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Chapter 1

Introduction

1.1 Some history

1.1.1 The Talmud Example

The oldest reference to game theory that appears in references on the history of this disipline goes
back to the TALMUD (200 AD) which is a Jewish theological book, which serves also as the basis
for the jewish religious law. The following situation appears there and serves to explaian how to
split costs among players. A man dies leaving an estate of size e and debtbs of size d1,...,dn that
exceeds e. How much should each creditor get? The Talmud answers by providing the following
three examples.

• If e= 100 then d=( 33.3, 33.3, 33.3 )

• If e= 300 then d=( 50, 100, 150),

• If e= 200 then d=( 50, 75, 75 ).

The question of how the answers were generated in each of the examples remained an open question.
It was solved less than 30 ago by Aumann and Maschler. The authors published their �nding
solution simultaneously in a mathematical and in a theological journal.

The explanation is based on other rules that handle the simpler case of splitting between two
persons. The general question is of how to split some value when the sum of claims of the two
persons exceeds the available amount. To formulate the rule, the Talmud gives two examples.

• Rule 1: If 2 persons have the same claim they receive equal shares

• Rule 2: Assume there is a dispute over some asset, and that player 1 claims that all the
asset is due to him, while the second has a claim over half of the asset. Then they split the
part that is under dispute (one hald of the asset) equally between the persons, leaving the
whole undisputed part to the �rst player.

Going back to the case of more than two persons, Aumann and Maschler show that there is a
unique division between all players such that the following holds. Choose any two players, along
with the amount that they receive together. Then the amount received by each of these players is
the same as the one that they would obtain if we applied Rule 2 to the problem of splitting that
amount between them.

1.1.2 The con�ict between Abram and Lot

The story of Abraham and Lot's con�ict [Bible, Book of Genesis] describes the separation of the
brothers as a result of a �ght among their shepherds. The dispute ends with a pieceful agreement
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8 CHAPTER 1. INTRODUCTION

which is described in Wikipedia as being the most ancient peace accord known to date. Abraham
o�ers Lot to separate, in order to prevent the �ght, and he grants Lot with the right to be the
�rst among the two to pick the territory he desires:

"5 And also Lot, who went with Abram, had �ocks and cattle and tents."

"6 And the land did not bear them to dwell together, for their possessions were many, and
they could not dwell together."

"7 And there was a quarrel between the herdsmen of Abram's cattle and between the herdsmen
of Lot's cattle, and the Canaanites and the Perizzites were then dwelling in the land."

"8 And Abram said to Lot, "Please let there be no notions of quarth, for we are brethren."

"9 Is not all the land before you? Please part from me; if [you go] left, I will go right, and if
[you go] right, I will go left. "

Lot accepts the peace deal, for the Partition of the Land, and chooses the area of the plain
of the Jordan in Sodom area, and the story ends with Abraham and Lot separately settling in
di�erent areas of the Land..."

The con�ict between Abraham and Lot can be described as a Coordination Game. The peace
solution o�ered by Abraham is a Stackelberg equilibrium. We shall describe both the coordination
games as well as of the Stackelberg equilibrium later.

The description is taken from
http://en.wikipedia.org/wiki/Abraham_and_Lot%27s_Conflict

1.2 Impact of game theory on publications in networking

We searched in Google scholar the number of documents found when searching for the following
types of games: (1) Power control, (2) Flow control, (3) Rate control, (4) Access control, (5)
Jamming and (6) Routing games. We searched for documents containing all of the words "XXX
wireless networks GT" where GT stands for game theory and where XXX stands for one of games
(1)-(6) above. All �gures correspond to the date of October 15th, 2010. The number of the
occurrences corresponding to each of the cases are summarized in the �rst row of Table 12.1. The
second row of the table was obtained by repeating the above without the word "games theory" (i.e.
searching for all the words "XXX wireless networks"). The last row in the matrix was obtained
by searching for the words "XXX networks, game theory".

