=n
or

n—1 00
ugf) =L"E+ Z L"_l_jpsg(u‘g»k_l)) — Z L"_l_j]:’“g(u;k_l)).
Jj=n

7=0

[I—Iere, of course, we are only employing negative powers of L when this operator is regarded as restricted to
Eu.] If {1, }Y_, is the solution of (3.1) with truncated boundary conditions

(3.6) Pfug = ¢ and Ptuy =0,
then the error created is R

[[ao — ol = O([[¢]|" 7 [a' 7 517),
where

(3.7) o |u| < &< 1 for all eigenvalues p of L with modulus less than 1,
. o |u7'< B <1 for all eigenvalues p of I with modulus greater than 1.

We may obtain an algorithm with O([|€]|*Y) convergence rate by writing the unknowns/equations

of (3.1) in the order

Wl,Wz,...,Wn,... : "'ayna"'aylayO

and .
wy, = Pf(wp_1+yn_1) n=1,2,...

Yns1 = P(wn+yn) n=...,1,0

and then applying the nonlinear Gauss-Seidel method. The iteration is therefore
(3.8) (k)

with starting value {yﬁlo)}j’fzo ={o0,...}.



A more recent algorithm for computing a trajectory in the stable manifold, which does not have an
analogue for continuous dynamical systems, is described in [15]. This assumes that f is a local diffeomorphism
and is based explicitly on the conditions for {u,}52, to be a solution of (3.1), i.e.

u, =f(u,-1) and u, = f_l(un_H).
Hence a trajectory {u,}5%, in the stable manifold, with Psug=¢ € fj, must satisfy
(3.9) u, :Psf(un_l)—i—p“f_l(unH) n=1,2...
with ug = & + P“f‘l(ul). If the unknowns are ordered
ug,uy, ..., Uy, ...,
this leads to the nonlinear Gauss-Seidel scheme
. (k

(3.10) u® = Poe® ) 4 Pty n=12,

with u(()k) =&+ p“f_l(u(lk_l)), starting from {uglo)}j’fzo ={0,...}. In [15] it is shown that limg_ e u(()k) =
&+ 7° (&) with rate of convergence max{d,@} + O(||€]]"). We shall refer to (3.10) as the original HOV
method. Now we want to relate (3.10) to the nonlinear Gauss-Seidel method applied to (3.1) when the
unknowns/equations are taken in the order

Yo, Wi,¥Y1,W2,¥3,...,

which leads to the system

n=P"¥(Wp_ 1+ yn_
Y (Wa-1+y 1)} n=1,2,...

psf(wn—l + YTL—l)

Wn

and the iteration . & &
v = Pr(wi 4y
) n=1,2,...,
w®) = pre(w® 1y

n—1 n—1

which we shall call the ‘HOV’ method. On the other hand, when the original HOV method is written in
terms of w and y we obtain the system

n— :puf_lwn‘i‘ n
Yn-t ( ¥n) } n=1,2,...

W, = psf(wn—l + YTL—l)

with the iteration
y ) = pup=t(wlk=1) 4y (k=1)) O
. n=1,2,....
w®) = pre(w® 1 y®) )

n—1 n—1

These, of course, are not the same iterative method. If, however, the y equation is replaced by one step of
modified Newton iteration, as recommended in [15], then in both cases we obtain

(1 i =yl {y e - Pl 4y |

In section 6.6 it is proved that the ‘HOV’ method converges at an dé+0(||€||7) rate, and it is easily seen that
this result also applies to the original HOV method and the simplification based on (7). [As a final practical
comment, note that when these methods are truncated, i.e. only w,,y, n =0,..., N are computed, then
yg\lf) is always set to zero.]

The Hadamard graph transform method [28,32], on the other hand, computes a sequence of graphs

7k . 4‘:'; — &% with limy_ o z8) = 2*. Tt relies on the attractivity of Wfoc as n — —oo in (3.1). Thus
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given z%)and we start from z(®) = 0, 2051 is computed by, for each & € &

2, solving (3.1) with boundary
conditions

Piug = ¢ and P“uN = i(k)(PsuN)
and setting i(k“)(ﬁ) = PUug. Any N > 0 can be used but obviously convergence is more rapid for larger
N, with N = oo giving z(!) = 2*. Note that 7(F) (&) computed with N is the same as 71 (&) computed
with kN, which is also identical with the approximation obtained from the Liapunov-Perron approach with
truncated boundary condition PUuy = 0, where N = kN. This then indicates the rate of convergence of
the Hadamard method is 5

17 = 2¥||| = o(la*+ 3)Y),

where [[[. ||| is defined in (2.8). Note that each iteration still involves the solution of a nonlinear boundary
value recurrence relation, although now of finite length N, and so an inner iteration is necessary. We choose
this inner iteration to consist of r steps of (3.8), i.e.

(3.11)

so that limy_, s yéz) = 7(F+1)(€), but we use the natural starting value

NS

will = Prew) 420wV ) wl=e

n—1

The Perron algorithm again corresponds to taking » = 1 and linearising (3.11b) to obtain

N-1
aF(E) = L7V e (wyg) = Y L7 Prg(wy + 2 (wy)
7=0
with R
w, = Pf(wao1 + 2% (wes1))  wo =€,
or o
a5 (€ =yo ==Y L7 Pig(wy + 25 (w)))
7=0
if N = co. The rate of convergence is
llz* = 2"+ = O([a" 7 51N + &) |[|2* — 2 ™).

The nonlinear Perron method applies one full iteration of (3.11), i.e. 251 (¢) = yo where
a) W, :Psf(wn_l—l—i(k)(wn_l)) wg = §&
b) Ynt41 = Puf(wn + YTL) Yy = i(k)(WN)

This has the convergence rate

12 = 25+ 0[[] = O([a' A + &)1 = 28],

3.1 Results when computing a point on the Manifold

In this section we shall assume that a discrete dynamical system (3.1) has been obtained by discretising
(1.1). Tn this case the convergence of Wlso/cu to Wlso/cu has been dealt with by several authors, e.g. [4,32].
Here, however, we wish to consider the various algorithms introduced above and link them with appropriate
discretisations of (1.1). (We shall only be concerned with one-step formulae, multi-step formulae are also
analysed in [4].) As we have seen, it is natural to march forwards when solving for the stable components
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w and backwards when solving for the unstable components y. This is distorted by the notation of (3.1),
which gives the impression that only ezplicit methods are being discussed. In this sub-section, therefore, we
shall first illustrate the previous algorithms on the trapezoidal rule applied to (1.1), this being an exemplar
for the class of one-step symmetric methods [30] with no bias in either direction. Hence, using the truncated
boundary conditions (3.6), we need to solve the set of nonlinear equations

h h
(3.12) un—§F(un):un_1—|—§F(un_1) n=1...,N
with P*ug = & and P¥uy = 0. [Note that for the trapezoidal rule, L = (I —
£3/0 = €34 and Polv = polu ]

The classical Liapunov-Perron method is just an approximate Newton method for (3.12), i.e

%A)_l(f + %A) and so
h _
(I =5 A — (I + A ul =3 {G +Gio)}.

Since £%/% are invariant under A, and because of the boundary conditions, these can be solved forwards for
the stable components and backwards for the unstable components, i.e.

h h h
(8.132)  wif) = (I- )7 [(I + 3w+ 2P {GwE D 4y D) 4+ Gwl 4yl 1”)}]
forn=1,..., N with W0 = ¢ and

h h h -
(3.13b) ¥ = (14547 [(f =S = g PG 4y )+ Gl y£k+11>>}]

forn:N—l,...,OwithyE\lf):O.

For the sake of completeness, and also to illustrate how decoupling ideas even arise here, we mention
that the full Newton method for (3.12) is of course possible; i.e.

(1= 5F ) uld) - (14 P ) sult),

= uglk—_ll) - uglk_l) + g {F(uglk_l)) + F(uglk—_ll))}

with uﬁf) = uﬁf‘l) + 5u£1k) n=20,..., N, which leads to block bidiagonal systems of the form
-Cy B Xo by
(3.14) A =
. —Cy Bn X.N by

with P*xg = 0 and P*xy = 0. From our viewpoint, the most natural solution strategy for (3.14), which
links up with our decoupling ideas, is the stable compactification method of [2 § 7.2.4]. Since this reference
describes the technique in detail, and emphasises the importance of decoupling, we merely state it in our
notation.

e Let Qg be an m xm orthogonal matrix whose last p* columns span the unstable space £*.

o Set B
QZ'TN[Cz’Qi—l] =1IL;
QT Bi]Qi = R;

where Q; is the orthogonal matrix which performs the first p* stages of orthogonal factorisation from
the right on C;@Q;_1, i.e. the last p* columns of L; have zeroes above the principal diagonal, and @; is
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the orthogonal matrix which performs the first p* stages of orthogonal factorisation on QiBi, il.e. the
first p* rows of R; have zeroes to the right of the principal diagonal. This gives the factorisation

-C1 B =Ly Ry
. . i o
—-Cn By —Ly RN
where D and D are the block diagonal orthogonal matrices
Q1 (o

and D=

S
Il

Qn QN
e Set b; = Qibi i=1,...,N and denote QTx; by x; for i = 0,..., N, so that the first p* components of

