From Coq Require Import Bool ssreflect ssrbool. From elpi Require Import elpi. Set Printing Coercions. Axiom is_even : nat -> Prop. Fixpoint even n : bool := match n with | O => true | S (S n) => even n | _ => false end. Lemma evenP n : reflect (is_even n) (even n). Admitted. Lemma andP {P Q : Prop} {p q : bool} : reflect P p -> reflect Q q -> reflect (P /\ Q) (p && q). Admitted. Lemma elimT {P b} : reflect P b -> b = true -> P. Admitted. (* #region to_bool *) (* tactic *)(*.*) Elpi Tactic to_bool. Elpi Accumulate lp:{{ % [tb P R] finds R : reflect P p pred tb i:term, o:term. tb {{ is_even lp:N }} {{ evenP lp:N }} :- !. tb {{ lp:P /\ lp:Q }} {{ andP lp:PP lp:QQ }} :- tb P PP, tb Q QQ, !. tb Ty _ :- coq.error "Cannot solve" {coq.term->string Ty}. solve (goal _ _ Ty _ _ as G) GL :- tb Ty P, refine {{ elimT lp:P _ }} G GL. }}. (* #endregion *) (* tactic *)(*.*) Lemma test : is_even 6 /\ is_even 4. Proof. elpi to_bool. simpl. trivial. Qed. (* 6 minutes *)