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ABSTRACT
We study in this paper fluid approximations for a class of
monotone relay policies in delay tolerant ad-hoc networks.
This class includes the epidemic routing and the two-hops
routing protocols. We enhance the relay policies with a
probabilistic forwarding feature where a message is forwarded
to a relay with some probability p. We formulate an optimal
control problem where a tradeoff between delay and energy
consumption is captured and optimized. We compute both
the optimal static value of p as well as the optimal time de-
pendent value of p. We show that the time dependent prob-
lem is optimized by threshold type policies and we compute
explicitly the value of the optimal threshold for some special
cases of relay policies.

Categories and Subject Descriptors
C.2 [C.2.1]: Wireless communication

General Terms
Performance, algorithms, design

Keywords
Delay tolerant networks, fluid models, optimal control

1. INTRODUCTION
In delay tolerant mobile ad-hoc networks, instantaneous

connectivity is not needed any more and messages can arrive
at their destination thanks to the mobility of some subset of
nodes that carry copies of the message. A naive approach to
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forward a message to the destination is by epidemic routing
in which any mobile that has the message keeps on relaying
it to any other mobile that arrives within its transmission
range and who does not have the message yet. This would
minimize the delivery delay at a cost of inefficient use of
network resources (in terms of memory used in the relaying
mobiles and in terms of the energy used for flooding the
network).

The need for more efficient use of network resources moti-
vated the use of more economic forwarding such as the two
hop routing protocols in which the source transmits copies
of its message to all mobiles it encounters, but where the
latter relay the message only if they come in contact with
the destination. Furthermore, timers have been proposed to
be associated with messages when stored at relay mobiles,
so that after some threshold (possibly random) the message
is discarded. The performance of the two hop forwarding
protocol along with the effect of the timers have been eval-
uated in [1], the framework of which allows for optimization
of the choice of the average timer duration.

In this paper we analyze two alternative approaches for
optimizing forwarding protocols. The first approach consists
of forwarding a message to another relay with some prob-
ability p, where p can be optimized to meet some tradeoff
between delay and resource utilization. The second opti-
mization approach we introduce is based on further allow-
ing this probability p to vary in time. These two approaches
are studied in this paper in conjunction with a wide class
of monotone relaying schemes of which the epidemic routing
and the two-hops routing are special cases (a precise defini-
tion of monotone relaying policies is postponed until Section
3).

In order to optimize p in the context of a general monotone
relaying policy, we first introduce fluid approximations of
the system dynamics. We then use tools from optimization
and optimal control theory to come up with optimal static
and optimal dynamic choices for the parameter p. In the
dynamic case, we establish the optimality of threshold type
policies that use p = 1 up to some time t and then switch
to the smallest possible value of p. We validate the fluid ap-
proximation through simulations, and compare it with the



original discrete model. We illustrate through extensive nu-
merical experimentations the benefits of our optimization
approaches.

For the special cases of epidemic routing and two-hops
routing, we obtain explicit expressions for the performance
measures for both the optimal static as well as the optimal
dynamic optimization problems. We compute in particular
the optimal probability of successful delivery of the message
by some time t for these forwarding schemes under the con-
straint that the energy consumption till time t is bounded
by some constant E. We show that when restricted to static
policies, for the same t and E, the optimal probability of suc-
cessful delivery in the two-hops routing may be either larger
than the one in the epidemic routing or smaller, depending
on the values of the parameters. We then show that the
same conclusion holds for the comparison between optimal
dynamic policies. We then propose a new hybrid policy that
performs better than the optimal dynamic 2-hops routing
and better than the optimal epidemic routing policy.

The structure of the paper is as follows. The next section
presents related work, followed by a section that introduces
the model. We then solve in Section 4 the static control
problems and establish the structure of optimal dynamic
control policies. We then specialize in Section 5 to the two-
hops routing and the epidemic routing, and compute the op-
timal policies in these two cases. The performances of these
policies in the original discrete setting are then provided in
Section 6. Section 7 provides a validation of the fluid model
through simulations. It further provides an extensive numer-
ical investigation that illustrates the usefulness and power
of our optimal control approach. Section 8 provides some
results for the case of timers and Section 9 concludes the
paper.

2. RELATED WORKS
Delay Tolerant Networks (DTNs) have recently attracted

attention from the research community. The literature re-
ports several results of real experiments on DTNs [2, 3, 4].
In [2], the DieselNet network was deployed over a wide urban
area, using buses as mobiles. Also, authors of [3] describe
the use of human mobility to diffuse information through
portable devices. In the above mentioned works, authors
discuss several technical problems; in particular, due to lack
of persistent connectivity, one central issue of DTNs is rout-
ing, and applicable techniques depend on the knowledge on
input variables such as contact times, traffic demands or
memory occupation [5].

In particular, in the case of routing with zero knowledge
[6, 7], the problem is to deliver messages to destinations
with high probability despite nonexistence of any a priori
information on the encounter pattern of mobile devices.

To this respect, due to the simplicity of implementation
and robustness, one of the first proposed forwarding algo-
rithms has been epidemic routing [8, 9], also named con-
trolled flooding [10]. Another proposed routing mechanism
is the two-hops algorithm. Grossglauser and Tse proposed
the two-hops routing algorithm in [11], and the main goal
there was to characterize the capacity of mobile ad-hoc net-
works. The aim was to indicate a direction to overcome
the severe limitations in static networks capacity [12]. The
standard reference work for the analysis of the two-hops re-
laying protocol is [13]. Fluid approximations and infection
spreading models are used in [14].

One leitmotiv of message diffusion algorithms is how to
trade off message delay for energy consumption, i.e. num-
ber of copies per delivered message. In this respect epi-
demic routing and two-hops stand at opposite ends: epi-
demic routing has high delivery probability while flooding
the system, whereas two-hops routing spreads messages at
a much smaller pace, but the price paid is a lower delivery
probability. Other variants include the use of TTL coun-
ters, probabilistic forwarding [10] and K-limited forwarding
[1, 16].

The control of forwarding has been addressed in the ad-
hoc networks literature, e.g in [17] and [18]. In [17], the
authors describe an epidemic forwarding protocol based on
the susceptible-infected-removed (SIR) model [14]. Authors
of [17] show that it is possible to increase the message deliv-
ery probability by tuning the parameters of the underlying
SIR model. In [18] a detailed general framework is proposed
in order to capture the relative performances of different
self-limiting strategies.

Finally, authors of [19] argue that even in sparse DTNs,
finite bandwidth, scheduling and interference affect the per-
formances of epidemic routing; in this respect, the perfor-
mance figures of this work should be referred to as upper
bounds.

