
Elpi: rule-based meta-languge for Rocq
Enrico Tassi

Université Côte d’Azur, Inria

France

enrico.tassi@inria.fr

Abstract
Elpi is a high-level programming language designed to im-

plement new commands and tactics for the Rocq prover. It

provides native support for syntax trees with binders and

holes, relieving programmers of the complexities associated

with De Bruijn indices and unification variables.

In recent years, Elpi has been used to develop a variety of

Rocq extensions, some of which have becomewidely adopted.

In this talk, we will provide a gentle introduction to the Elpi

programming language and its extensive API for interacting

with Rocq. We will also survey notable applications writ-

ten in Elpi and conclude by comparing Elpi to other meta-

languages, highlighting both its strengths and weaknesses.

ACM Reference Format:
Enrico Tassi. 2025. Elpi: rule-based meta-languge for Rocq. In Pro-
ceedings of The Eleventh International Workshop on Coq for Program-
ming Languages (CoqPL25). ACM, New York, NY, USA, 3 pages.

1 Elpi = 𝜆Prolog + C.H.R.
From a programming language perspective, Elpi is a dialect

of 𝜆Prolog enriched with constraints and constraint han-

dling rules [6, 9]. From a more practical standpoint, Elpi is

as an extension language: an interpreter that can be easily

embedded within a larger application, providing users with a

high-level language to extend the application’s functionality.

Elpi and its implementation provide a unique combination

of features that make it particularly well-suited for extending

an interactive theorem prover like Rocq [17].

Rule based. Elpi source code is organized into rules, which
can be added both statically and dynamically, either by the

programmer or by the program itself. This feature aligns

naturally with proof scripts, which similarly construct an

ever growing environment of types and proofs. New rules

can use new concepts and hence extend the capabilities of

existing Elpi programs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CoqPL25, Sat 25 Jan 2025, Denver, Colorado, USA
© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

Syntax trees with binders. Elpi data types can contain

binders and the programming language offers primitives

to cross then, following the Higher Order Abstract Syntax

tradition [13]. In particular the programmer can postulate

fresh constants and substitute bound variables with them, a

technique called binder mobility [12].

Context management. When a binder is crossed, it is of-

ten necessary to associate some data with the bound variable.

For example, typing algorithms typically manage a typing

context. In Elpi, these algorithms do not need to explicitly

handle a context; instead, they can leverage the runtime

of the programming language by dynamically adding new

rules.

Unification variables. As a logic programming language,

Elpi provides unification variables, automatically manages

substitutions for the programmer, and performs scope check-

ing to prevent variable capture.

Constraints. A constraint in Elpi represents a compu-

tation that remains suspended until its input, a unification

variable, becomes instantiated. Constraint Handling Rules

(CHRs) treat these suspended computations as first-class val-

ues, enabling them to deduce new information dynamically.

For example, if X is an unknown natural number on which

two incompatible computations, such as tests for being even

and odd, are suspended, a CHR can detect the conflict and

halt the program.

Syntax trees with holes. Unification variables in Elpi can

be used to represent incomplete syntax trees. Algorithms

that manipulate these trees must attach data to holes, similar

to how typing algorithms attach data to bound variables. For

instance, if the syntax tree being constructed represents a

Rocq term, these holes will certainly carry typing constraints.

Whenever a hole gets instantiated, its typing constraint

must be validated. Additionally, since a hole cannot have two

conflicting types, a CHR can enforce the unification of any

typing constraints associated with the same hole, ensuring

consistency throughout the process.

API. The Elpi interpreter includes a highly flexible Foreign
Function Interface. For example, it allows invoking the Rocq

type checker deep under binders or scripting the vernacular

language by programmatically declaring inductive types,

modules, type class instances, Arguments directives, and

more.

https://orcid.org/0000-0002-7783-528X

CoqPL25, Sat 25 Jan 2025, Denver, Colorado, USA Enrico Tassi

2 Applications
We briefly describe some applications written in Elpi.

Hierarchy Builder. HB [4] is a high level language to de-

scribe hierarchies of interfaces and is adopted by many Rocq

libraries including the Mathematical Components one [1].