Xo must be zero.
e Solve the system

—Li Ry X0 b,

—Ln RN XN by
forward for the first p® components of x1, ..., %y in turn. The last p* components of xn are then chosen
so that P*Qnxy = 0 and the above system solved backwards to obtain the last p* components of

XN_1,...,Xp In turn.
Since the quadratic convergence of Newton’s method 1s well-known, we do not consider if further. Note
however that this iteration is considerably more expensive than the Liapunov-Perron algorithm.
Now we look at Gauss-Seidel methods, which are motivated by the fact that F =~ A and so the
stable/unstable components approximately decouple in (3.12). Thus, if the unknowns are ordered

Wi,...,WN,YN-1,---5¥0

then the nonlinear Gauss-Seidel method [25] solves each of

(3.15a) wik) — gPsF(wﬁf) +yy = w4 gPSF(wff_)l +y) =1, N

for wﬁlk), with wék) = &, and solves each of

(3.15) P4 S PR 4 ) =y - PR 4y m= N1

for yﬁlk), with yg\lf) = 0. The convergence of this method is governed by the convergence of the standard

Gauss-Seidel method on the linearisation of (3.12) at the solution [25]. This matrix is two-cyclic and so
Gauss-Seidel converges at an O(||€[|?7) rate, i.e. twice as fast as Jacobi [13], and even the SOR theory (for
complex eigenvalues of the Jacobi iteration matrix in general [33]) applies, but it would be impractical to
make use of this. Tt is usually regarded as inefficient to solve the subproblems in (3.15) exactly and the
Gauss-Seidel Newton [25] method is used, i.e. one or more steps of Newton’s method is applied to each
equation. For us, however, it is more efficient to just apply the Gauss-Seidel approximate Newton method.
If r-steps of this are applied then wﬁlk) = v(") where

v = (71— 24)! {gPSG(v“—” +yE) + d;’”}
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with dﬁf) = wk) + %PSF(W(k) + y(k__l)) and v(0) = wﬁlk_l); and yﬁf) = v(") where

n—1 n—1 n—1

with dﬁf) = yﬁf_ﬁl - %P“F(wiﬁgl + yiﬁ_ﬁl) and v(9) = yﬁlk_l). With r» = 1 we may explicitly write

h
wﬁf>:(1-§A)—1[ W+ PS{G Dy + F(w i 11))}] n=1...,N
with W0 =€ and
h
yﬁlk) = (I+ §A)‘1 [yﬁ Pu {G _|_y( )) _|_F(W£ﬁ21 —I—yfﬁl)}] n=N-1,...,0

with yg\lf) = 0. Comparing this with the classical Liapunov-Perron method (3.13), we see that the above

method makes use of new iterates more quickly. To retain the O([|£]|*Y) rate of the full nonlinear Gauss-
Seidel method, however, we expect to have to take » = 2, since each approximate Newton step will give an
O(]|€||") improvement.

The other possibility is to order the unknowns

Yo, Wi, ¥1,-- -, WN-1,YN-1, WN,
and the equations
h h .
b b n=1,...,N
Wpn — §PSF(Wn + YTL) =wWy,_1+ §PSF(Wn—1 +YH—1)
which 1s the ‘HOV’ choice. The nonlinear Gauss-Seidel method 1s then
h h
yoli 5 PR 3l =y = PR )
(3.16) b b n=1,...,N.
Wﬁlk) - §PSF( wik) +Y£Lk 1)) gk—)1 + §PSF(W£Lk—)1 + ygf—)ﬁ

[Note that, as commented on earlier, this is slightly different from the original HOV method which would
take y,_1 to be P¥v, where

h

h
v+ =F(v)=w, +y, — 5

2

and w, to be P*v, where

vV - g (V) =Wnp-1+¥Yn-1+ gF(Wn—l + YH—1)~]
In practice we would again replace (3.16) by a Gauss-Seidel r-step approximate Newton method and, in
the case of »r = 1, end up with the same scheme from both (3.16) and the original HOV equations. The
important fact, however, is that, as stated earlier, the convergence rate of these methods depends on &, B for
L=(I- %A)_l(f + %A) Since these are 1 4 O(h), convergence will be slow and will deteriorate as h — 0.
Hence the conclusion is that this ordering of the unknowns is inappropriate, since the convergence rate is
based on only one step of the discrete problem rather than a complete sweep.
Now we illustrate the above algorithms on two simple well-known examples and compare their rates
of convergence.
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Example 1 The Lorenz equations
& =a(y — x)
y=br —y—xz
z=xy—cz

We use the parameter values (a,b,¢) = (10, 14, %) for which the stationary solution at the
origin is hyperbolic. The Jacobian matrix there has real eigenvalues

1
—e, -3 [(a +1) = Vatr 1) +da(b—1)|,
two of which are negative. The trapezoidal rule was applied with

E=05(d1 + ¢2)

(where ¢; are the normalised eigenvectors corresponding to the two negative eigenvalues)
and various values of §, h and N.

We first fixed d = 4 and h = 0.01, and investigated the effect of truncating the
infinite interval. Table 1 shows the absolute error [ERR] between 2°(€), using the value for
N = 1000 as an approximation to N = oo, and the computed value for smaller N.

N 10 20 30 40 50
ERR 2.85(—2) 2.09(—3) 1.46(—4) 9.87(—6) 6.50(=7)
RATE 35.59 30.86 29.44 28.81 28.49
N 60 70 80 90 100
ERR 4.20(-8) 2.67(-9) 1.68(—10) 1.05(—=11) 6.48(—13)
RATE 28.31 28.20 28.13 28.05 28.06
Table 1

The second line of the table shows RATE = (log ERR)/(N k) which, because of the absence
of a 22 term in the Lorenz equations, we expect to approach the sum of the moduli of the
eigenvalues, i.e. &~ 27.98.

Table 2 illustrates the O(h?) convergence rate. For § = 4 and various values of h,
we list the discretisation error ||z°(€) — z°(€)]] and the number of steps N required for the
truncation error to reach this value.

h .8(=2) A4(=2) 2(=2) A(=2) 5(=3) .25(-3)
ERR 2.82(—4) 7.04(=5) 1.76(=5) 4.40(—6) 1.10(—=6) 2.75(=7)
N 35 80 180 405 915 2030
Table 2

Table 3 compares three different methods by showing first the convergence rate,
calculated in the usual way limy_ oo [|je®)]| %, and secondly the number of iterations required
to reach machine accuracy 107'°. We vary J while keeping h and N fixed at .25 x 1073 and
2500 respectively.

5 16 8 4 2
L P 67 29 14 67(-1)
G-S[1] | 46 11 39(=1) .14(—1)
G-S[2] | 37 45(=1) .76(=2) .15(—2)

Table 3a
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5 16 8 4 2
P 84 28 18 13
1 | 42 16 11 8
21 | 34 12 8 6

Table 3b

G-S[
G-S[

The terminology is almost self-explanatory: L—P refers to iteration (3.13) and G-S[r] to
(3.15) with r inner approximate Newton steps. The number of outer iterations required did
not change when more inner iterations were applied.

To confirm that the convergence rate of the ‘HOV’ method deteriorates with h, we
show results for fixed § = 4 and let h and N vary according to the Table 2. The convergence
rate (C-RATE) is calculated as in Table 3a and the number of iterations (TTS) as in Table
3b.

h/N .008/35 .004/80 .002/180 .001/405
C-RATE .74 .86 .93 97
ITS 111 227 463 943
Table 4

These results were obtained with one approximate Newton inner iteration. No significant
change was observed if more inner iterations, or the original HOV method, were used.

Example 2 Chua’s electronic circuit

. 1
z=aly + 6(1‘ — x?’))
j=r—y+e

z=—by

We use the parameter values (a,b) = (4,5) for which the stationary solution at the origin
is again hyperbolic. The Jacobian matrix there has one positive eigenvalue and a pair of
complex conjugate eigenvalues with negative real part, i.e. 1.32 and —0.83 & 1.36¢. The
trapezoidal rule was applied with

£ =06(¢pr+ 1)

(where ¢ and ¢y are the real and imaginary parts of the complex eigenvector).
The following results correspond to Table 1 for the Lorenz equations, but with

6 =.4and h =0.01.

N 100 200 300 400 500 600
ERR 4.06(-3) 6.39(=7) 1.77(=6) 1.39(—8) 4.80(—10) 1.79(-11)
RATE 5.50 7.13 4.41 4.52 4.31 4.12

Table 5

Since there are no quadratic terms in Chua’s equations, we expect the second line of the
table to approach 3 x 0.83 + 1.32 &~ 3.81.