Novel contributions
As indicated before, we consider in this paper sparse mo-
bile ad-hoc networks. In these networks, mobility is the en-
gine that permits network-wide information diffusion. With
respect to the existing literature, this work makes several
original contributions. Typically, the objective is to maxi-
mize the fraction of delivered messages and to minimize the
latency between source and destination. In the paper we
provide a formulation rooted in optimization, which relates
explicitly the energy expenditure, i.e. the number of copies,
with the delivery probability within a given deadline.

From an algorithmic standpoint, the fundamental result
derived in this work, using tools from optimal control theory,
is that optimal forwarding policies are threshold-type policies
(see Definition 4.1). It then follows that static control poli-
cies, i.e. probabilistic forwarding with constant probability,
are suboptimal.

We remark that the above mentioned results apply to all
monotone forwarding strategies, which include several in-
teresting cases for sparse ad-hoc networks, such as epidemic
routing and two-hops routing.

The practical implications of this result are apparent, since
the implementation of threshold policies is rather straight-
forward.

3. THE MODEL
Consider a network that contains N mobile nodes. The

time between contacts of any two nodes is assumed to be
exponentially distributed with parameter λ. The validity
of this model has been discussed in [13], and its accuracy
has been shown for a number of mobility models (Random
Walker, Random Direction, Random Waypoint).

We assume that the message that is transmitted is relevant
for some time τ . We do not assume any feedback that allows
the source or other mobiles to know whether the message has
made it successfully to the destination within the time τ .

A mobile terminal is assumed to have a message to send
to a destination node. We focus in this paper on a class of



so called monotone relay strategies. A relay strategy is said
to belong to this class if the following holds:

• The number of nodes that contain the message does
not decrease in time during the time τ ,

• The number eX(t) of nodes, not including the destina-
tion, that contain the message at time t is a Markov
chain.

Example 1: Epidemic Routing.
At each encounter between a mobile that has the message
and another one that does not, the message is relayed to the
one that does not have it. This is a monotone relay strategy.

Example 2: Two-Hops Routing.
At each encounter between the source and a mobile that
does not have the message, the message is relayed to that
mobile. If a mobile that is not the source has the message
and it is in contact with another mobile then it transfers the
message if and only if the other mobile is the destination
node. This is a monotone relay strategy.

Example 3: Adding timers.
Consider either the epidemic routing or the two-hops rout-
ing. In order to avoid saturation of the buffers of relay mo-
biles, a relay mobile that receives a message activates a Time
To Live (TTL) timer which is exponentially distributed with

parameter µ. eX(t) is indeed a Markov chain but it is not
necessarily monotone non-decreasing. Thus strategies that
integrate TTL timers need not be monotone relay strategies.
We shall explain the implication of that in Remark 3.1.

3.1 The control
Let {Tn} be the sequence of instants where an encounter

occurs between two mobiles. Only at these times the state
eX may change.

The actual system dynamics is obtained by combining the
relay strategy with the control. Assume that at a given time
Tn, one of the mobile nodes has a copy of the message and
some other one does not, and under the relay strategy the
message is transmitted to the other mobile. Then Tn is
called a forwarding opportunity.

A natural way to optimize the system (with respect to
some objectives that will be introduced shortly) is to control
the forwarding probabilities of messages. We assume that
each message contains a time stamp that shows when it was
generated (so that it can be deleted at all nodes that have
it when it becomes irrelevant, τ time units later). We shall
consider two optimization approaches:

• Static Approach: Each time there is a forwarding op-
portunity, forwarding of the message is done with a
constant probability c.

• Dynamic Approach: Each time a mobile has a forward-
ing opportunity, it checks the time t that elapsed since
the message generating time and it forwards the mes-
sage with some probability u(t).

In both cases we shall assume that the forwarding probabil-
ities can take any value within an interval [umin, 1], where
umin > 0.

3.2 Fluid Approximations
Uncontrolled Dynamics Let X(t) be the fraction of the

mobile nodes that have at time t a copy of the message. (It

includes the source node and thus X(0) ≥ 1/N .) We assume
that X(t) grows at a rate given by the following differential
equation:

dX(t)

dt
= f(X(t))

where f is assumed to be strictly positive.

Controlled Dynamics Let X(t) be the fraction of the
mobile nodes that have at time t a copy of the message.
We assume that X(t) grows at a rate given by the following
differential equation:

dX(t)

dt
= u(t)f(X(t)) (1)

where u(t) ∈ [umin, 1], umin > 0. u has the meaning of a
control that is used to slow down the growth rate of the
number of copies of the message in the network. We will
sometimes denote the solution to (1 ) by X(t; u) to empha-
size its dependence on u.

X(t) coincides with X(t) when u(t) = 1; X(t) is the sys-
tem’s state in the case of no control. In the special case
where u(t) is a constant, u(t) = c, the solution of (1) satis-
fies:

X(t) = X(ct). (2)

X(t) has thus the same dynamics as X(t) but at a slowed
time-scale.

Next, we write the fluid approximation for the probability
distribution of the delay Td, denoted by D(t) := P (Td < t).
Based on [20, Appendix A], we have

D(t) = 1 − (1 − D(0)) exp
“
− Nλ

Z t

s=0

X(s)ds
”
, (3)

where D(0) = z accounts for the probability that the desti-
nation is not among the nodes that possess the message at
time 0. The controlled version reported in (3) derives from
the differential equation in the form

d

dt
D(t) = − lim

h→0

P [Td > t + h] − P [Td > t]

h

= lim
h→0

P [Td > t] − P [Td > t + h]

h
(4)

= Nλ X(t) [1 − D(t)] ,

which is separable and integrates as
Z D(t)

D(0)

dD

1 − D
= Nλ

Z t

0

X(s)ds,

(5)

from which (3) follows directly.
Denote by E(t) the energy consumed by the whole network

for transmission during the time [0, t]. It is proportional to
X(t)−X(0) since we assume that the message is transmitted
only to mobiles that do not have the message, and thus the
number of transmissions of the message during [0, t] plus
the number of mobiles that had it at time zero equals to
the number of mobiles that have it. We thus have E(t) =
ε(X(t) − X(0))

Remark 3.1. If TTL timers are added as discussed in
Section 3, or more generally, when the nodes that have a
copy of the message may lose it and may thus later receive



it again, the energy spent for transmission till time t can be
larger than ε(X(t) − X(0)). Thus a constrained optimiza-
tion problem where we place a constraint on the transmission
energy does not translate anymore into a constraint on the
final state. Such cases will therefore be introduced later in
Section 8.

4. OPTIMAL CONTROL FOR THE FLUID
MODEL

Our goal is to maximize D(τ). In view of (3), this is
equivalent to maximizing

R τ

0
X(r; u)dr.

On the other hand, we also would like to keep E(τ) small.

Define σ(x, z) := X
−1

(x+z) given X(0) = z, which is the
time elapsed until x extra nodes (in addition to the initial z
ones) receive the message in the uncontrolled system. Notice
that σ(x, z) is a function of both x and z; in the following, for
the sake of notation, unless misleading, we will refer simply
to σ(z).