Power Flow Rate Access Jamming Routing

control control control control

Wirelesss Networks, GT 27600 19400 25600 27400 3520 16100

Wirelesss Networks 555000 303000 59000 609000 19000 342000

Networks, GT 391000 174000 264000 298000 17000 38000

Table 1.1: The number of citations

If we consider wireless networks, then in each type of gae, the number of documents that fall
within game theory forms around than in 5%. The game that was the most studied in the wireless
context is the power control one. (This is also the case if we do not specify to wireless, but then
it may cover also games that arise in supplying electricity).

Using the software "publish or perish", we �nd in 2009, 189 documents with all the words
"jamming wireless networks" in google, of which 39 further contain "game" and 22 contain "game
theory". In 2008 there are 123 documents containing "jamming wireless networks" and only six
containing further "game theory". Thus the ratio of papers that use game theory for studying
jammig seems to be around 5%.

Next we consider Figure 1.1 that shows how the number of documents that contain all of the
words "Routing games Nash equilibrium game theory" vary as a function of the year.
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Figure 1.1: The number of documents each year con-
taining all the words "Routing games Nash equilib-
rium game theory" as a function of the year.

The precise numbers observed each year by searching with scholar google on October 15th,
2010, are given in Table ??. The total number of documents published on 1999 and earlier has
been found to be 217. There is a steady linear growth. Within 10 years, this number is seen to
have increased by more than 10.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

No. of docs 38 51 49 190 150 216 324 358 459 539 570

Table 1.2: The evolution of the number of documents on routing games

Next we use Publish or perish, under cathegory Engineering, Computer Science and Mathe-
maticis and check the popularity of the set of words "game theory Nash equilibrium". We make
no particular referene to networking applications. Within the documents published by the IEEE
on 2009, 764 were found in 2009 containing the words "Wireless networks". In 1999 in contrasnt
we �nd only 2.

We conclude that there is a signi�cative increase in the impact of game theory as we observe
it over documents on the Internet.

1.3 Is game theory an appropriate tool for designing net-
works

The word "game" may have conotations to "toys" or of "playing" (as opposed to decision making).
But in fact it stands for decision making by several decision makers, each having her (or his) own
individual objectives. In the special case that there is a common objectives that all players
maximize, this is called a team problem. When there is only a single decision maker we speak
of optimization rather than team. In a team problem we search for a maximizer of the common
objective. In a non-cooperative we search for a typically for a solution at which each player is at
a (local) maximum - it cannot do better by a unilateral deviation. This is called an equilibrium.

Remark 1. Is a game where all players have a common objective to maximize, equivalent to a
team problem? Is the equilibrium of the game the same as the solution of the team problem? The
answer is no. Any solution of the team problem is an equilibrium to the game problem but the
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converse need not hold. As an example, let there be two players, where player i has to choose
either xi = 0 or xi = 1. Consider Then x1 = x2 = 1 is the team optimal solution. It is also an
equilibrium. On the other hand, x1 = x2 = 0 is an equilibrium but is not an optimal team solution.

When should one use a game theoretic framework and when should one use a team framework?
Game theory searches for stable solutions to this problem. Is a user of a mobile phone indeed

constantly trying to improve his performance? Experience shows that users tend to be coopo-
erative. In fact, many Internet protocols are very cooperative: TCP that controls the rate of
transmission of packets, is an example for a cooperative behavior.

When are the users cooperative? The power control game seems to be the most studied one in
wireless networking (according to the �gures that we extracted from google). Yet in practice the
user does not have access to control the power. The equipment obliges us to be cooperative.

In Section 1.5 we present an example where, in contrast, the equipment provider leaves the
decision making to the user and even provides the user the appropriate tools to make and take
the decisions.

1.4 Business models of jammers

According to [1], The US military routinely uses jammers to protect secure military areas from
electronic surveillance. Jammers can also be used to protect traveling convoys from cell phone
triggered roadside bombs in places like Iraq.

Interestingly, the business model of jammer phones include jamming one's own telephone. This
allows one to avoid being disturbed. Typical prices of a jammer vary between 100 and 300 USA
$.

Leading electronic companies have introduced cellular phone jammers based on the denial of
service approach: they simply create noise which interferes with the communications [2]. More
e�cient techniques have been designed later [2].