Table 6 illustrates the O(h?) convergence rate. For § = .4 and various values of h,
we list the discretisation error ||z°(€) — z°(€)]] and the number of steps N required for the
truncation error to reach this value.

h .16 8(=1) A(=1) 2(=1) A(=1) 5(=2)
ERR 5.39(—4) 1.32(=5) 3.29(=5) 8.22(—6) 2.05(—6) 5.13(=7)
N 30 60 120 235 470 940
Table 6
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The next two sets of results use the same key as Table 3. Here we take h = .5 x 1072

and N = 1000.
) .64 32 .16 .08
L-P 700 .93(=1) .18(=1) .37(-2)
G-S[1] A1 24(=1) .26(=2) .34(-3)
G-S[2] 330 21(=2) .20(—4) .12(—6)
Table Ta
) .64 32 .16 .08
L-P 9% 15 9 7
G-S[1] 51 10 6 5
G-S[2] 32 6 4 3
Table 7b

Again the number of iterations did not significantly alter if more inner iterations were
performed.
The following table shows the convergence rate and number of iterations for the

‘HOV’ method with fixed § = .4 and varying h and N, as in Table 6.

h/N .16/30 .08/60 .04/120 .02/235 .01/470
C-RATE .52 71 .84 .92 .96
ITS 53 99 191 372 726
Table 8

Again, these results were obtained with one approximate Newton inner iteration. No sig-

nificant change was observed if more inner iterations, or the original HOV method, were

used.

It is clear from the above considerations that we will always be marching forwards to compute
new stable components and backwards to compute new unstable components. Thus, if numerical stability
requirements permit, an obvious alternative to discretising with a symmetric implicit method, like the
trapezoidal rule, is to use the same explicit method for both types of components, but backwards in the
unstable case. Using the Euler method merely as an illustration, we have

W, = W,_1+ hPsF(Wn_l + yn_1)
Yn = ¥Yn+1 + hPuF(Wn+1 + YTL+1)~

There is now no practical objection to using the nonlinear Gauss-Seidel method itself, since it is totally
explicit and does not require any equation solving! For the stable/unstable ordering we solve

Wnp =Wp_1+hP'F(wyp 1 +¥n_1) n=1...,N-1
YHIYH+1+hPuF(Wn+1+YH+1) n=N-1,...,0,

with wg = & and ynx = 0, which may be regarded as a discretisation of the pair of equations in (2.6). [On
the other hand, we do not consider the ‘HOV’ method

Vo1 = Yn + hPUF(wWn + yn)
W, = W,_1+ hPsF(Wn_l + yn_1)

n=1,...,N

again, since it does not correspond to (2.6) and, as we have seen above, converges more slowly as h is
decreased.] Using this approach on the above examples, but with the improved Euler method

Vp = Vp_1+ g {F(Vn—l) + F(Vn—l + hF(Vn—l))}
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rather than the Euler method [note that for higher order methods we would need to carry a natural interpolant
for the auxiliary unknown], gives

) 16 8 4 2
C-RATE 37 45(=1) 12(=2) 11(=2)
ITS 34 11 7 6
Table 9

for the Lorenz equations, employing the same values of h and N as in Table 3 which therefore should be
compared, and

) .64 32 .16 .08
C-RATE 33 .20(-2) .20(—4) .12(—6)
ITS 32 6 4 3
Table 10

for Chua’s equation, which corresponds to Table 7.

3.2 Results when computing the whole Manifold

We have described the Hadamard and Perron methods for a general discrete dynamical system earlier in this
section. In order to obtain a practical algorithm, however, we must replace the computation of z° by that
of a finite-dimensional approximation 7*. Thus one possibility 1s to place a grid on 4‘:'55 and define Z* to be
the continuous piecewise-linear mapping satisfying (3.1) with boundary conditions

ug = €z =+ Zs(gl) and P“uN = Zs(psuN)

for all grid points &;: 1.e. we are imposing the collocation conditions that each grid point value of the
manifold remains on the manifold after N steps of the discrete dynamical system. Another possibility, which
is the one we use in the examples below, is to choose 7° to be a tensor-product of polynomials and collocate
at the Chebyshev points &;. The three algorithms for computing A iteratively are thus:-
e Hadamard
Z(k‘H)(&) = Pug where

u, = f(u,_1) n=1,...,N

with Pfug = & and P“uN = Z(k)(PsuN);
e Perron
ZF+1) (&) = yo where

w,, :Psf(wn_l—i—z(k)(wn_l)) n=1,...
Yo =L 'yuq1 — L7 Plg(w, + 20 (wy))  n=N-—1,...,0
with wo = & and y5 = Z(k)(wN);

. Nonlinea}" Perron
ZF+1) (&) = yo where

=

w,, :Psf(wn_l—i—z(k)(wn_l)) n=1,...,

Vg1 =P6(w,+y,) n=N-1,...,0

with wo = & and y5 = Z(k)(wN).

Tf, however, we are applying these algorithms to a discretisation of (1.1), then, in the light of the
results at the end of the previous subsection, it seems a good idea to use a pair of forward /backward explicit
discretisations for the Hadamard and nonlinear Perron methods. One would also prefer to use an explicit
discretisation for the stable component in Perron’s method, but the equation for the unstable component 1s
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linear and so an implicit choice here does not involve additional work. Hence, using the improved Euler and
trapezoidal methods as examples, the three algorithms become:-

Z(k‘H)(&) = yo where

e Hadamard

Wy = Wyt + gPs {F(wn_1+yn-1) +F(Wn +yn)} n=1,...,N
where w,, = wy_1 + hAP°F(Wp_1 + yn_1)
h _
Yn = Yo+l — §Pu {F(Wnt1 +¥Yns1) + F(wn +¥5)} n=N-1,...,0
where ¥, = yn41 — hAPYF(Wop1 + Ynig1)
e Perron
W, = W,_1+ gps {F(Wn—l + Z(k)(wn_l)) +F(w, + Z(k)(v?/n))} n=1,...,N
where W, = w,_1 + hP F(w,_1 + ZF) (w,_1))
yn + gAyn = Ynt1 — %Aynﬂ —d,  n=N-1,...0
where d,, = 2P {G(Wn+1 + 20 (Wp1)) + G(wn + Z(k)(wn))}
e Nonlinear Perron
W, = W,_1+ gps {F(Wn—l + Z(k)(wn_l)) +F(w, + Z(k)(v?/n))} n=1,...,N
where W,, = w1 + hP*F(w,_1 + Z*) (w,_1))
Y = Yorr — o P AR (Wit by FFO0 £ 30)) n= N =10

where y, = Ynt+1 — hPuF(Wn+1 + Yn+1)

with wo = & and y5 = Z(k)(wN).
Now we shall show how these algorithms perform on the Lorenz example and, with a slight abuse
of notation, we denote the domain of our graphs by
&l = 0191+ dagpy l0;] <e i=1,2.
Our first set of tables shows the discretisation error

mﬁx|28(€i) = 2% (&)l

caused by an improved Euler pair with steplength h and a tensor product of polynomials of degree d with
fixed e = 4.

h/N | 32(=2)/4 16(=2)/8 8(—-2)/16 .4(—2)/32 .2(—2)/64
d=2 31(—2) 7.1(=3) 18(=3) 6.0(-4)  3.0(—4)

Table 11a
h/N 6.4(—=3)/10 3.2(=3)/20 1.6(—3)/40 .8(—3)/80 .4(—3)/160
d=3 1.2(-3) 3.0(—4) 8.7(—5h) 3.5(—5h) 2.2(-5)
Table 11b

h/N | 3.2(=3)/20 1.6(—3)/40 .8(—3)/80 .4(—3)/160 .2(—3)/320
d=1 3.0(—4) 76(=5)  2.0(=5)  6.7(—6) 3.2(—6)

Table 11c¢

16



As expected, the errors decrease by a factor of 4 until the effect of the polynomial collocation is felt.
Our next set of results shows the dependence of the Hadamard method on N, with ¢ = 4, d = 6 and
h = 0.01 all fixed.

N 1 2 5 10 20 40
C-RATE 7.6(=1) 5.7(=1) 2.5(=1) 6.1(=2) 3.7(—=3) 1.4(=5)
RATE* 28.0 28.0 28.0 27.9 27.9 27.9
ITS 119 61 26 14 8 4
Table 12

The first row is the convergence rate based on

lim
k—o00

{lepsey,

e = max|Z*(&) - 27 (&)];

where

the second row 1s @%, which may be compared with the sum of the moduli of eigenvalues in Table 1;
while the third row is the number of iterations required to achieve machine accuracy.
We now move on to Perron’s method and its dependence on N.

N 1 2 5 10 20 40
C-RATE 7.6(=1) b5.7(=1) 2.5(=1) 7.7(=2) 3.6(—2) 3.6(-2)
ITS 119 61 26 15 11 11
Table 13
N 1 2 5 10 20 40
C-RATE 7.6(=1) 5.7(=1) 2.5(=1) 6.2(=2) 5.2(-=3) 2.7(-3)
ITS 119 61 25 13 7 6
Table 14

Tables 13/14 give convergence results for the standard Perron method and the nonlinear version respectively,
again with ¢ =4, d = 6 and h = 0.01 all fixed. Note that, for small N, the performance is close to that in
Table 12, while for larger N the convergence rate appears to be settling down. We examine this more closely
in Table 15 by fixing N = 50 and varying ¢.