Further define

J(z, u) =

Z τ

0

X(r; u)dr

for an initial state z, where X(r; u) is the state trajectory
under a control u (dependence on u will be suppressed in
most of the development below).

4.1 Optimal static control
Theorem 4.1. Consider the problem of maximizing D(τ)

subject to a constraint on the energy E(τ) ≤ εx.
(i) If X(τ) ≤ x+z (or equivalently, τ ≤ σ(z)), then a control
policy u is optimal if and only if u(t) = 1 for t ∈ [0, τ ] a.e.
(ii) If X(uminτ) > z + x (or equivalently, uminτ > σ(z)),
then there is no feasible control strategy.
(iii) If X(τ) > z + x > X(uminτ) (or equivalently, τ >
σ(z) > uminτ), then the best static control policy uc(t) = c
is given by the constant

c =
σ(z)

τ

and the optimal value among static policies is given by

J∗

c (z) =
τ

σ(z)

Z σ(z)

0

X(r)dr

Proof. Parts (i) and (ii) are obvious, and part (iii) follows
directly from (2). �

4.2 Optimal dynamic control
Definition 4.1. A policy u is called a threshold policy

with parameter h if u(t) = 1 for t ≤ h a.e. and u(t) = umin

for t > h a.e.

Theorem 4.2. Consider the problem of maximizing D(τ)
subject to a constraint on the energy E(τ) ≤ εx.
(i) If X(τ) ≤ x + z (or equivalently, τ ≤ σ(z)), then a con-
trol policy u is optimal if and only if u(t) = 1 for t ∈ [0, τ ]
a.e.
(ii) If X(uminτ) > z + x (or equivalently, uminτ > σ(z)),
then there is no feasible control strategy.
(iii) If X(τ) > z + x > X(uminτ) (or equivalently, τ >
σ(z) > uminτ), then an optimal policy is necessarily a thresh-
old one.

Proof. Parts (i) and (ii) are obvious. We thus pro-
ceed with proof of part (iii), working under the assumption
X(τ) > z + x > X(uminτ). We use the Maximum Principle
[15]. The Hamiltonian is

H(X, u; p) = X − p u f(X)

where p is the co-state variable, which is a continuous, piece-
wise continuously differentiable function of t. If u is an opti-
mal solution for the original problem, then it maximizes the
Hamiltonian, and with the latter being linear in the former,
the optimal control takes the two extreme values umin and
1, depending on whether the product of p and f , p(t)f(X),
is positive or negative. But since f(X) is positive for all
values of X of interest, we arrive at the simple optimality
condition:

u(t) =


umin if p(t) > 0
1 if p(t) < 0

(6)

Furthermore, the co-state p(·) is obtained as the solution of
the adjoint differential equation

dp(t)

dt
= HX = 1 − p(t)u(t)fX(X(t)) (7)

where subscript X denotes differentiation with respect to X.
We first make the assumption that fX(X) < 0 for all X in

the interval [z, z+x]. This is in fact a property that holds for
most of the models of interest. Now note also that since by
the condition of this case (iii) neither u = umin nor u = 1 can
be optimal policies, we either have the static constant policy
derived earlier to be optimal or have a switching policy. The
former can immediately be ruled out because p cannot be
zero except at isolated points (note that from the co-state
equation, if p(t) = 0 for some t, then p(t+) > 0, and from
the optimality condition (6) u immediately takes one of the
extreme values, in this case umin). Hence, optimal u has
to take on its extreme values, and since it cannot take on
only one of them for the entire interval, as argued earlier,
it has to switch between the two. Clearly, which of the two
values it takes for a particular t depends solely on the sign of
p(t), as dictated by (6). We now consider separately the two
possible choices for p(0), positive and negative: If p(0) > 0,
then it follows from (7) and from the negativity of fX that
p(t) is increasing and hence remains positive. Hence by (6),
u(t) = umin for all t, and this is in contradiction with the
hypothesis of case (iii). Thus we have to have p(0) < 0, and
initially u = 1. But we know that this cannot be sustained
during the entire interval because it violates the hypothesis
of case (iii). Then, at some point u has to switch to umin.
But for this switch to take place, we have to have p positive,
and once it is positive it remains positive for the remaining
time, and hence optimum u does not switch back. Thus
there is a threshold h such that p(t) < 0 and u(t) = 1 for
t < h and p(t) > 0 and u(t) = umin for t > h.

Now we assume that fX(X) > 0 for all X in the interval
[z, z + x]. An analysis similar to the one in the previous
paragraph leads to the conclusion that it is not possible for p
to be positive at t = 0, since then it always remains positive
(here the argument is somewhat more detailed than the one
above, since it is possible for p to decrease initially, but
when it hits zero, it immediately starts increasing at a rate
1, and hence never goes negative), and hence u(t) = umin

for all t, a contradiction. If p(0) < 0, then initially u = 1,
and p grows and at some point hits zero and turns positive



since the time-derivative of p at zero is positive (which is 1),
and hence u switches to its lower value. We know from the
previous argument that p cannot become negative after this
point, and hence we again have a switching policy with only
one switch.

The case when fX is not sign-definite can be handled along
the same lines of the two cases above. We thus conclude that
an optimal dynamic policy has to be a threshold one. �

The way to implement a threshold policy is quite sim-
ple. When a mobile has a forwarding opportunity, it checks
the time-stamp on the message which indicates its gener-
ation time. It then computes the t that has elapsed since
the generation time. If t is smaller than the threshold then
the message is forwarded, otherwise it is transmitted with
probability umin.

4.3 Time change and the optimal threshold
Let

ds = u(t)dt, s(0) = 0

Then

dX(s(t))

dt
=

dX(s)

ds
×

ds(t)

dt
= f(X(t)) u(t)

We thus conclude that

X(t) = X(s(t)).

Thus the controlled state evolves as a slower version of the
uncontrolled one, and the control u can be interpreted as
the slowing factor.

Remark 4.1. In the special case that a static policy u(t) =
p is used then we have s(t) = pt so that X(t) = X(pt).

Theorem 4.3. If X(τ) > z + x > X(uminτ) (or equiva-
lently, τ > σ(z) > uminτ), then the threshold value h∗ of the
optimal policy is given by

h∗ =
σ(z) − τumin

1 − umin
. (8)

The optimal value is given by

J∗(z) =

Z h∗

0

X(r)dr +
1

umin

Z σ(z)

h∗

X(r)dr

Proof. Consider any control policy u satisfying X(τ) ≤
x + z. Then, notice that

σ(z) ≥ s(τ) =

Z τ

0

u(r)dr

where equality holds iff X(τ) = x+z = X(s(τ)) = X(σ(z)).
Since u is positive, s is invertible and we let t = η(s).