HB synthesizes all the boilerplate in order to make these

interfaces work in practice, like modules, records, canonical

structure instances, implicit arguments declarations, nota-

tions. HB leverages the extensive API provided by Elpi, as

well as its ability to incrementally build a database of known

interfaces and their inheritance relations.

TnT. Trakt and its successor Trocq [3] are frameworks

designed to transport types (Rocq goals) over type (iso) mor-

phisms, with or without univalence. The former is used by

the Sniper tactic in Coq-smt [2]. Both tools leverage Elpi’s

ability to manipulate syntax with binders. Trocq, in particu-

lar, uses constraints to accumulate knowledge during term

processing and ultimately computes an optimal solution.

Derive. Derive synthesizes code from type declarations,

such as deep induction principles [16], equality tests [8],

parametricity relations, lenses for record updates, and more.

Derive is an extensible framework, where each derivation

is defined by a set of rules that can depend on the results

of other derivations. The formal methods team at BlueRock

Security has extended this framework to cover the synthesis

of concepts from the Std++ library.

NES. NES emulates name spaces on top of Rocq module

system. Unlike modules a namespace is never closed and

new items can be added to in, even in different files. NES

takes advantage of the capability of Elpi to script the Rocq

vernacular language.

Algebra-tactics. AT is a frontend to the ring, field, lin-

ear real arithmetic (lra), nonlinear real arithmetic (nra), and

psatz tactics, designed to support the Mathematical Compo-

nents algebraic hierarchy [14]. These tactics leverage Elpi’s

seamless integration with Rocq, repeatedly invoking Rocq’s

unification mechanisms deep inside terms to reify expres-

sions up to a controlled form of conversion.

3 Related work
Elpi is in good company.

Ltac. Ltac (version 1) is the legacy extension language

for Rocq [5]. While its use in new projects is expected to

decline, a substantial codebase still relies on this language.

Despite having a syntax resembling that of functional pro-

gramming languages, its semantics is closer to those of a

logic programming language, as the runtime implements

backtracking. Rocq terms can be manipulated using their nat-

ural syntax—without the need for De Bruijn indices—though

the language suffers from an unclear binding discipline. This

sometimes leads to confusion between the variables of the

meta-language and those of the object language. The dy-

namic semantics of Ltac can also be surprising; for example,

t and idtac; t are very different, with the latter being a

thunk. Furthermore the language is untyped and lacks even

basic data types such as lists. Despite these shortcomings

Ltac has been instrumental in the success of Rocq.

Ltac2. The second version of Ltac is an ML-like lan-

guage that encapsulates the proof engine monad of Rocq [11].

Rocq terms are represented using an algebraic data type that

closely mirrors the internal Rocq term data structure, in-

cluding De Bruijn indices. The language introduces a notion

of quotations and anti-quotations, which allows users to

employ Rocq term syntax without ambiguity. Additionally,

it exposes many APIs of the proof engine, making it well-

suited for programming low-level tactic code and optimizing

efficiency. Currently Ltac2 lacks APIs for declaring Rocq

inductive types or scripting the vernacular language.

Metacoq. The Metacoq project [15] encompasses several

components, one of which is a description of Rocq’s terms as

an inductive type, faithfully reflecting the internal Rocq term

data type, including De Bruijn indices. A meta-program in

Metacoq is essentially a Rocq term running in the Template-

Monad, which allows access to various APIs to read from and

write to the logical environment. What sets Metacoq apart

is its ability to reason about "meta" programs. For instance,

one can prove within Rocq that a meta-program produces a

term of a given type. However, Metacoq currently lacks APIs

and formal definitions to handle unification variables, which

limits the ability to prove properties about meta-programs

that manipulate incomplete syntax trees.

Mtac2. The Mtac2 tactic language [10] is no longer ac-

tively developed but has some interesting features worth

highlighting. Unlike Metacoq and Ltac2, Mtac2 is a func-

tional language that successfully hides De Bruijn indices

from the programmer. In particular the nu operator, used for

crossing binders, gives the comfort of HOAS and indeed re-

sembles 𝜆Prolog’s pi operator and MLTS’s nab operator [7].