€ 16 8 4 2
C-RATE1 2.3(=1) 7.6(-=2) 3.6(=2) 1.5(-2)
C-RATE?2 1.4(=1) 1.5(=2) 2.8(=3) 4.4(-4)

Table 15

The convergence rate of the nonlinear Perron method in the second row is clearly superior to the convergence
rate of the standard method in the first row.

4. Direct Approximation of a point on the Manifold

To determine a particular point &€ 4+ z*(£) in the stable manifold, we return to the basic equation

(4.1) u=F(u)
with boundary conditions
(4.2) Pfu(0) =¢ and limy e P*u(t) = 0.
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Instead of following the indirect approach and creating a discrete dynamical system, we simply wish to solve
the infinite interval boundary value problem (4.1-2) in order to determine z*(&€) = P"u(0). This problem is
closely related to that of computing homo-/hetero-clinic orbits, which has recently been considered in several
papers [5,10,20,22,23].
The most obvious approach is to truncate (4.1) to a finite interval (0,7) and use the boundary
condition
P*u(T) = 0.

Then, by mapping to the standard interval (0, 1) through = = %, we may use a standard BVP package, such
as COLSYS [3], to solve

(4.3) u="TF(u)
with boundary conditions
(4.4) Pfu(0)=¢ and P¥u(l) =0.

Here T is a known parameter, which must be chosen in the light of the truncation error introduced, cf. (2.5).
These equations may be compared with those in [5] for connecting orbits. Alternatively, as suggested in [23],
we may let 7' be an unknown parameter, which is defined by insisting that the required solution of (4.1)
passes through the e-ball in £° when ¢ = T'; i.e. our boundary conditions are

Pfu(0) =¢, P'u(T) =0 and [|[P*u(T)|| =ce.
Thus, again mapping to the standard interval (0, 1) through = = %, we arrive at
(4.5) u="TF(u)
with boundary conditions
(4.6) Pfu(0) =&, P'u(1) =0 and ||P'u(l)]|=-e.

The system (4.5-6) may be solved by a standard BVP package, such as COLPAR [3], which allows unknown
parameters. Here ¢ is a (small) parameter whose value must be chosen [23].

In [22] it was suggested that arclength parametrisation, rather than time, would often be a good
choice for periodic and connecting orbits. Supporting numerical results have also been given in [20]. The
required solution of (4.1-2) may also be parametrised by arclength in phase-space and, after mapping to the
standard interval (0, 1), the resulting equations are

. F(u)
(4.7 = MR )]

with boundary conditions

(4.8) Pfu(0) =¢ and wu(l) =0,

where L is the unknown length of the solution curve in ™. This is a singular [16,17,18] boundary value
problem and, in [22], it was suggested that the natural collocation approach is either to use Gauss-Lobatto
points on all subintervals or to use Gauss-Legendre points on all subintervals apart from the last, where

Gauss-Radau is appropriate. This allows one to replace the collocation of (4.7) at ¢ = 1, which does not
make sense, with the limiting equations

Pua(1) =0 and [[a(1)]| = L.
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Thus, as with connecting orbits, one ends up with an equal number of equations and unknowns. The
smoothness of u(c) as ¢ — 1 is governed by the eigenvalues of A with negative real part (besides the
smoothness of F of course). If these are /\‘17R + Z'A§ with

AF > >
then o
u(O')201(1—0')—1—02(1—0'))‘1/)‘2 + -

Thus the smoothness decreases as A approaches Af and, in the limit, when A + i\ is defective or forms
part of a complex conjugate pair, even u(1) can fail to exist. Numerical results for connecting orbits in this
case (cf. Silnikov bifurcation [29]) shows that arclength has difficulties [20]. A (partial) solution is to mimic
the idea of (4.5-6) and solve

.+ F(u)
(4.9) u=L—*+—
IF ()|
with boundary conditions
(4.10) Pfu(0) =&, P'u(1) =0 and |u(l)||=e.

Here ¢ is a known constant and L is an unknown parameter which approximates the length of the solution
curve in 1. These equations may be solved by any BVP package that allows unknown parameters. Of
course, there is also an extra error created by this approximate boundary condition at ¢ = 1.

Since we may assume that the eigenvalues of A are known, there is also an alternative explicit
exponential change-of-variable available, apart from the implicit arclength parametrisation. Thus if we

choose

0> —p>Af
and set

S5 = exp —put,
then (4.1-2) becomes

: F
(4.11) a= W
15

with boundary conditions
(4.12) u(0)=0 and Pfu(l)=¢.

This is again a singular boundary value problem, this time at § = 0, and one should use Gauss-Radau
collocation on the first subinterval (with the condition

PUa(0) = 0

replacing the collocation at § = 0) and Gauss-Legendre collocation on all other subintervals. The smoothness
and decay of u as § — 0 is governed by the ratio of —u and A i.e. if we choose p so that —pu > A, then
the first p derivatives of u are zero at § = 0.

The following table of errors was produced for the 3-point Gauss-Lobatto scheme (O(h*)) applied
to Chua’s equation. The value being approximated is P*u(1), with P*u(1) = 0.5(¢r + ¢1).

N=ht pn=2028 p=0.82
4 25(=2)  .63(—4)
8 24(=3)  .19(—4)
16 A8(—=4)  .10(=b)
32 A2(=5)  .60(=T7)
64 J5(=T)  .45(=8)
128 A4(=8)  .22(-9)
Table 16
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Setting p = 0.28 forces the solution to have three zero derivatives at § = 0 and this is sufficient for O(h?)
convergence, as verified by the results. We do not, however, claim that this value is optimal since the second
column of results, while still O(h*), is obviously superior. Note that, for g = 0.82, u is only just differentiable
at § = 0. An analysis of superconvergence for collocation methods applied to singular problems, however,
has yet to be given, as is remarked upon in [3,p.485].

5. Direct Approximation of the whole Manifold

As we have seen, current algorithms for approximating W} . are all based on first discretising the differential
equation (1.1). Tn contrast, we prefer to view the problem geometrically and only discretise an equation for
the invariant manifold itself. Such an equation is obtained by noticing that, if M is a r-dimensional C'
sub-manifold of "™, then M is invariant for (1.1) iff

(5.1) F(x) e T,M Vx € M,
where T, M is the r-dimensional tangent space of M at x. This defining condition has been used to compute
other types of invariant manifold in [23,24], and it provides m—r equations at each point of M. The missing

r equations may be regarded as a choice of parametrisation, which must be chosen. Thus, for W} , it is
natural to parametrise by £° so that

Tﬁwlsoc = {€+Bs(€)é : ée gs}’

where B?*(&) is the linearisation of z* at . Since x € T W} iff P¥x = B*(§)P°x, our equation for z*
becomes

(5:2) PUF(§+2°(£)) — B () PF(E +2°(€)) = 0.

To make further progress we must introduce bases ] ¢ =1,...,p° and e} ¢=1,...,p" for &°
and &Y respectively. Then (5.1) can be written

(5.3) ZI@PT S wied + Y0 2 (w)el) = PYF(Y0 wief + YL 2 (w)el)

for k=1,...,p%, where

u

P
2 (0 wied) = Y 2 (w)e}

i=1

and P; & Py are defined by

x=) r_jaef+y i fief = Pix=oa;and Px= .

Equations (5.3) form a quasi-linear hyperbolic system with the same principal part [8] and these are the
equations that we discretise and solve in order to obtain approximations for W} .. Note that the characteristic
differential equations just lead back to (1.1), i.e

Wy = PSF(Z _wiel + 5 8 1yl(w)e?) j=1,....p°

U = P F(ZZ Jwiel + 50 1yl(w)e?) k=1,...,p%
Hence a characteristic method applied to (5.3) is equivalent to discretising (1.1) explicitly, which is not our
aim. Tt is possible, however, to use an alternative computational scheme on the p.d.e. (5.3). The unusual

feature here, of course, 1s that the characteristics all emanate from the origin, naturally because the manifold
is developing from this point.
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It must be admitted that converting to a p.d.e. formulation means that it 1s only practical to consider
low dimensional manifolds; however these are an important class. In the simplest case of one-dimensional
manifolds, i.e. for (5.3) with p* =1, we can write

PrF(we'+y " 2] (w)ey)

s =1 0
i gy = { PiF@ery S rwen 7
dw 0 w =0
with initial condition zJ(0) = 0 for k = 1,...,m — 1. [This is the reverse of the standard procedure of

replacing m non-autonomous equations with a system of m + 1 autonomous equations, i.e. by introducing
a parametrisation we replace m autonomous equations with a non-autonomous system of m — 1.] A natural
alternative parametrisation in the one-dimensional case is arc-length, and by going back to the fundamental
equation (5.1) we see that in this case our equation to solve is

—F(u)
ALV
ds e’ s=10
with initial condition u(0) = 0. In this paper, however, we shall restrict ourselves to two-dimensional
manifolds, and develop our algorithm for parametrisation by the invariant subspace in subsection 5.1. In

this case too there is a natural alternative parametrisation, i.e. geodesic polar co-ordinates, and we conclude
by considering this in subsection 5.2.