Hence, it follows

J(u) =

Z τ

0

X(t)dt =

Z τ

0

X(s(t))dt =

Z s(τ)

0

X(r)dη(r)

≤

Z σ

0

X(r)dη(r) =

Z σ

0

X(r)

u(η(r))
dr

where we used the fact that η′(s) = 1
u(η(s))

: equality is

obtained if and only if X(τ) = x + z.

Among the threshold control policies, the optimal one is
thus the one for which h satisfies the constraint X(τ) = x+z,
and hence for which h satisfies

σ(z) = h · 1 + (τ − h) · umin

which yields (8). The expression for J∗(z) follows accord-
ingly. �

Let u∗ be a threshold policy with parameter h∗. The
difference between the value function under the optimal dy-
namic policy and the optimal static one is given by

J∗(z) − J∗

c (z) = −

„
τ

σ(z)
− 1

« Z h∗

0

X(r)dr

+

„
1

umin
−

τ

σ(z)

« Z σ(z)

h∗

X(r)dr

Since the static policies are a subset of the dynamic policies,
the latter is positive.

Remark 4.2. So far we have formulated the control prob-
lem as a constrained maximization one: Maximize D(τ),
(or equivalently maximize

R τ

0
Xsds) subject to a constraint

on the energy E(τ) ≤ εx. We could also study the uncon-
strained version, i.e. the problem where we do not consider
the energy constraint any more but where we add instead a
term to the objective function related to the energy:

Maximize

Z τ

0

Xsds + ζE (9)

where ζ ≤ 0 determines the tradeoff between the transfer
probability and the energy. This maximization problem can
be interpreted as the Lagrangian relaxation of the original
constrained problem, where ζ is the Lagrange multiplier.

We note that in the two-hops policy, X(t) is affine in u(t),
and thus both constraints as well as the objective are convex.
Assume that the Slater condition holds. We can use Karush-
Kuhn-Tucker Theorem to conclude that there exists a ζ such
that an optimal policy for the optimization of the Lagrangian
is also optimal for the constrained problem. This implies that
the unconstrained formulation also admits optimal dynamic
policies with a threshold structure.

5. SOME EXAMPLES
5.1 Epidemic routing

Here f is given by

f(x) = ρx(1 − x),

where ρ = Nλ. The solution of dx
dt

= f(x(t)) is

X(t) =
1

1 +
`

1
z
− 1

´
e−ρt

We have

σ(z) = −
1

ρ
log

„
z(1 − x − z)

(x + z)(1 − z)

«

We note that

d2X(t)

dt2
=

cρ2 exp(−ρt)(c exp(−ρt) − 1)

(1 + c exp(−ρt))3
.

where c = 1/z − 1.



d2X(t)

dt2
is seen to be positive for t ≤ S0 and negative for

t ≥ S0 where S0 = log(c)/ρ. Hence X(t) has a sigmoid form:
it is convex for t ≤ S0 and concave for t ≥ S0.

We also note that

dX(t)

dt

˛̨
˛̨
(epid−routing)

t=0

= z(1 − z)ρ (10)

Using Remark 4.1 we have for a static policy u(t) = p:

X(t) =
1

1 +
`

1
z
− 1

´
e−ρpt

5.2 Two-hops routing
Heref is given by

f(x) = λ(1 − x)

Then

X(t) = 1 + (z − 1)e−λt

which is a concave function of t.
Note that

dX(t)

dt

˛̨
˛̨
(2−hops)

t=0

= (1 − z)λ = z(1 − z)ρ/Nz

=
1

Nz

dX(t)

dt

˛̨
˛̨
(epid−routing)

t=0

(11)

Since z = X(0) ≥ 1/N we get

dX(t)

dt

˛̨
˛̨
(2−hops)

t=0

≤
dX(t)

dt

˛̨
˛̨
(epid−routing)

t=0

,

with equality for z = 1/N .
We have

σ(z) = −
1

λ
log

„
1 − x − z

1 − z

«

and further

J(z) =

Z σ(z)

0

X(r)dr =
−1

λ

»
log

„
1 − x − z

1 − z

«
+ x

–

Optimizing over all static policies
For a static policy uc(t) = c we have

J(z, uc) =
J(z)

c

which is decreasing in c. The optimal value is given for

c = σ(z)
τ

which gives

J∗

x(z) := sup
c

J(z, uc) = τ

2
41 +

x

log
“

1−x−z
1−z

”

3
5

5.3 Comparison
The uncontrolled epidemic routing maximizes the number

of nodes that possess the message at any time and thus max-
imizes the delivery probability at any time. Yet alternative
policies have been proposed in order to reduce the number of
”infected” nodes as the propagation and storing of copies re-
quires resources that might be quite precious (such as energy
or memory). We now have several alternatives to reduce the
infection rate: we could either keep using epidemic routing

but control the probability of forwarding a message to an-
other node, or we could switch to the two-hops (controlled
or uncontrolled). Which one is better?

We shall first compare the optimal static epidemic rout-
ing with the optimal static two-hops routing. We shall then
compare the optimal dynamic epidemic routing to the opti-
mal dynamic two-hops routing.

Theorem 5.1. Consider z = 1/N . Let u(t) = p be the
optimal static policy under the epidemic routing. Assume
that τ ≤ S0/p where

S0 =
log(N − 1)

Nλ
.

Then the optimal static policy under the two-hops routing
has larger probability of success delivery by time τ than the
optimal static policy under the epidemic routing.

Proof. It suffices to show that
R τ

0
X(s)ds is larger un-

der the optimal static two-hops policy, But this is a direct
consequence of the fact that

• X(t) is convex in t for t ≤ S0, under the epidemic
routing uncontrolled policy.

• Thus X(t) is convex in t for t ≤ S0/p under the epi-
demic routing policy with u(t) = p.

• X(t) is concave in t for all t > 0 under the two-hops
policy, and hence also X(t) under any static policy.

• X(τ) corresponding to the epidemic routing and to the
two-hops routing coincide at time 0 and time t = τ .

�
In the case of optimal policies, the comparison is a bit

more involved. But, we can relate the dynamics of optimal
policies for the epidemic routing and the two-hops routing.
First, observe that in general

σt(z) = σ(z)|(two−hops) ≥ σ(z)|(epid−routing) = σe(z).

Theorem 5.2. Let τ > σt(z) ≥ σe(z) > uminτ , then
there exist a threshold 0 < T ∗ ≤ τ such that for the dy-
namics of the optimal dynamic policies it holds

(
X(t)|(epid−routing) ≥ X(t)|(two−hops) 0 < t ≤ T ∗

X(t)|(epid−routing) ≤ X(t)|(two−hops) T ∗ < t ≤ τ

where equality holds at t = τ and t = T ∗ only.