Jammers are actually manufactured and sold over the Internet by several companies. Selling
jammers in the USA and in Europe is not legal, but it generally is legal in Asia [1]. According to
[1], the FCC (Federal Communications Commission) in the United States has outlawed the sale
and use of jammers because they can in theory interfere with emergency communications between
police and rescue personnel, aid in criminal activity as well as disrupt medical equipment like
pacemakers; Using a cell phone jammer may result in �nes of upto $ 11,000.

Figure 1.2: Small jammer Figure 1.3: Big jammer

Figures 1.2 and 1.3 show a a small and a big jammer, respectively. The small one is of the
size of an average wireless telephone terminal (photos taken from antennasystems.com and from
Globalgadgetuk.com respectively). Most jammers only have a range of about 50 to 80 feet and will
only e�ectively jam their immediate surroundings. Stronger jammers can cover larger structures
like o�ce buildings, are also sold. Examples of sites that sell jammers are
www.methodshop.com/gadgets/reviews/celljammers/index.shtml
and www.covert-supply.co.nz/products/Wi�,-Bluetooth,-Wireless-Video-Jammer-%252d-Portable-
Wireless-Blocker.html
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Most cell phone jammers come in 2 versions, one for Europe, North Africa and the Gulf states
GSM networks (900 & 1800) and one for the Americas & Canada (800 & 1900 mhz) networks [1].

References:
Surveys on networking games: In [3], the authors present a survey that focuses on networking

games with a special emphesis on the relation between games arising in road tra�c networks and
those in telecommunication networks. A more general overview on networking games can be found
in [4]1. For a survey focusing on wireless networks, see [5]. A recent survey in French can be found
in [6].

Figure 1.4: The access point association problem: Information available when
taking a decision

1.5 The Association problem

There are several types of association games that one is frequently faced with.

Choosing an access point

When atempting to connect to the Internet, one may have the option of choosing between several
access points that use wireless local area networks (WLANS). The decision, of which access point
to connect to, is typically left to the user, The driver for the wireless card typically gives some
information concerning the channel state at each one of the access points. Fig 1.4 is an example of
the information presented for a user when the opportunity of taking a decision is o�ered to him.
It is easily seen that the user is indeed put in a situation of a game.

This is a complex stochastic game as each user comes at random points, its decision will be
a�ected by the state of the channel not only at the present (i.e. the one it has available) but also
at the future, and the latter will be determined by the decisions of future users and a user is not
aware of when future arrival will occur and what the decisions will be.

This game has an unusual information: it is partial and missleading. Missleading - because,
although the the channel state indeed can gives information on the transmission rate, it is known
that the actual throughput of a user is a function of not only his channel state but also of that
of the other connected users. (The throughput is known to be lower bounded by the harmonic

1see a more recent update in
http://www-sop.inria.fr/members/Eitan.Altman/PAPERS/srvUpdate.pdf
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means of the rates available to each user). The real utility of a user is the throughput he would
get and the user may not be aware that it is possible that an access point with a better channel
may have a lower throughput because more terminals are connected to it.

Choosing between technologies

We may have to choose between several technologies: say between 3G, WIFI, bluetooth and Ad-
Hoc. Figure 1.5 is an example of the iniformation available to a user in a game where one has the
option of connecting to an Ad-hoc network or to an access point.

Figure 1.5: The association problem of choice of technology: Information avail-
able when taking a decision

Re�ned modeling of the above games

So far we considered a game where the each user takes one decision: where to connect upon
arrival. However, once the user is connected he may get more information about his throughput.
An example of the gra�cal form that such extra information is presented to us is given in Figure
??. This information too may be missleading. The one we see in Figure ?? is the physical channel
rate. Again, the throughpuut of the user is not this channel rate but some function of the channel
rates of all usuers; this function is bounded by the harmonic mean of the channel rates of all users
connected to the access point.

The new available information could be used to reconsider the connection decision. In that
case the game becomes more complex as the strategy of the users is a more complex object.

A hierarchical game of association

In some cases, each of the access points corresponds to that of another operator. In other cases,
the choice of operator is o�ered to a user only once it cnnects to an access point. This is again a
game. An example of the way that the choices are presented to the user is presented in Figure ??.