5.1 Stable subspace parametrisation

We consider here parametrisation by the stable subspace, and simplify (5.3) for the case p* = 2. Hence we
seek a solution y : R? — B2 of the equation

(5.4) [Vye]" F¥(w,y) = F(w,y) k=1,...,m—2
where F* : 202 x ®7~2 » R? is defined by
Fi(w,y) = PR (o wkef + psy vkl
and F¥ : 2 x M2 5 R7~2 by
F'(w,y) = PIF(So wiel + 30 ywel).
Since the characteristics of (5.4) emanate from the origin, it is natural to impose polar co-ordinates on &£*

and use r as the ‘time-like’ independent variable. Thus, applying the co-ordinate change wy; = rcosé and
wy = rsinf to (5.4), we arrive at

1
{cos OF} (r,0,y) + sin 03 (r, m)}%ﬂ + {cosOF; (r,0,y) — sin 0F (r, m)}—% = F'(r.0,y)
r r
for k =1,...,m — 2. In order to be able to march forward in r, the characteristics must be transversal to

the circles of constant radius, i.e. cos@F](r,0,y) +sinfF;(r,0,y) # 0. By looking at the dominant term,
this will be true near the origin iff A* is definite, where A* is the 2 x 2 matrix defined by Aj; = P/ Ae}, and
this condition depends on the basis {ef,ei} chosen for £%. Hence, we choose this basis, depending on the
two stable eigenvalues, in the following way.
e In the real non-defective case we use the eigenvector basis, so that A* = (%1 )\02) where the stable
eigenvalues are Aq 5.
e In the complex-conjugate case we use the real & imaginary parts of the eigenvectors as a basis,
so that A° = (i‘\f _A)}‘;) where the stable eigenvalues are Ag £ iAf.

e In the real defective case we use a generalised eigenvector basis, chosen so that A* = (g‘ ;) with
[k] < 2|Al
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ejte; e;—e;
(1+e3.e3)’ \/2(1—ej.e3

bisectors, and then using ellipsoidal co-ordinates wi; = /2(1 + ej.eircosl, ws = /2(1 —ej.eirsind.]

Then we can march in r using

[This is equivalent to using the orthogonal basis {\/2 )}, i.e. the interior and exterior

% _ Fi(r,0,y) — {cos 0F5(r,0,y) —sin 0 F} (r, H,y)}%a%
or cosOFF (r,0,y) + sin0F5(r,0,y)

fork=1,...,m—2.
We note that, in the case m = 3, the above formula can be simplified by utilising vector products:
ie.

{cos Hﬁl(r, 0,y) + sin Hﬁz(r, 0, y)}g—i + {cos Hﬁz(r, 0,y) — sin Hﬁl(r, 0, y)}%g—z = Fg(r, 0,y)

where Fi(r,0,y) = 6] F(rcosf e} + rsinf e + ye') and &, = e xe¥, &y = % x e}, &3 = €] xej.

It is now time to discretise our equations. Of course there are many ways of doing this but, because
our solutions will usually be smooth and also because of the periodicity of 8, we have chosen a spectral
collocation method [7] in a method-of-lines approach. Thus we seek

9
Vie(r) = yi(r, 6:) @:2—7; i=0,...2N—1
as the solution of a set of O.D.E.’s and use the spectral relationship [7)
df .
@(HZ)N[Tf]Z i=0,...,2N —1,

where £ = {f(00),..., f(fan—1)}T and T is the 2N x 2N matrix

7 y 9,—9j . .
T = $(—1)*7 cot =5 i# ]
J 0 i=j

for i,7=0,...,2N — 1. This leads to the O.D.E. system

dYip

{cos OF (r, 6;, Zm_leZ»jef;)—i— sin0F; (r, 6;, Zm_leije;)} o

J= J=

2N—-1
m— U . s m— U 1
+{cos 0 F; (r, gi’z‘jzlzyijej) —sin0F} (r, 0, Zj:lzyijej )}; Z T Yik
7=0

u m—2 u
= F(r, 0, Zj:l Yijej)

fork=1,...,m—2and ¢ =0,...,2N — 1 with initial condition Y;; = 0. This final system can be solved
by any standard package, noting that dzl/—;k(O) = 0, and we display below the graph produced for the Lorenz
equations by the Mathematica routine NDSolve, with N = 8 and integrating forward to » = 1.




5.2 Geodesic polar co-ordinates

As an alternative parametrisation of a two-dimensional stable manifold, we consider geodesic polar co-
ordinates [31]. In this case points in the stable subspace are denoted by

(5.5) rcosf e + rsinf es,

where {eq,es} is an orthonormal basis for £°. Then W} is sought as the range of a function v(r, #), where
v i R x ST — N™, which satisfies

i) F(v(r,6)) € {a—v(r, 9) a—V(r, 9)}

or 190
ov T ov
5.6 . ov AN
(5.6) ii) (ar(r,ﬁ)) =g (1 0) =0
av

i) (o) =1

with g—;’(O, 0) = cos 0 ey + sinf ey. (Thus (5.5) is the first-order term in r for v.) The first part of (5.6) is
just the fundamental invariance condition (5.1), while the latter two force an orthogonal co-ordinate system
for which the gridlines in the r-direction measure arclength. From such conditions it may be deduced that
these gridlines are geodesics on the manifold [31].

An equation for g—;’ may easily be obtained from (5.6), i.e.

&TF(v) Ov
67 ov_ Gy or )
. or I STR(V) v

>

LGy ()]

g

Unless A* is normal, however, we cannot use (5.7) to march forward in r because the denominator will pass
through zero, as with parametrisation by £°. This difficulty can be circumvented, of course, by proceeding
as in the previous subsection and choosing new co-ordinates. Such a solution, however, which is equivalent
to using a different inner-product in (5.6), destroys the canonical nature of our parametrisation and so we
prefer the following method.

If {ej,e5} is a (in general non-orthogonal) basis of unit vectors for £°, which is chosen as in the
previous subsection to ensure that A® is definite, then the interior and exterior bisectors

k3 k3

o) = e] + e
k3 k3
2(1 +ef.e5)

s s

el —e

ey = 2 1

2(1 —ef.e3)

form a particular orthonormal basis for £°. If points in the stable space are represented by polar co-ordinates
(p,¢) and (r, ) with respect to these two bases, i.e.

pcosé ef + psin ¢ el and rcosf e; + rsinf e,
this defines a diffeomorphism between (p, ¢) and (r, 8) given by

r=py/1+ej. e}sin2¢

(5.8a) o) — /1 —ej.e (sing — cos @)
me= 1+ ef. el (sing + cosg)

cos? @ sin?
p:r{l—l—ef.eg + 1—e§.e§}
fan d = mcosﬁ—i—\/WSinﬁ.
mcosﬁ—\/msinﬁ
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Now, if we seek the stable manifold in the form v(p, ¢), equations (5.6) transform to

) F((p.9)) € {g—:m 0. 550 ¢>)}
(5.9) i) (3—% ¢>>)T 0V (5, 6) = pei. e} cos 26
op ™"’ 8¢’
v T ov . .
iii) (%(Pa ¢)) —p(p, ) =1+ ej.ejsin2¢.

Thus, since
V(p,¢) ~ pcosd e + psing e

to first order in p, we must have % and F(v) linearly independent in a neighbourhood of p = 0 and so (5.9)

defines g—‘;. Consequently, we can use (5.9) to march forward in p, with

g—:(o,(b) =cos ¢ e} +sin ¢ es,.

Then, having computed W} . in the form v(p, ¢), we can use (5.8) to transform back to v(r,8). Equation
(5.9) needs to be discretised, of course, and, as in the previous subsection, we have used a spectral collocation
method in ¢. The graph below was again produced for the Lorenz equations by the Mathematica routine
NDSolve, with the same parameters as above.

Fig. 2.

6. Appendix - proofs of convergence results

In subsections 6.1-3 we shall use the following assumptions.
e Norm on R™
[1x[l+ = max{[| P*x]], || P*x]|}

e Nonlinearity
3~ > 0 such that

1G(x) = G(y)[lx < K(r) max{[|x[[{, [ly[}Hx =yl
Y||%| s ||¥|l« < 7 where K(7) is a non-decreasing function of r.
e Dynamics
Ja>0,8>0,C>1such that
leAt Pe|| < Ce=t  |le=AtPY|| < CeP! YVt >0
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6.1 Liapunov-Perron Method
We restrict attention to £ € £ with ¢ satisfying

YK (2C6)[2017 < va,
and consider the mapping u +— v defined by
t 00
(6.1) v(t) = eAte +/ A=) PrGu(s)) ds — / A2 pUG(u(s)) ds.
0 ¢

a) The set [|u(t) — eA%¢|l, < C|€|le=" is mapped to itself by (6.1) since ||P*u(t)|| < 2C||€|le~** and
IPu()ll < Cllefle==" imply

t
||/ A= PrGu(s)) ds|| < CK(2Ce)[201€]I] 1+v/ —(14)as g
0

< CK(20e)[2C €l — < Cl1glle="
yor

and
||/ Alt=s) puG(u(s)) ds|| < CK(2Ce)[2C|€]]] 1"’”/ —(vas g
1+'y et t
< CK(2 2 < et
CK(2Ce)[2C|€]] T Cllglle
b) The norm ||[u]|| = max;>o{||u(t)||,} sets up (6.1) as a contraction on the set in a) since
¢
||/0 eI PG (ui(s)) — G(us(s))} ds]]
¢
< 01((205)[20||g||]v/ e =) e™1%0 ly (5) — uy(s) ||« ds
0
. 1 1
< CRCORCIEINT = Iy — wall] < llluy — ]
Yo 2
and

||/ AU PGy (s)) — G(us(s))} ds||
t
< CK(2Ce) 20| € /Oo P e =75 ||luy (5) — ug(s)||x ds
t
1 1
< CK(2C6)[2CII€II]”,V—QIIIu1 — o] < Sfffuy — [

Hence the actual fixed point of (6.1) will satisfy

o [[PTu(t) — el = O™ ||¢]]' )
o (IPMu(t)]] = OV g )
o IP“a(T)|| = O+ g *).