Proof. Let 0 < h∗ < τ be the optimal threshold for the
epidemic routing. It holds

X(h∗)|
(epid−routing)

> X(h∗)|
(two−hops)

Also, by construction of optimal policies it holds

X(τ)|(epid−routing) = X(τ)|(two−hops)

Notice that X(t) is concave for the two-hops routing and
it is convex in [h∗, τ ] for the epidemic routing: since they
coincide in τ , the two dynamics can intersect in at most one
point in (h∗, τ).

If they do not intersect in (h∗, τ), then the statement is
clearly true since T ∗ = τ . Otherwise, if 0 < T ∗ < τ , consider
that

X(T ∗)|
(epid−routing)

= X(T ∗)|
(two−hops)



The inequality for h∗ < t < T ∗ is obvious. Also, let

y(t) = X(T ∗) + (t − T ∗)
X(τ) − X(T ∗)

τ − T ∗

From the convexity properties of the two dynamics

X(T ∗)|
(epid−routing)

< y(t) < X(T ∗)|
(two−hops)

for T ∗ < t < τ . �
Notice that in the case umin = 0 it holds indeed T ∗ = τ .

5.4 New Hybrid Policy
We saw that the optimal dynamic two-hops policy may

perform better or worse than the optimal dynamic epidemic
routing policy. We now propose a hybrid policy that always
does better than both.

Definition 5.1. Define a hybrid policy with parameter
T ∗ to be one that first forwards according to the optimal
epidemic routing up to time T ∗ and from T ∗ up to time τ
according to the optimal two-hops forwarding.

From the implementation standpoint this is rather imme-
diate, since from T ∗ on, the required operation is to inhibit
relays to forward to nodes which are not the destination.
Such a hybrid policy is monotone, and, from Theorem 5.2,
the integral

R τ

0
X(s)ds under such a policy (with T ∗ chosen

as in that Theorem) is either equal or larger than that under
the optimal dynamic two-hops and the optimal dynamic epi-
demics routing policies. The general theory developed in the
previous sections guarantees that the delivery probability is
thus larger.

In order to construct such a policy explicitly, the value T ∗

is needed. We show how to compute it in closed form in a
specific case; the general case is more involved and it is not
detailed here. Let τ = σt(z) ≥ σe(z) > uminτ : this is the
case when the optimal policy under the two-hops routing is
the uncontrolled one.

In order to simplify the notation, let ζ = X(τ) and Γ =
(1/ζ − 1). We use the equation f(x) = uminρx(1 − x) for
the epidemic routing when h∗ < t ≤ τ . It follows

X(T ∗)|
(epid−routing)

=
1

1 + Γ euminρ(τ−T∗)

In the same way, for the two-hops routing we obtain

X(T ∗)|
(two−hops)

= 1 − (1 − ζ) eλ(τ−T∗)

Equating the two expressions we obtain the equation

H(θ) = 0 where H(θ) = (1 − θ) − ζ (1 + θNumin) (12)

and θ = e−λ(τ−T∗), which can be solved numerically in order
to obtain T ∗.

Note that H(θ) is monotone decreasing in θ on the θ ∈
[0, 1], H(0) = 1 − ζ > 0 and H(1) = −2ζ < 0. Hence there
is a unique solution on that interval that can be computed
using bisection. (Any solution for θ > 1 is not of interest
since it corresponds to T ∗ > τ .)

5.5 Numerical examples
To illustrate a situation where the optimal static two-hops

forwarding policy does better than the epidemic routing we
consider N = 200 nodes with initially only the source node
infected (i.e. z = 1/200). We set ρ = 1 and as time horizon
we take τ = 26.467 sec. The energy constraint is taken so

as to correspond X(τ) = 0.128. The parameters were cho-
sen such that (i) among the static two-hops routing policies,
the uncontrolled one is optimal (ii) the optimal static epi-
demic routing policy is obtained with p = 0.123. With these
parameters, S0 = log(c)/ρ = log(199) = 5.700.

Figure 1a) shows the fraction of nodes that have a copy
of the message as a function of the time. It contains two
curves: one is concave as a function of time, which corre-
sponds to the fraction of infected nodes under the two-hops
routing, and the other one is convex as a function of the time
and corresponds to the fraction of infected nodes under the
epidemic routing as a function of time. The convexity of
the latter curve follows from the fact that the choice τ < S0

implies that we operate at the convex part of the sigmoid
shape of the epidemic routing. We see in the figure that
indeed, the surface below the curve of the epidemic rout-
ing (restricting to t ≤ τ) is smaller than the curve of the
two-hops routing, which confirms Theorem 1a).

At a coarser time scale, the epidemic routing curve is sig-
moid, as already mentioned, which is seen in Figure 1b) (this
Figure corresponds to the non-controlled case). The break-
ing point S0 = 5.30 in which the curve starts becoming
concave is well seen in that figure.

Finally, Figure 1c) and 1d) report on two cases where
Theorem 5.2 applies.

Figure 1c) in particular depicts the case when 0 < h∗ < τ ,
T ∗ = τ and σt(z) ≥ τ ≥ σe(z) > uminτ : this is the degener-
ate case when the optimal policy under the two-hops routing
is the uncontrolled one and the optimal solution is seen to
be the optimal dynamic policy under epidemic routing.

Figure 1d) depicts the case when both thresholds are smaller
than τ , obtained for the energy constraint corresponding to
X(τ) = 0.064: as it can be seen there, the switching time
T ∗ = 4.645 occurs at the intersection of the optimal dynam-
ics. In particular, we can recognize easily the dynamics of
the hybrid policy, which would be the envelope of the two
curves; apparently, the area of the envelope of such an hy-
brid policy is larger so that the deliver probability is higher
than the two optimal policies. In particular, in the depicted
case, it holds D(τ) = 0.652 for the epidemic routing and
D(τ) = 0.734 for the two-hops routing. The hybrid policy
attains D(τ) = 0.74.

6. THE DISCRETE MODELING
We consider now the original discrete setting. We define

Xn to be the number of mobiles among N which have a
copy of the message at time n∆. For simplicity we consider
discrete time where a time slot is of duration ∆. We assume
that a mobile that receives a copy during a time slot can
forward it starting from the following time slot.

Let ξ
(i)
n be the indicator that the ith mobile among the

N − Xn mobiles that do not have the message at time n∆,
receives the message during (n∆, (n + 1)∆]. Then we have

Xn+1 = Xn +

N−XnX

i=1

ξ(i)
n

The forwarding probability during (n∆, (n+1)∆] is assumed
to be constant and is denoted by un. Denote by qn the
probability that a mobile does not receive the message in
time slot n.

