From Coq Require Import Bool ssreflect ssrbool. From elpi Require Import elpi. Set Printing Coercions. Axiom is_even : nat -> Prop. Fixpoint even n : bool := match n with | O => true | S (S n) => even n | _ => false end. Lemma evenP n : reflect (is_even n) (even n). Admitted. Lemma andP {P Q : Prop} {p q : bool} : reflect P p -> reflect Q q -> reflect (P /\ Q) (p && q). Admitted. Lemma elimT {P b} : reflect P b -> b = true -> P. Admitted. Elpi Db tb.db lp:{{ % [tb P R] finds R : reflect P p pred tb i:term, o:term. :name "tb:fail" tb Ty _ :- coq.error "Cannot solve" {coq.term->string Ty}. }}. Elpi Tactic to_bool. Elpi Accumulate Db tb.db. Elpi Accumulate lp:{{ solve (goal Ctx _ Ty _ _ as G) GL :- tb Ty P, refine {{ elimT lp:P _ }} G GL. }}. Elpi Command add_tb. Elpi Accumulate Db tb.db. Elpi Accumulate lp:{{ % evenP : forall n, reflect (is_even n) (even N). % % tb {{ is_even lp:N }} {{ evenP lp:N }}. % % pi N\ tb {{ is_even lp:N }} {{ evenP lp:N }} :- []. % andP : forall P Q p p, reflect P p -> reflect Q q -> % reflect (P /\ Q) (p && q). % % tb {{ lp:P /\ lp:Q }} {{ andP lp:PP lp:QQ }} :- % tb P PP, tb Q QQ. % % pi P Q PP QQ\ % tb {{ lp:P /\ lp:Q }} {{ andP lp:PP lp:QQ }} :- % [tb P PP, tb Q QQ]. pred compile i:term, i:term, i:list prop, o:prop. compile {{ reflect lp:Ty _ }} P Hyps (tb Ty P :- Hyps). compile {{ reflect lp:S _ -> lp:T }} P Hyps (pi h\ C h) :- pi h\ compile T {{ lp:P lp:h }} [tb S h|Hyps] (C h). compile {{ forall x, lp:(T x) }} P Hyps (pi h\ C h) :- pi x\ compile (T x) {{ lp:P lp:x }} Hyps (C x). main [str S] :- coq.locate S GR, coq.env.typeof GR Ty, compile Ty (global GR) [] C, coq.elpi.accumulate _ "tb.db" (clause _ (before "tb:fail") C). }}. Elpi add_tb evenP. Elpi add_tb andP. Elpi Print to_bool "Demo.snippets/to_bool". Lemma test : is_even 6 /\ is_even 4. elpi to_bool. simpl. trivial. Qed.