Mtac2 offers a configurable type discipline that extends

to the object language, ranging from dynamically typed to

strongly typed. Additionally, it exposes the (higher-order)

unification of the object language through the language’s

pattern matching construct.

OCaml. While it is indeed possible to extend Rocq bywrit-

ing an OCaml plugin, this approach is considerably more

challenging compared to using higher-level languages like

the ones mentioned above. Writing plugins in OCaml re-

quires a deep understanding of the internal workings of

Rocq, and the development process is more time-consuming.

However, if execution speed is a critical concern and the

performance of the system is a higher priority than develop-

ment time, using OCaml plugins might be a suitable choice.

Elpi: rule-based meta-languge for Rocq CoqPL25, Sat 25 Jan 2025, Denver, Colorado, USA

References
[1] Reynald Affeldt et al. “Porting the Mathematical Com-

ponents library to Hierarchy Builder”. In: the COQ
Workshop 2021. virtuel- Rome, Italy, July 2021. url:

https://hal.science/hal-03463762.
[2] Valentin Blot et al. “Compositional Pre-processing for

Automated Reasoning in Dependent Type Theory”. In:

Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2023,
Boston, MA, USA, January 16-17, 2023. Ed. by Robbert

Krebbers et al. ACM, 2023, pp. 63–77. doi: 10.1145/
3573105.3575676. url: https://doi.org/10.1145/3573105.
3575676.

[3] Cyril Cohen, Enzo Crance, andAssiaMahboubi. “Trocq:

Proof Transfer for Free, With or Without Univalence”.

In: Programming Languages and Systems. Ed. by Stephanie
Weirich. Cham: Springer Nature Switzerland, 2024,

pp. 239–268. isbn: 978-3-031-57262-3.

[4] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi.

“Hierarchy Builder: Algebraic hierarchies Made Easy

in Coq with Elpi”. In: 5th International Conference
on Formal Structures for Computation and Deduction
(FSCD 2020). Ed. by Zena M. Ariola. Vol. 167. Leib-

niz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, 2020, 34:1–34:21. isbn: 978-3-95977-

155-9. doi: 10.4230/LIPIcs.FSCD.2020.34. url: https:
/ /drops .dagstuhl .de/entities /document/10 .4230/
LIPIcs.FSCD.2020.34.

[5] David Delahaye. “A tactic language for the system

Coq”. In: Proceedings of the 7th International Confer-
ence on Logic for Programming and Automated Reason-
ing. LPAR’00. Reunion Island, France: Springer-Verlag,

2000, pp. 85–95. isbn: 3540412859.

[6] CvetanDunchev et al. “ELPI: Fast, Embeddable, 𝜆Prolog

Interpreter”. In: Logic for Programming, Artificial Intel-
ligence, and Reasoning - 20th International Conference,
LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Pro-
ceedings. Ed. by Martin Davis et al. Vol. 9450. 2015,

pp. 460–468. doi: 10.1007/978-3-662-48899-7_32. url:
https://inria.hal.science/hal-01176856v1.

[7] Ulysse Gérard, DaleMiller, and Gabriel Scherer. “Func-

tional programming with 𝜆-tree syntax”. In: Proceed-
ings of the 21st International Symposium on Principles
and Practice of Declarative Programming. PPDP ’19.

Porto, Portugal: Association for Computing Machin-

ery, 2019. isbn: 9781450372497. doi: 10.1145/3354166.
3354177. url: https : / / doi . org / 10 . 1145 / 3354166 .
3354177.

[8] Benjamin Grégoire, Jean-Christophe Léchenet, and

Enrico Tassi. “Practical and sound equality tests, au-

tomatically – Deriving eqType instances for Jasmin’s

data types with Coq-Elpi”. In: CPP ’23: 12th ACM SIG-
PLAN International Conference on Certified Programs
and Proofs. CPP 2023: Proceedings of the 12th ACM

SIGPLAN International Conference on Certified Pro-

grams and Proofs. Boston, MA, USA: ACM, Jan. 2023,

pp. 167–181. doi: 10.1145/3573105.3575683. url: https:
//inria.hal.science/hal-03800154.