6.2 Truncated Solution
We again restrict attention to & € £7 with ¢ satisfying

YK (2C6)[2017 < va,
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and now consider the mapping u — v defined by

(6.2) v(t) :ef”g+/0t eA(t_s)PsG(u(s))ds—/t A=) PG u(s)) ds.

The same contraction argument as in subsection 6.1, but now over [0, 7], shows the existence of a fixed point
1u(t) of (6.2) with analogous properties. Then the difference satisfies

() = a(0) = A0 1 [ A PG ()~ Glags)) ds
- /tT eAC=5) puGu(s)) — G(i(s))} ds,
where 1 = P*{u(T) —a(T)} = P*u(T) = O(e=*+DT||¢||'+7). Since we have
|| /Ot AP {G(u(s)) — G(i(s))} ds]]
< CREEARCIE [ e ugs) — (o). ds

t
< CK(20%)[2C €] / 6‘““‘”6‘”“6‘”’<T‘5>{W‘s)||u<s> —1(s)|l+} ds
0

< CR(202)20)E]" ——— masx {*TVlju(s) ~a(s)]. }
< % Y max { A= u(s) — (s} }

and
T
| [ A PG als)) - Gla(s)) ds]
' T
< CRQOARCIEN" [ 0 a(s) = a(s). ds

T
< CK(2Ce)[2C €]l / ePUm )7t =TI P T [u(s) —ia(s)||.} ds

] e~ B(T—1) Y )

< cmce)[zcnenw—w max {77 n(s) —u(s)l))
1
Ze~ B(T

< 5e 77T max {7 m(s) — (sl |

1t follows that

s T ) — (01} < s {21l 4 g mas {0t w0}

and so .
[[a(0) —a(0)]l < 2C||mlle™"”
— 0(6—(ﬁ+o<(1+v))T||€||1+v).

6.3 Gauss-Seidel
We again restrict attention to & € £7 with ¢ satisfying

YK (2C6)[2017 < va,
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and now consider the mappings w +— v and y + v defined by

(6.3) v(t) = eté+ /0 eA(t_s)PsG(w(s) +y(s))ds
(6.4) v(t)=— /too A=) PrG(w(s) + y(s)) ds.

a) We consider (6.3) under the assumption ||y (¢)|| < C||€]le~".
i) The set ||w(t) — eA%¢|| < C||€]le=>! is mapped to itself by (6.3) since

t
||/ A= PrGw(s) + y(s)) ds|| < CK(2Ce)[201€]]] 1+W/ —(as g
0
< CK(202)[20¢l]'+ — < Cligle==".
o

ii) With the norm [||w||| = max;>o{||w(t)||}, (6.3) is a contraction on the set in i) because

I [ e PG o)y (s) = Glawa(s) +y(5)) s
scKQGQDQMM(Ae-““%fwmwa@—wx@nw

. 1 1
< CA(2(36)[2(3|I€|IP,y—a|||Wl = wolll < Slllwi = wolll.

b) We consider (6.4) under the assumption ||w( ) — eAtgl] < C€lle .
i) The set ||y ()|] < C||€]le= V)t is mapped to itself by (6.4) since

I[P wts) 4 3(6)) dsl < CR R RO [ e g
t
at

<CK (206)[2C||€|I]1+”W

< C|jglle=Hme
ii) With the norm |||y||| = max;>o{||y(¢)||}, (6.4) is a contraction on the set in i) because
||/ e PUG(W(s)+y1(5) — G(w(s) +ya(s))} ds]
t
< CK(QCE)[2(3||€||]W/ ey (5) = ya(s)|| ds
t
. 1 1
< CA(QCE)[QC||€||]W,V—OZ|||Y1 = yalll < Slllyr = yelll-
¢) The improvement in w, compared to y, gained by applying (6.3) is described by
t
w(t) — P*u(t) = / A=) P UG(w(s) + y(s)) — G(u(s))} ds.
0
Hence
t
lw(t) — Pru(t)]| < CK(206)[20||€||]7/ =™ lw(s) + y(s) —u(s)|x ds
0
4 1 S u
< CA(?C@)[QCH&H]%—Q max {|||w — P*ul[|, |[ly — P*ul||}

27



shows that 1
l[lw — P*ul|| < CK(206)[2(3||€||]”,y—a|||y— Phall].

Thus applying (6.3) gives an O(||€||Y) improvement.
d) The improvement in y, compared to w, gained by applying (6.4) is described by

y(t) = P*u(t) = — /too eI PU{G(w(s) +¥(s) — Glu(s))} ds.
Hence
ly(t) — P*u(t)|| < CK(2Ce)[2C€]]]" /too U1 lw(s) + y (s) —u(s)|| ds
< CK(2C6)[QCII€II]V%maX{IIIW — Pul], [[ly — P*ul||}

shows that )
l[ly — Pul|| < Cf\/’(20<5)[20||€||]”,y—a|||W — Ptul|].

Thus applying (6.4) gives an O(||€||") improvement. [In addition, we also see that

—yat

max {[|w(s) — P*u(s)||},

mas{{ly(s) = P'u(s)} < K (208)2CYEl) —— ma

which corresponds with the O(e_(l‘l'wo‘t) decay for y and O(e™*") decay for w.]
Therefore we can conclude that each step of the Gauss-Seidel method results in an O(||€[|?7) improvement.

6.4 Linear Perron Method

In analysing the Perron methods, we need to be more careful in our choice of norm on R™. Thus we employ
norms [|. ||s for £° and [|. ||, for £ such that

ATl < 1, [l 4Tl < 1,

and then make the usual assumptions
e Norms
(1]l = max{[| P*x]|, || P“x]|. }

e Nonlinearity
3~ > 0 such that

1G(x) = G(y)llx < K(r) max{|x[|7, |y [l H]x — I«

Y||%| s ||¥|l« < 7 where K(7) is a non-decreasing function of r.
e Dynamics

Ja>0,8>0,C>1such that
||6At||s < Cem ||e_At||u < Ce Pt vt > 0.
We must also restrict £ so that, with

_ CE(202)[20]'+
= -

M.

bl

we have -
7 7 7 y
0° = [le= 47|\, {||6AT||5 + zgvMae—aT} +TM20] < 1.
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In particular, this means that

. . =y 1+
el {1+ 70T} <1

and, defining
M.

C. =

- - - Ny 14+
1= [l ATy {1eAT (), + & Mee=eT }

that
o M. <1

o VCL207 < 1,
which we shall use repeatedly. Finally, we shall also require the set of functions defined by
(6.5) z:E— & z(0) =0
12(&1) — 2(&2)llu < Cemax{[|&a][{, [[€11]5 ] — &alls,

where &7 is now defined in terms of ||. ||, and the norm

]+

a) We first consider the w equation and define the mapping w — v by
t
(6.7) v(t) =etté + / A=) PG (w(s) + z(w(s))) ds.
0
i) The set ||w(t) — eAt¢||s < C||€||se~** is mapped to itself by (6.7) since

t t
||/ A=) PsG(w(s) + z(w(s))) ds]|s gczg(zc@pcngns]m/ e—alt=s) = (1+m)as g
0 0

—at
< CK(206)[20)1€]].] '+ —
Yo

< Cllgll e

ii) With the norm |[|w|[| = max;,.#{[|[w(?)[|s }, (6.7) is a contraction on the set in i) since

I / AU PG (w1 (5)42(w1(s)) — G(wa(s) + z(ws(s)))} ds||s
< OK(202)[20]|¢]L.]" / =67 lwy (5) — wa(s)|]s ds
< CK(?CE)[2CII€|IS]”%Illwl -

< Slllwi —wall].