As we had in the case of fluid approximations, we would
like to minimize the expected energy used till some time n,
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Figure 1: a) Fraction of infected nodes as function
of time, N = 200 b) Evolution of the fraction of in-
fected nodes in the uncontrolled epidemic routing
c) Comparison of the optimal forwarding policies,
degenerate case for the two-hops policy d) Compar-
ison of the optimal forwarding policies. Dashed lines
reports on the epidemic routing, continuous lines re-
port on the two-hops routing; horizontal lines refer
to the target x + z.

which is proportional to E[Xn], and on the other hand max-
imize D(n∆). We shall provide below an explicit expression
for E[Xn] and a simple recursive way to compute D(n∆).

We shall assume in the sequel that qn does not depend on
Xn. This is the case in the two hop routing where we have

qn = exp(−λun∆)

We then have:

E[Xn+1] = E[Xn]+(N−E[Xn])(1−qn) = N(1−qn)+E[Xn]qn

Hence

E[Xn] = x0

n−1Y

i=0

qi + N

n−1X

j=1

n−1Y

i=j

qi

Define G∗

n(Z) := E[ZXn ] the probability generating func-
tion (PGF) of Xn and let X∗(s) := E[exp(−sXn)] be the
Laplace Stieltjes Transform of Xn.

X∗

n(s) is useful since it follows from (3) that

D(n∆) = 1 − (1 − D(0))
nX

i=1

X∗

n(λ) (13)

We have the relation X∗

n(s) = G(exp(−s)).
Define

γn(Z) := E[Zξ
(1)
n ] = qn + (1 − qn)Z

Then

G∗

n+1(Z) = E

»
Z

“

Xn+
PN−Xn

i=1 ξ
(i)
n

”

–

= E

»
E


Z

“

Xn+
PN−Xn

i=1 ξ
(i)
n

”

˛̨
˛̨ Xn

ff–

= E
h
ZXnγn(Z)(N−Xn)

”i

= γn(Z)NG∗

n

„
Z

γn(Z)

«

We thus have a recursive formula to compute G∗

n(Z).

7. NUMERICAL RESULTS
This section complements the previous sections with both

simulations and with numerical studies. The objective of
the simulations is to check the validity of our modeling and
solution approaches: we validate the basic model, study the
fluid approximation and get an insight on when it performs
well. We then perform a numerical study and compute op-
timal policies based on the theory that we had developed
in previous sections in order to get insight on the value of
static and of dynamic control in DTNs.

The simulation set up is as follows. First, we generated
several contact traces based on different mobility patterns,
which collect sequences of pairs of nodes coming into radio
range, and the time when such contacts occurred (specific
settings are reported below). In particular, we used two
synthetic mobility models, mobility traces which were gen-
erated using Omnet++ according to the Random Waypoint
(RWP) mobility model [21], and traces of random contacts
occurring according to a marked Poisson process with i.i.d.
marks (poissonian traces). Then, we considered uniform
i.i.d. pairs of source-destination nodes, and simulated the
(un)controlled forwarding process based on the contact pat-
terns derived from the mobility traces, using Matlab.

7.1 Uncontrolled forwarding (u(t) = 1)
First, we conducted some experiments aimed at validating

the delay formula (3) in the case of uncontrolled forwarding.
The first set of numerical examples reported below are re-
ferred to the case where pairs of nodes meet with frequency
λ = 1×10−5s−1; values are averaged over 104 samples (con-
fidence intervals were calculated within 95% accuracy).

In both cases of two-hops routing and of epidemic routing,
as depicted in Fig 2, the fluid model follows quite accurately
the dynamics of the fraction of infected nodes.

As a further step, we tested the validity of the fluid ap-
proximation when changing the number of nodes in the sys-
tem. In particular, as in Fig 3, in the case of the epidemic
routing, and for the settings considered here, the fraction of
infected nodes is approximated accurate by the fluid model
as soon as N is on the order of 30 of nodes.

We further validated the model by collecting the statistics
for the message delay, namely D(t). As reported in Fig 4, in
particular, the experimental CDF shows a tight match with
the theoretical prediction. Notice that, according to eq. (3),
the good fit of the delay CDF confirms the match for the
dynamics of X(t).

From these preliminary results we can already character-
ize some typical features of the two representative routing
techniques considered in this paper, namely two-hops rout-
ing and epidemic routing. In fact, if we compare Fig 2 and



0 0.5 1 1.5 2 2.5
x 104

0

0.2

0.4

0.6

0.8

1

Time [s]

Fr
ac

tio
n 

of
 in

fe
ct

ed
 n

od
es

simulation
fluid model

Epidemics

Two-Hops

Figure 2: Fraction of infected nodes, uncontrolled
case, N = 200.
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Figure 3: Fraction of infected nodes, Epidemic
Routing, uncontrolled case, various number of nodes
N = 30, 50, 100, 200.

Fig 4, we notice that in the case of the two-hops relaying
protocol, it takes around four times longer than epidemic
routing in order to deliver a message with high probability.
Of course this was expected, since epidemic routing mini-
mizes the delay at the cost of message overhead. Conversely,
the price paid by epidemic routing for such a gain is appar-
ent, since the corresponding fraction of infected nodes, i.e.
the energy expenditure, in order to achieve 5 times larger
than in the case of two-hops relaying.

Finally, we repeated the experiments on the dynamics
of infected nodes and delay using the Omnet++ generated
RWP mobility traces. In this setting there are N = 200
nodes in the system, which move at v = 5 m/s in a square
area with side length L = 5000 m and have R = 15 m ra-
dio range. The initial distribution of nodes is drawn from
the stationary distribution according to the RWP mobility
model [22] in order to avoid transitory effects. Notice that
the equivalent value of λ for this case coincides with the
value used to generate poissonian contact traces, according
to [13]. As a general remark, the numerical results were
derived under the conditions R � L, and moderate speed;
this choice of the parameters is aimed to mimic conditions
for the network to be sparse, which is in line with a DTN
scenario.
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Figure 4: Delay CDF, uncontrolled case, N = 200.

As it can be appreciated in Fig. 5 the dynamics of the
number of nodes is captured by the model, and even in the
case of Fig. 6 the fit of the CDF shows a very tight match
with the theoretical prediction.
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Figure 5: Fraction of infected nodes, uncontrolled
case, RWP mobility, N = 200, L = 5000 m, v = 5 m/s.

Also, as seen in Fig. 7, the fluid approximation starts ap-
plying when the number of nodes is on the order of some
tenth of nodes (30 with the given settings), as already veri-
fied in the previous experiments.

In the following we verify the performances of the control
policies described in previous sections; the following mea-
surements were obtained using poissonian traces.

7.2 Static control policies (u(t) = c)
After verifying the match of the model with the experi-

mental data, we simulated static control policies under the
same settings described before.

