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Motivation

Figure: Y-chart design methodology

Allocating and scheduling tasks and messages over a network of
resources is NP-Complete (for most of the problem instances).

Two main approaches:

I Avoiding NP-Completeness: heuristics

I Accepting it: general solvers (Integer Linear Programming /
SAT Modulo Theory / Constraint Programming)

I How far? (with “up to date” solvers)
I Small size problems (can still be interesting)
I Design for scalability
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Motivation

I SAT solvers can handle large problems
functional model checking (time model checking?)

I It has practical interests in static scheduling
(meta-programming) and compilation problems.

We need an empirical evaluation of static distributed real-time
scheduling problems. When can we apply exact solving techniques?

Contributions

I Encoding of a variety of scheduling problems as SMT/ILP/CP
problems

I Synthetic and realistic test cases

I Empirical hardness related to various parameters (problem
size, preemtiveness, satisfiability or optimization target,
system load, dependencies, pipelining, resources homogeneity,
unique or multiple task periods ...).
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Motivation

Two real-life test cases (FFT and Platooning applications) and
synthetic benchmarks.
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Figure: Platooning dataflow graph application

Reduces traffic jams (and fuel consumption).
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Motivation

IC DC

DSV HV

SH HH

Figure: Platooning dataflow graph application, no pipelining, no
data-parallelism (X=0) and simplified labels...

Application constraints:

I ICStop = ICStart + ICDuration

I SHStart ≥ ICStop

I SVStart ≥ ICStop

I ...
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Figure: Platooning dataflow graph application single period, no
data-parallelism (X=0) and simplified labels...

Resource constraints:

I ICMap ∈ {P1,P2,P3},SHMap ∈ {P1,P2,P3}, ...
SHMap == SVMap → SHStart ≥ SVStop ⊕ SHStop ≥ SVStart

I ...

The encoding is a set of linear constraints and a set of decision
variables.
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Motivation
Realistic modeling: We also associated a time with messages
(communication between tasks) with the following rules:

I Messages cannot overlap (because of the single Bus)
I Messages have no cost if the source task and destination tasks

are allocated on the same resource (shared memory, you only
need to pass a pointer, disputable)
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Figure: Gantt diagram (optimal non-preemptive schedule)



Modeling and solving
in plain English

1. Each task is allocated on exactly one processor

2. If two tasks are ordered, the second starts after the first ends

3. If two tasks are allocated on the same processor, they must be
ordered

4. The source and destination of a dependency must be ordered
5. The bus communication associated with a dependency (if any) must

start after the source task ends and must end before the destination
task starts

6. When two dependencies require both a bus communication, these
communications must be ordered

7. If two dependencies are ordered, the first must end before the second starts
8. All tasks must end at a date smaller or equal than the schedule length

9. ...



Modeling and solving

We look at:

I Average solving time

I Timeout (1 hour) ratio

When we vary:

Scheduling problem single or multi period, preemptive or not,
resource homogeneity

Objective schedulability analysis vs optimization

Average system loads 25%, 75%, 87.5%,125%

Pipelining depth

Onto:

I Synthetic test cases

I Two realistic test cases (FFT and Platooning applications)



Modeling and solving

Why merge the two ?

Figure: Single Period Non-Preemptive vs Multi Period Preemptive



Modeling and solving

Figure: Timeout (1h) rate for preemptive multi-periodic

→ Preemptive problems are of greater complexity
→ Non-preemptive scheduling is actually one of the first
motivations of this work.



Modeling and solving

Figure: Homogeneous resources VS Heterogeneous resources

→ Not so clear



Modeling and solving

Figure: System load

→ Underloaded and overloaded systems are easier to handle.



Modeling and solving

IC DC

DSV HV

SH HH

IC DC

DSV HV

SH HHIC DC

DSV HV

SH HH

IC DC

DSV HV

SH HH

...

pipelining

Figure: Pipelining: Cyclic dataflow graph to DAG

Pipelining raises the depth of the graph



Modeling and solving

SobelH0
4

HistoH0
4

SobelH0
3

HistoH0
3

SobelH0
1

HistoH0
1

SobelV0
1

HistoV0
1

Display0
1

SobelV0
4

HistoV0
4

Display0
4

SobelV0
3

HistoV0
3

Display0
3

Detection0
1

Detection0
4

Read0
1

Read0
2

Detection0
3

HistoH0
2

Detection0
2

HistoV0
5

Detection0
5

HistoH0
0

Detection0
0

Read0
3

Read0
4

Display0
0

SobelH0
2

SobelH0
0

SobelV0
5

Display0
5

SobelV0
0

HistoV0
0

SobelV0
2

HistoV0
2

Display0
2

Read0
5

SobelH0
5

HistoH0
5

Read0
0

SobelV2

Display0

HistoV2 HistoV1

Detection0

SobelH5

HistoH5

SobelV3

HistoV3 HistoV4

Read0

SobelH4 SobelH3SobelV5 SobelH2 SobelH1 SobelV1SobelH0 SobelV0 SobelV4

HistoV0HistoH2 HistoH4 HistoH3HistoV5 HistoH1HistoH0

Figure: “Aspect” of the graph

→ Deep graphs will scale much better than large graphs

Even with symmetry breaking techniques
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Modeling and solving

Good practices for encoding scheduling problems:

I The order of the variables matters: somehow ask the solver to
select the variables (eq. the tasks) in the topological order of
the tasks, beginning with the small values of the variable state.

I Non-synthetic graphs can exhibit a lot of symmetry (e.g. split
merge graph). Associating variables (TMap and TStart) to
each task of a split/merge is certainly not scalable →
Symmetry breaking techniques

I Symmetries can also occur in architecture graph (if
homogeneous resources) → Symmetry breaking techniques
(cumulative scheduling).
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Thank you

Questions ?
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