N | —

Hence (6.7) has a fixed point w, which also satisfies

. ; ) o—o
lw(T) — eAT¢]]s < CR(2CE)[2CII€||5]1+”7—Q
< M T| ¢
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b) The y equation is linear and so we may just write down the solution

y(t) = e~ AT =05 (w(T)) _/t A=) PUG(w(s) + z(w(s))) ds.

c) Now we define the mapping z — Kz by

[Kz](€&) = e_ATz(W(T)) — /0 e_AsP“G(W(s) +z(w(s))) ds,

where w is the fixed point of (6.7), and prove that K maps to itself the set of functions z defined by
(6.5). Consequently, we must consider [Kz](&1) — [Kz](£2) and deal with

wi(1) = walt) = (6 = €0) & [ NP (Gl (3] +(wa (5)) = Gilowa(s) +a(wa(s))}
and
y1(0) = y2(0) = e~ 47 dafw: (T)) — a(ws (7)) }

—/0 e M PU{G(wi(s) +2(w1(5))) — G(wa(s) + a(wa(s)))} ds.

i) In order to bound ||wy(s) — wa(s)||s, we write

II/0 eMNTIPHG (Wi (s)+2(wi(s))) — G(wa(s) +2(wa(s)))} dsls

t
< CK(?CE)[QCE]V/ e =™ lwy (5) — wo(s)||s ds
0

—at
, 'ye as _
< ORQODROEP = max (e [|wi(s) = w(s)])
1 —at s
< g€ mmax {e™{lwa(s) — wa(s)[l:}

and hence obtain

max {e||wy(s) — wa(s)[|s} < 2 max {e”*||e?* (& — &)l }
0<s<T 0<s<T
< 2C|1&1 — &l
and thus
lwi(t) — wa(t)]]s < 2Ce™ &1 — &olls-
This also gives
w1 (T) = wa(T) =T (&1 — &),

—aT
< OK(2Ce)[20e] <

20161 = &2l

Yo

< VM. T|& — ol
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ii) For the y equation we write
[1y1(0)=y2(0)]].

< ||6_AT{ (W1 ) —z(wa (T }Hu

+ II/0 e M PU{G(Wi(s) + 2(w1(5))) — G(wa(s) + z(wa(s)))} dsll.

S||6_AT||uCamaX{HWl(T)H?,||W2(~)||”}||W1(~) wa (7))
+ CK(202)[2C7 max{||& 7, ||52||v}/ 7 [wi(s) — wa ()]s ds

< Celle™ Tl |12 lls + &7 Mee™ “T} max{[[& I3 [1€a113 HI&r = &ols

+ Me max{[|&1[[7, [|€al[3 H]&r — &ofls
= Cemax{[[& |3, [1€2113 HIEr — &l

and hence

1K2(&1) = K2(&2)lu = [ly1(0) = y2(0)l|lu < Ce max{[|& ][5, €[] HIE — &l

d) Finally we prove that K is a contraction on the set (6.5) endowed with the norm (6.6). Thus we
write, for i = 1,2,

[Kz;](&) = e_ATzi(wi(T)) — /0 e~ A PUG(wy(s) + 2zi(w;(s))) ds,
where .
wilt) = Mg [ AP Gl (i) s,
and consider Kz (&) — Kz2(€), which means that we must deal with
w1 (t) —wa(t) = /0 A= PHG(wi(s) + 71(Wi(5)) — G(ws(s) + 7a(Wa(s)))} ds
and
y1(0) = y2(0) = e=47 Loy (w1 (7)) = ma(wa (7)) }
—/0 e~ P {G(w1(s) + 71 (Wi (s))) — G(wa(s) + z2(w2(s)))} ds.

i) In order to bound ||wy () — wa(t)||s, we write
I [ AP G w1 (5) 4 1w (59) = G + 2 (wal) ]

< CREERCIELT [ e s 5) = wafs)
+ z1(wi(s)) — z2(wa(s)) |l ds
< CREORCIELT [ 0= (lwi6) - wals)l
+ [l (wals)) - ma(wa(s))l} ds

< CK(20e)[2Cf¢]l.) e {i max {e**[[w (s) — wa(s)l|:}

Yo 0<s<t
1
+lle - mllClEN |
Yo

1
< Z as _ e 142y —at _ )
< 5 s (w1 (5) = wa(o)lle} + G OR (2C2) RO e oy —
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and hence obtain

1
max {e[[wi (s) — wa(s) .} < 20K (2C2)[2C1|&].] "+ 5|21 =zl
0<s<T o

= M.[2C77|€[1**7|||z1 — 2o ]]]

and thus
w1 (t) = wa(t)lls < M[2CT(|E[Is 2 e ] |21 — 2]

ii) Bounding ||y1(0) — y2(0)||u then gives
1y1(0) = ¥2 ()]l
< NlemAT s (wa(T)) = 2 (wa (7)) }lu + ™47 {o (w1 (1)) = 2 (w2 (T)) } |
+ / e~ PG (wi(s) + 71 (Wi (5))) — G(wa(5) + 72(wa(s))} sl
< Mo lullwa )1 s = o]
el Ce ma{{jwn (D)7, [wa ()1 (7) = wa (D)
+ CK(202)2C€]L]" / eI [jwi () = wa ),

+ |71 (wa(s)) — za(wa(s))[lu} ds

ATl {1l + <M= el o = ol
+ Celle™ [ [T + &7 Mee™T] " (el T M 20T 1112 17 — 2
- 0K<2ce>[2c||€||m,yiaMa 2CT €l ||z — 2o
- cff<2ce>[2c||€||m%ia[zcngns]mn|Z1 — 7|

< 1A 1A+ 2 M=) €4 s — ol
e AT AT + 7 MeemoT ] X Mem T )14l — 2 |
- %ewa[2cm|€||;+v|||zl — ||| + %evMa[ch||€||;+v|||zl — 2|

< OE NN Nl — 2o

Hence we have established the contraction
[1K21 — Kazol|| < 0% ||| — 2]

Thus, replacing z; by z*) and z, by z* and using the definition of 0, gives the convergence result

[ =211 < (e 4T ulleAT 11+ + () 1125 = 211

6.5 Nonlinear Perron Method

We require the same assumptions on norms, nonlinearity and dynamics as at the beginning of subsection
6.4. and we must also restrict € so that, with

_ CE(20)[20]'+
= -

M.

bl
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we have

; ; . 2y 1+
{||e—AT||u + <;wme—ﬁT} {||6AT||5 + zgvMae—aT} + &M [20]
In particular, this means that
; ; Sy 1+
el {1+ 70T} <1
and, defining

M.
. . 1+
1= lle=4T o {1eAT (], + & Mee=aT }

. =

that
o M. <1

o TC[2C1 <1
o {CC.[201'T + M.} < 20,

which we shall use repeatedly, and that
; ; . 1y 1
0N = {||e—AT||u +5vMae—ﬁT} {||6AT||5 + zgvae—aT} e ML20T < 1

Finally, we shall employ again the set of functions (6.5) and norm (6.6).
a) Exactly as for the linear Perron method, we can show that

¢
(6.8) w(t) = et'¢ +/ A=) PsG(w(s) + z(w(s))) ds
0
has a solution satisfying
[[w(t) = e*€lls < Ol e

and ) )
|w(T) — eAT€lls < ¥ Moem T[],

b) Now we consider the mapping y — v, defined by

(6.9) v(t):e_A(T_t)z(w(T))—/t A=) PUG(w(s) +y(s)) ds,

with w satisfying the bounds in a) above and z a member of the set (6.5).
i) The set ||y ()|l < {CC[2C]' Y + M_}||€]|1T7e=>(+1) is mapped to itself by (6.9) since

e AT g (w (T))|u < Ce™PT=0C [20e= )47 g1+
< CC20] gl e

and

||/ Alt=s P“G( (s) +y(s))ds||s < CK(2Ce)[2C||€||s 1"'7/ —(4v)as g

{CA(?CE )[2C] 1+vi} ||€[| 1+ e+t
Yo
= M.[|g|;t7em (e
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ii) With the norm [|[y||| = maxgc,«7{|ly()[lu}, (6.9) is a contraction on the set in i) since

T
I / A=) PULG (w(s)+y1(s)) — G(w(s) + ya(5))} dsll
T
< CK(202)[2C €|, / =1 1y () — ya(s)|lu ds
< 0K<2Ce>[2cew,yia|||y1 vl

< 2lllys — vl
=3 Y1 —=¥z21ll-
c) Now we consider the mapping z — Kz defined by [Kz](€) = y(0), where y is the fixed point of (6.9)

and w the solution of (6.8), and show that K maps to itself the set of functions defined by (6.5).
Consequently we must consider [Kz](&1) — [Kz](&2) and deal with

wi(t) = wa(t) = eV (&1 — &) + /0 eMNTIPHG(wi(s) + 2(wi (5))) — G(Wa(s) +2(wa(s)))} ds

and

yi(t) = yo(t) = AT La(w; (7)) = a(wo (7)) |
= [ AP (G 5) 41 (9) — Glwas) 4 ya(a)) d.

i) Exactly as for the linear Perron method we can show that
[[wi(t) = wa(t)[ls < 2Ce™(|&1 — £l

and ~ ~ . )
w1 (T) — wo(T) — e (& — &)||s < 7M™ T]|&) — &,

ii) To bound ||y1(0) — y2(0)||s we may write

Iy10) = ¥2(0)lu < [le= T {a(w: (7)) = 2(ws(T)) } |l

[ AP (G (s) 431 (6)) — Glwas) + ya(s) dll

< e [l Ce max{ w (T2, [[w (7)1 Hiws (T) = wa ()]
+ CK(2C2)[20T max{||&l[7, [1€:(17}