In particular, under the two-hops routing policy, we tested
two reference values of the maximum permitted delay, τ =
10000 and τ = 18000, respectively. We then considered an
increasing normalized energy constraint and, in particular,
the corresponding optimal static control is reported in Fig 8.
The reference performance figure tested is the outage proba-
bility, i.e., 1−D(τ). As depicted in the figure, the change of
slope of the control corresponds to the point beyond which
it is optimal to forward messages with unit probability. We
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also remark that, for the settings considered in this series
of experiments, the optimal static control increases almost
linearly in the energy constraint.

But, as reported in Fig 9, while the forwarding probability
increases linearly, the outage probability decreases exponen-
tially towards the minimum allowed outage probability, i.e.,
the value corresponding to uncontrolled forwarding. This
suggests that a moderate increase in the forwarding proba-
bility has a sensible impact in the delivery probability.

7.3 Dynamic control policies
In the next set of simulations, we verified the performances

of the optimal dynamic policies at the increase of the nor-
malized energy constraint, under the same simulation set-
tings discussed before. We arbitrarily chose umin = 0.1; we
remark, though, that according to the optimality of the dy-
namic policies, within the same feasibility region, the outage
probability does not change with the choice of umin (whereas
the control actually does).

In the case of the two-hops routing policy, as reported in
Fig 10, the optimal threshold h∗ increases almost linearly
towards the maximum value, i.e., τ , which corresponds to
uncontrolled forwarding.
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Figure 8: Optimal static control, τ = 10000, 18000 s,
two-hops routing.
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Figure 9: Outage probability at time τ = 10000, 18000
at the increase of the energy constraint, static con-
trol case, two-hops routing. Markers superimpose
simulation outcomes.

The corresponding behavior of the outage probability is
reported in Fig 11. For the sake of clearness, we also re-
ported the behavior of optimal static policies in the same
region: the gain obtained by optimal dynamic policies is
quite apparent compared to optimal static control, with a
decrease of outage probability of 0.1 below x = 0.1.

Incidentally, we notice that in the leftmost regions of Fig 10
and Fig 11, the graphs do not cover values of the energy
constraint such that x < τumin; as discussed before, in fact,
below such values of the fraction of infected nodes, there
exists no feasible forwarding policy.

In order to complete the performance characterization of
optimal policies, we depicted the probability distribution
function (PDF) of the number of infected nodes under the
condition that the message is received by time τ . Basi-
cally, this represents the energy expenditure at reception
time when ε = 1. As depicted in Fig 12, when the energy
constraint is tight, the probability distribution function is
concentrated around the reference value (x = 0.05 in the
figure), whereas for a loose bound, practically the uncon-
trolled case, (x = 0.12 in the figure) the PDF is smoother.
The shape of the PDF is rather insensitive to the value of τ .

Finally, it is interesting to compare the dynamics of the
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hops routing.
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Figure 11: Outage probability at time τ =
10000, 18000, at the increase of the energy constraint;
optimal dynamic control, two-hops routing. Mark-
ers superimpose simulation outcomes, thin dashed
lines report optimal static policies for comparison

fraction of infected nodes as reported in Fig 13 for the case
of epidemic forwarding and in Fig 14 for two-hops routing,
under different relaying controls. In particular, with respect
to epidemic routing, and with τ = 2000 s and x = 0.14,
umin = 0.1: with this choice in the case of the static control
u = 0.68, whereas in the case of optimal control, h∗ = 1296
s. Conversely, in the case of two-hops routing, τ = 10000 s,
x = 0.07, umin = 0.1, and in this case static control u = 0.7,
whereas in the case of optimal control, h∗ = 6675 s.

It is quite apparent that the static control policy gener-
ates a delayed version of the uncontrolled dynamics. In the
case of the optimal dynamic control, instead, around the
threshold, the fraction of infected nodes starts increasing at
a slower pace. We notice that the two controlled dynamics
intersect at time τ and the intersect corresponds to x + z.

0 0.05 0.1 0.15 0.2 0.250

0.05

0.1

0.15

0.2

Fraction of nodes

En
er

gy
 P

DF

τ=10000 s
τ=18000 s

�
�

�	

x = 0.05

�
�

�	

x = 0.12

Figure 12: Conditional PDF of energy expenditure
at the reception time τ = 10000, 18000; energy con-
straints are x = 0.05 and x = 0.12, respectively.
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Figure 13: Dynamics of the fraction of infected
nodes under uncontrolled a), static b) and optimal
c) forwarding policies; Epidemic routing.

7.4 Discrete model
Consider now the discrete model as introduced in Sec-

tion 6: due to the relative simplicity of the models developed
before, we are interested in the limit of validity of the fluid
approximation with respect to the discrete system. In this
experiment, in particular, we verified numerically whether,
in the case of the two-hops routing static policies, the op-
timal forwarding probability in the discrete case is actually
close to the value predicted by static policies. In order to
do so we used the optimal static control and we verified the
fit of the experimental CDF as given by the fluid model, for
different values of the time-slot ∆.

Fig. 15a) depicts the measured value of D(n∆) versus in-
creasing values of the forwarding probability; we used the
same setting as for the fluid model, with τ = n∆ = 18000
s and x + z = 0.11. In Fig. 15b) we reported on the corre-
sponding expected value of the fraction of infected nodes: as
seen there, the intercept corresponds the optimal forwarding
probability as predicted by the fluid model. In particular,
for the case at hand, the optimal static control predicted by
the fluid model is u = 0.566. The indication is that the ex-
pected number of infected nodes at time τ , as given consid-
ering the (deterministic) fluid approximation, matches very
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well the average number of nodes experienced in the dis-
crete system. The values found for the CDF are within 5%
relative error compared to the value predicted by the fluid
model, represented by the horizontal line in Fig. 15a). The
prediction is accurate in a range of values of the time-slot
∆ = 0.1, 1, 10 s; we then conclude that, within this range,
the fluid model, and the policies derived before, represent a
valid approximation even for the discrete system.

8. EXTENSIONS TO NON-MONOTONE FOR-
WARDING POLICIES

Consider a monotone policy for which the fluid dynamics
is given by (1). Now add to each node a timer; it starts
counting whenever the corresponding node receives a copy
of the message and expires some exponentially distributed
time later. At that time the message is discarded.

The evolution of the state is now modified to

dX(t)

dt
= u(t)f(X(t)) where f(x) = f(x) − ηx (14)

and where u(t) ∈ [umin, 1], umin > 0.

Example In particular, for the uncontrolled two-hops
routing this gives

dX(t)

dt
= λ(1 − X(t)) − ηX(t)

It has a stationary point

X∗ =
λ

λ + η

We shall assume throughout that we start initially at z < x∗.
Then X(t) will converge by monotonically increasing to x∗

and will not exceed this value. Thus if we define y = x/x∗

to be the normalized fraction of nodes that have a copy of
the message, then it indeed satisfies the same constraints
0 ≤ y ≤ 1 and y ≥ 0, and its dynamics is given by

dY (t)

dt
= u(t)f(Y (t))

where f(Y (t)) = −(λ + η)(1 − Y (t)). Thus the normalized
state dynamics in presence of timers is an accelerated version
of the one without timers.