This game may also be a hierarchical one. It may involve a preliminary decision to which service
provider to attempt connection. Once an attempt is made then the user gets an information on
the pricing policy of the provider (note that the user may know the pricing in formation of one or
more providers before making the decision since this pricing usually remains the same for a long
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Figure 1.6: The access point association problem: Information available after
taking the initial decision

period. it may discover the quality of service o�ered by an operated only after taking the decision
of whicih of the service providers to connect to.

In this game the decisions may depend on the pricing strategy of each service provider as well
as on the quality of its service. The latter may be unknown, and become available only after
taking where as the former may become available

1.6 Exercise for the end of the course

Formulate and solve the association problem of Section 1.5.
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Figure 1.7: The association problem of choice of technology: Information avail-
able when taking a decision



Chapter 2

Motivating Example: Transport

Protocols

Non-cooperative Game theory tries to predict stable outcomes of competition. There may be
various ways to understand a prediction of the outcome of competition, and the standard concept
of Nash equilibrium is one of them. Before presenting the de�nition of the Nash equilibrium we
mention other alternative concepts that or tests that have been used to predict future evolution
of competition. We then intnroduce concepts from game Theory that predict the evolution of
competition and provide the motivation for using them

2.1 Competition between protocols, the indi�erence prop-
erty

Transport protocols are mechanims that are used for transmitting data in the Internet. We focus
on TCP (Transmission Control Protocol) which is a family of protocols that carry a vast majority
of the packets in the Internet. Its objectives are

• (a) Detecting packets that are lost in the network, i.e. that did not reach the destination
within a given time limit. Loss of packets may occur during congestion at bu�ers in routers
along the path of the packets from the source to the destination. A congestion is a period
during which the rate of arrival of packets to a bu�er exceeds the rate at which the bu�er
can handle them. During such periods the number of bu�ered packets grows until the bu�er
�lls and over�ows, which causes losses. We note that losses may also be caused by noisy
links and are common in wireless communication.

• (b) Retransmitting those packets from the source to the destination.

• (c) Adapting the transmission rate to the available bandwidth so as to avoid congestion.
All variants of TCP are based on increasing gradually the transmission rate until congestion
indications are received (in general these indications are simply the detection of a packet
loss). This then triggers a decrease in the transmission rate.

Consider two types of protocols, A and B. We would like to project from measurements how
will the future Internet look like, assuming that consumers will prefer to use protocols that perform
better. Will it be composed only of aggressive or of friendly protocols? Or a mixture of them? In
the latter case, what will be the fraction of aggressive protocols?

15
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2.2 Predicting the protocoles that will dominatne Future In-
ternet

There have been various approaches to answer the above questions.

A1(u) The isolation test See how well the protocol performs if everyone uses the friendly
protocol only. Then imagine the world with the aggressive TCP only. Compare the two worlds.
The version u for which users are happier is the candidate for the future Internet. Example for
this prediction approach is [7]1

A2(u) The Confrontation test Consider interactions between agressive and pieceful sessions
that share a common congested link. The future Intrnet is predicted to belong to the transport
protocol of version u if u performs better in the interaction with v.

A3. Combined approach: Assume that a version u does better than v under both the isolation
test as well as the confrontation test. We then call this version a strong TCP version and predicn
that it will dominate future Internet. If there is no strong of TCP, we predict that both versions
will co-exist. A weak TCP version is one that fails in both tests.

A4. Comparative test: Assume that everyone uses a version u of TCP and that one session
starts using a version v instead of u. The comparative approach would choose u as a candidate
for dominating the future internet if the performance of the deviating TCP (that uses version v)
is strictly inferior to that of u. We then call u a strict Nash equilibrium in pure strategies. It is
called a Nash Equilibrium in pure strategies if the inequality is non-strict.

A5. Indi�erence approach: Assume that some fraction p of the population uses version T1
and a fraction 1−p uses version T2. Assume that p is such that the average performance of a
protocol is the same under both u and v. This is called the indi�erence test. When it holds
then we say that the g ame has a Nash equilibrium (p, 1− p) in mixed strategies.