[ e () = wae) 4 31(s) = wa(o)l ds

; ; 114
< Celle™* [l {ll@ATlls +e" Mee™®T | max{||&l}, 1€017HIg — &l

+ Me max{[|&][7, (€[5 1€ — &efls
= Cemax{[[& (|7, [1€213 HIEr — &l

provided that [|y1(t) — y2(¢)||lu < 2Ce™*||€1 — &3||s. This condition is justified by
le= A= La(ws (7)) = a(ws (T)) } [l < CePT=0C, 2022 TP2ce=T g - &)
< EVOC[207 e~ 0T g — gy,

34



and )
T
| [ AP (Gl (s) 4 31(5)) = Glwals) +ya(s) dsll
t
T
< 01((206)[206]7/ ePt=9)9Ce= (s gy — &y,
t
1
< OK(206)[20]720 —e= 04Nt g, — &,
Yo
= E’YMae_a(l-I_’Y)tHgl - €2||s~
Hence we obtain

1K2(&1) = K2(&2)lu = [ly1(0) = y2(0)l|lu < Ce max{[|& ][5, €[] HIE — &l

Finally we prove that K is a contraction on the set (6.5) endowed with the norm (6.6). Thus we
write [Kz;](€) = yi(0), for i = 1,2, where

yi(t) = e_A(T_t)zi(wi(f)) —/t eA(t_s)P“G(WZ’(S) +yi(s))ds

and

wilt) = Nt [ AP Gl (s) 4 7w () d,

and consider Kz (&) — Kz2(€), which means that we must deal with

wi(t) = wa(l) :/0 eI PHG(wi(s) + 21(Wi(5))) — G(wa(s) + z2(wa(s)))} ds

and

yi(t) = ya(t) = AT Lo (wi (1)) = mo(ws (1)) }
- /tT AU PG (wi () + y1(s)) = Gwa(s) +y2(s))} ds.
i) We bound [|wq(t) — wa(t)||s exactly as for the linear Perron method and obtain
[[w1(t) = wa ()]s < M[2077e™"[[€]|377] |21 — 2] |l.
i) Tn order to bound ||y1(0) — y2(0)||u, we define

n; =2:(wi(T)) )
ri(t) =yi(t) — e ATy,

for i = 1,2, and hence we can write

ri(t) —ro(t) = _/t AT PG (Wi (5) +e ATy 4 (5))
— G(wa(s) + e A=)y, 4 1‘2(5))} ds.
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Consequently

7
o1 (t) = ra ()l < CK(QCE)[QC%]”/ e P71 {[lwi (5) — wa(s)lls

+ e T (1 — o)
+ [Iri(s) —ra(s)|lu} ds
< CK(2Ce)[2Ce]7 {

T max {||wi(s) = wa(s)[l:} + Ce ™ |y = 2)ll

T>s>t

+mwwm@—m@mﬁ

T>s>t

CK(2Ce)[2C]”

a < %, we have

and thus, since
mu{wwwﬂwmuthL{~uﬂmm@—w@mg+chWn—mm&.
T>s>t T>s>t

Therefore

1¥1(0) = ¥ ()l < 1T (1 = ) [Ju + [[£1(0) = v2(0)] L
< Ne= 4T (1 = m2)lu + € MoCe™ T |lny — )l
+ 2 MERCTY|€]|1 2 — o]
< OV 21 — 7ol

Then, similarly to the linear Perron method, on replacing z; with z(*) and z, with z*, we have

0 =211 < (e [ulle?T )12 + 02 ) 12 — 2|1

6.6 The ‘HOV' Method

We must choose norms ||. |5 for £ and [|- ]| for E¥ so that
N2l <1, 127w < 1,

and make the usual assumptions
e Norm X X
(1%l = max{[| P*x]|s, || Px]|. }

e Nonlinearity

3~ > 0 such that

lg(x) — gl < K(r) max{[Jx||2, [[y [ HIx = vk

Y||%| s ||¥|l« < 7 where K(7) is a non-decreasing function of r.
We also need to restrict the size of [|€]|s so that the following conditions hold:

1
i) ||L_1||u (IIL]|s + 2Dg) <1 which implies that ||L_1||UD0 < 3

i) 1Ll + Do < 1

= { 20, }
- Llls + <1
T oy A T T ey
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where
D, = K(

Ells) (2L +2D0)™ [1€]17 -

I
150 < (1LNs + Do)" lElls - n=1,2,...

then we can show by induction that

1yl < (1Llls + Do) [IElls - n=0,1,...

fork=1,2,...
a) If the mapping y — v is defined by
(6.10) v =1 tyF Cpotpug (e ty),

then (6.10) maps the set ||y||u < ||€]|s to itself since

1 (k- —1pu — k—
171y = 27 g€ ) < 2 (Il + g€ + ) }

< E™Hl {UILHs + Do) 1€l + K (€N 1€}
<AL=l (1Ll + 2Do) [1€1]s < [1€]ls-

Also, (6.10) is a contraction on this set because

1L lllg (€ +y) = g€+ 9k < N2 luDolly = Fllu-

Hence y(()k) < 1€l]s- )
b) From ng) =L&E+ Pig(é+ y(()k)) we have

Iyl < 1€l = 1wl < (12Nl + Do) lI€])s-

c) If the mapping y — v is defined by

(k=1)

(6.11) v = Iy 17 Prg(w) +y)

then, with ||[walls < (||L]ls + Do) ||€]s, (6.11) maps the set ||y |l < (||L|]s + Do)" [|€]|s to itself since

_ k-1 - _ k-1
1= {y S5 = Prgiwn +3) bl < I e (IS5l + g+ ¥) 1)
—1 Ppu n+1
<02 P {121 + Do) gl

€l (Il + D" )

L™l (W21 +2D0) (I Z1]s + Do) 1]l
(121l + Do)™ 1I€]ls-

+ K(

<
<

Also, (6.11) is a contraction on this set because
127 lullg(wn +¥) = 8(Wn + 3l < (IL7{luDolly = Fllu-

Hence yi” < (|L{ls + Do)" €.
d) From wﬁf_ﬁl = Lwﬁlk) + Psg(wgk) + yﬁf)) we obtain, since ||W£Lk)||s, ||y£1k)||u < (12)ls + Do) ||€]ls,
that
k - n
W e < NN Iw N+ K€D (I + Do) 7 g1+

Ll 1wnlls + Do (L] + Do) [I€]ls
n+1
< (1Zlls 4+ D)™ [[€]ls-
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Now we can bound the error in {yﬁlk)} in terms of the error in {y(k 1)}, making use of the norm

| Pl
(1] + Do)”

Lpu {g(€ + Y(()k)) -g(&+ pqu)} we obtain

1P elll

where P“eglk) = yﬁlk) — P“un.
a) From P“eék) = L_lpue(lk_l) — L~

~u (k _ ~u (k=1 ~u (k
127l e < (17 {12 eVl + Dol Prel ) }

and so )
A L= ||u A k—1)
e, <« prelt=y
|| €p || = 1—||L_1||UD0|| €1 ||
1L~ ]

ME e 1y, 4 oy et
o=y (s + Do) B =

b) The equation Pse(lk) =p* {g(€ + Y(()k))

—g(&+ P“uo)} gives

As (k Su_(k
1P|, < Dol|Pel|.

12 o (5=1)
— Dy|| P u-
= 1—[|Z~")uDo ollP*ey [
c) From P“eg@) — [~lpu {P“e 1 n_ [g(wﬁlk) + yﬁlk)) — g(un)]} for n > 1, we obtain
1P el < L Nl {IP 5 + D (1Pl + 1P el ) }

and so

DU HL 1HU U fa
1Pl < ==y 1P el e+ DillPeff

d) The equation Pte (-Izl = Pself) 4 ps {g )y yﬁl )) - g(un)}, for n > 1, gives

s (k NS
1Pl 115 < (ILlls + Do) [|P*e{ || + Dyl P el
Thus, combining ¢) & d) we obtain

~ N L—l u
1%, < (12l + 2D0) [| P, + — ]

— D, PUel u
1—||L_1||UD || n+1 ||

which, together with

5 L7 bu_ (k=1
oot <« Ml p oy pugtk-ny
|| €1 || = 1—||L_1||UD0 0|| €1 || ’
leads to
-1 n
1Pre) < e _

n—j Hu (k=1
T oD 2 (1Bl +2D0)" ™ Dy [P,
u Jj=1

1L~ n Do
—— (|| L||s + 2D

[l P 1.
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Hence, finally, using ¢) again gives

| Pve|. 12} { S (k1) AL~ uD1Do o ety }
m S L|ls +2Do) ||| P¥e + Ple
WL+ 200” = T fany | UIEl +2D0) I+ =+ oo ! Il
ﬁ IIL|s + 2Dy |||f3“e(k_1)|||
T =B Do L= ([[Zl]s + Do) ’

which means that R R
|[Pee®™||| < %] Pre 1|

and

Iy =2 (@)l < {ai+ 0el) Iy ™" = 2* ©)llu-
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