[9] Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico

Tassi. “Implementing type theory in higher order con-

straint logic programming”. In: Mathematical Struc-
tures in Computer Science 29.8 (2019), pp. 1125–1150.
doi: 10.1017/S0960129518000427.

[10] Jan-Oliver Kaiser et al. “Mtac2: typed tactics for back-

ward reasoning in Coq”. In: Proc. ACM Program. Lang.
2.ICFP (July 2018). doi: 10.1145/3236773. url: https:
//doi.org/10.1145/3236773.

[11] Oleg Kiselyov et al. “Backtracking, interleaving, and

terminating monad transformers: (functional pearl)”.

In: SIGPLAN Not. 40.9 (Sept. 2005), pp. 192–203. issn:
0362-1340. doi: 10.1145/1090189.1086390. url: https:
//doi.org/10.1145/1090189.1086390.

[12] Dale Miller. “Mechanized metatheory revisited”. In:

Journal of Automated Reasoning 63.3 (Oct. 2019), pp. 625–
665. doi: 10 .1007 / s10817 - 018 - 9483 - 3. url: https :
//inria.hal.science/hal-01884210.

[13] F. Pfenning and C. Elliott. “Higher-order abstract syn-

tax”. In: SIGPLAN Not. 23.7 (June 1988), pp. 199–208.
issn: 0362-1340. doi: 10.1145/960116.54010. url: https:
//doi.org/10.1145/960116.54010.

[14] Kazuhiko Sakaguchi. “Reflexive Tactics for Algebra,

Revisited”. In: 13th International Conference on Interac-
tive Theorem Proving (ITP 2022). Ed. by June Andronick
and Leonardo de Moura. Vol. 237. Leibniz Interna-

tional Proceedings in Informatics (LIPIcs). Dagstuhl,

Germany: Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2022, 29:1–29:22. isbn: 978-3-95977-252-5.

doi: 10.4230/LIPIcs.ITP.2022.29. url: https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.
2022.29.

[15] Matthieu Sozeau et al. “TheMetaCoq Project”. In: Jour-
nal of Automated Reasoning (Feb. 2020). doi: 10.1007/
s10817-019-09540-0. url: https://inria.hal.science/hal-
02167423.

[16] Enrico Tassi. “Deriving proved equality tests in Coq-

elpi: Stronger induction principles for containers in

Coq”. In: ITP 2019 - 10th International Conference on In-
teractive Theorem Proving. Portland, OR, United States,
Sept. 2019. doi: 10.4230/LIPIcs.CVIT.2016.23. url:
https://inria.hal.science/hal-01897468.

[17] Enrico Tassi. “Elpi: an extension language for Coq

(Metaprogramming Coq in the Elpi 𝜆Prolog dialect)”.

In: The Fourth International Workshop on Coq for Pro-
gramming Languages. Los Angeles, CA, United States,

Jan. 2018. url: https://inria.hal.science/hal-01637063.

https://hal.science/hal-03463762
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.34
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.34
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.1007/978-3-662-48899-7_32
https://inria.hal.science/hal-01176856v1
https://doi.org/10.1145/3354166.3354177
https://doi.org/10.1145/3354166.3354177
https://doi.org/10.1145/3354166.3354177
https://doi.org/10.1145/3354166.3354177
https://doi.org/10.1145/3573105.3575683
https://inria.hal.science/hal-03800154
https://inria.hal.science/hal-03800154
https://doi.org/10.1017/S0960129518000427
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1145/1090189.1086390
https://doi.org/10.1145/1090189.1086390
https://doi.org/10.1145/1090189.1086390
https://doi.org/10.1007/s10817-018-9483-3
https://inria.hal.science/hal-01884210
https://inria.hal.science/hal-01884210
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/960116.54010
https://doi.org/10.4230/LIPIcs.ITP.2022.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.29
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://inria.hal.science/hal-02167423
https://inria.hal.science/hal-02167423
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://inria.hal.science/hal-01897468
https://inria.hal.science/hal-01637063

	Abstract
	1 Elpi = Prolog + C.H.R.
	2 Applications
	3 Related work