Theorem 8.1. Consider the two-hops forwarding policy
with exponential timers with parameter ζ. Consider the re-
laxed problem

Maximize

Z τ

0

Xsds + ζE (15)

with ζ ≤ 0, and assume that |εζ| < 1. Then it is maximized
by the policy that solves the problem

Maximize

Z τ

0

Xsds(1 + εζ) + ζ(X(τ) − X(0)) (16)

and which does not have timers. Hence the optimal policy is
of a threshold type.

Proof. The energy is not any more proportional to X(τ)−
X(0), but instead to X(τ) − X(0) + R(τ), where R(τ) is
the total number of deletions of the message due to timers
timeout. It is given by R(τ) =

R τ

0
X(s)ds. Thus (15) is

equivalent to (16). �

9. CONCLUDING COMMENTS
We have studied in this paper the question of how to

control efficiently message forwarding in delay tolerant net-
works. To achieve a desirable tradeoff between a large proba-
bility of successful transmission within a given time and the
desire to manage well resources (in particular energy), we
formulated a constrained optimal control problem based on
a fluid model of the system’s dynamics. The quantity that
we proposed to control was the probability of forwarding a
message to another mobile when two mobiles come into each
other’s transmission range. This control is an additional
feature that can be combined with any type of forwarding
policy: we have studied in particular its use in conjunction
with the two-hops and the epidemic routing policies. We
considered both static policies as well as dynamic policies for



choosing the message. We identified a threshold structure
of the optimal dynamic policies and computed the optimal
threshold for the two-hops routing as well as the epidemic
routing. Our modeling assumptions and the use of the fluid
model were validated through simulations.

Explicit expressions for the performance measures for the
fluid model have been obtained which enabled us to study
the performance of optimal policies and the dependence on
system’s parameters.

10. ACKNOWLEDGMENTS
This work has been partially supported by the European

Commission within the framework of the BIONETS project
IST-FET-SAC-FP6-027748, www.bionets.eu. Research re-
ported here has also been facilitated by a UIUC-INRIA Col-
laborative Research Grant jointly from the University of Illi-
nois at Urbana-Champaign and INRIA, France.

11. REFERENCES
[1] A. A. Hanbali, P. Nain, and E. Altman, “Performance of ad

hoc networks with two-hop relay routing and limited packet
lifetime,” in Proc. of Valuetools. New York, NY, USA:
ACM, 2006, p. 49.

[2] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine,
“Maxprop: Routing for vehicle-based disruption-tolerant
networking,” in Proc. of IEEE INFOCOM, Barcelona,
Spain, April 23–29, 2006.

[3] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and
J. Scott, “Impact of human mobility on the design of
opportunistic forwarding algorithms,” in Proc. of
INFOCOM, Barcelona, Spain, April 23–29, 2006.

[4] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and
R. Patra, “Implementing delay tolerant networking,” Intel,
Tech. Rep. IRB-TR-04-020, 28 Dec. 2004.

[5] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant
network,” SIGCOMM Comp. Comm. Rev., vol. 34, no. 4,
pp. 145–158, Oct. 2004.

[6] M. M. B. Tariq, M. Ammar, and E. Zegura, “Message ferry
route design for sparse ad hoc networks with mobile nodes,”
in Proc. of ACM MobiHoc, Florence, Italy, May 22–25,
2006, pp. 37–48.

[7] W. Zhao, M. Ammar, and E. Zegura, “Controlling the
mobility of multiple data transport ferries in a
delay-tolerant network,” in Proc. of IEEE INFOCOM,
Miami USA, March 13–17, 2005.

[8] A. Vahdat and D. Becker, “Epidemic routing for partially
connected ad hoc networks,” Duke University, Tech. Rep.
CS-2000-06, 2000.

[9] A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An
epidemic model for information diffusion in MANETs,” in
Proc. of ACM MSWiM, Atlanta, Georgia, Sept. 28, 2002,
pp. 54–60.

[10] K. Harras, K. Almeroth, and E. Belding-Royer, “Delay
tolerant mobile networks (DTMNs): Controlled flooding
schemes in sparse mobile networks,” in Proc. of IFIP
Networking, Waterloo, Canada, May, 2005.

[11] M. Grossglauser and D. Tse, “Mobility increases the
capacity of ad hoc wireless networks,” IEEE/ACM Trans.
on Networking, vol. 10, no. 4, pp. 477–486, Aug. 2002.

[12] P. Gupta and P. R. Kumar, “The capacity of wireless
networks,” IEEE Trans. on Information Theory, vol. 46,
no. 2, pp. 388–404, March 2000.

[13] R. Groenevelt and P. Nain, “Message delay in MANETs,”
in Proc. of ACM SIGMETRICS, Banff, Canada, June 6,
2005, pp. 412–413, see also R. Groenevelt, Stochastic
Models for Mobile Ad Hoc Networks. PhD thesis,
University of Nice-Sophia Antipolis, April 2005.

[14] X. Zhang, G. Neglia, J. Kurose, and D. Towsley,
“Performance modeling of epidemic routing,” Elsevier
Computer Networks, vol. 51, no. 10, July 2007.

[15] G. Leitmann, Optimal Control, McGraw-Hill, 1966.

[16] I. Carreras, D. Miorandi, and I. Chlamtac, “A framework
for opportunistic forwarding in disconnected networks,” in
Proc. of ACM Mobiquitous, Palo Alto, USA, July 17–21,
2006.

[17] M. Musolesi and C. Mascolo, “Controlled Epidemic-style
Dissemination Middleware for Mobile Ad Hoc Networks,”
in Proc. of ACM Mobiquitous, July 2006.

[18] A. E. Fawal, J.-Y. L. Boudec, and K. Salamatian,
“Performance analysis of self limiting epidemic forwarding,”
EPFL, Tech. Rep. LCA-REPORT-2006-127, 2006.

[19] A. Jindal and K. Psounis, “Performance analysis of
epidemic routing under contention,” in Proc. of ACM
IWCMC, July 3-6 2006.

[20] T. Small and Z. J. Haas, “The shared wireless infostation
model - a new ad hoc networking paradigm,” in MobiHoc,
Annapolis, Maryland, USA, June 1-3 2003.

[21] T. Camp, J. Boleng, and V. Davies, “A survey of mobility
models for ad hoc network research,” Wiley Wireless
Communications and Mobile Computing, vol. 2, no. 5, pp.
483–502, August 2002.

[22] J.-Y. L. Boudec and M. Vojnovic, “Perfect simulation and
stationarity of a class of mobility models,” in Proc. of IEEE
INFOCOM, Miami, USA, March 13–17, 2005.