2.3 The TCP Game: General Examples

Let us introduce a two player game with Sally, the �rst player, and Van, the second one. We
assume that a bottleneck is sharead by two TCP coonnections. Each player controls one of these
connections, and has to choose the version of the protocole among the two versions T1 and T2.
We write the utilities in a matrix form where Sally chooses a row (indexed by T1 and T2) and
Van chooses a column (indexed by T1 or T2).

Van
T1 T2

Sally
T1 2, 2 10, 0
T2 0, 10 3, 3

Figure 2.1: Game in Example
1

Van
T1 T2

Sally
T1 3, 3 0, 1
T2 1, 0 2, 2

Figure 2.2: Game in Example
2

Van
T1 T2

Sally
T1 a, a b, c

T2 c, b d, d

Figure 2.3: General symmet-
ric two by two matrix game

1The author of this references writes in the concluding Section "The last issue, which was not addressed in this
paper, concerns the deploying of TCP Vegas in the Internet. It may be argued that due to its conservative strategy,
a TCP Vegas user will be severely disadvantaged compared to TCP Reno users, ... it is likely that TCP Vegas,
which improves both the individual utility of the users and the global utility of the network, will gradually replace
TCP Reno."
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Example 1. Consider the payo�s as given in Figure 2.1. Version T1 is seen to dominate version
T2 in the Isolation Test, providing a utility of 3 units where as version T2 gets only 2 units in
isolation. In contrast, the confrontation test as well as the comparative test select version T1.

Example 2. Consider next the situation in Figure 2.2. T1 is a strong strategy - it satis�es both
the Isolation and Confrontation Tests, where as T2 is a weak strategy - it does not satisfy any of
these. Yet both satisfy the comparative test and are thus Nash equilibria in pure strategies.

Remark 2. A word on the notation. The examples that we encounter in this Section are two by
two symmetric matrix game. In the matrix representations that we had in the previous examples,
the �rst chooses a row and the second chooses the column. The �rst of the two numbers in the
correspondingn entry of the matrix is then the utility for player 1 and the second - that of player
2. Of course, row i (respectively, column j) corresponds to choosing Ti (respectively, Tj) by player
1 (resp. player 2).

In two by two matrix games we shalll use sometime for simplicity T (Top) and B (bottom) to
describe choices of rows, and L (left) and R (right) for the choice of column.

We restrict here to symmetric games. It is thus su�cient to have only one number in each of
entries of the matrix G that represents the game. In that case, we de�ne Gij, the ij-th entry of
the matrix G, to be the utility of player 1 when it uses action i and the other player uses action
j. Due to symmetry, the utility of player 2 is then given by Gji.

Remark 3. The generic symmetric two by two matrix game form is given in Figure 2.3. If all
parameters (a, b, c) are di�erent, then one classi�es the generic game into three classes.

• The case (a − c)(d − b) < 0 is called the Prisoner's Dilema game. It has one single pure
equilibrium which is said to be dominating. Example 2.1 falls within this category.

• The case a > c, d > b is called a coordination game. It has two pure equilibria: a, a and d, d,
and one mixed equilibrium. Example 2.2 falls into this category.

• The case a < c, d < b. The game has one single equilibrium which is mixed. This game
can be seen to satisfy the indi�erence criterion. The game is known as the Hawk and Dove
game.

2.4 The TCP Game: New Reno Vs Scalable TCP

Consider two types of protocols:

• (i) aggressive, which try to rapidly grab as much bandwidth as possible, and

• (ii) friendly, which are much slower to grab extra bandwidth.

More speci�cally, we shall consider the NR (New Reno) and Sc (Scalable) versions of TCP. Sally
and Van have to choose which of the two TCP protocols they will use. They �rst simulate in
ns-2 [8] (and repeat their experiment several times) and discover that when a bottleneck is shared
by two TCP connections then

• NR vs NR: share fairly the link capacity. If the bu�ers are well dimensioned then each one's
throughput is close to half the link's capacity.

• Sc vs Sc: Again, if the bu�ers are well dimensioned then the sum of throughputs of the
connections will be the available bandwidth (speed at which packets leave the bu�er). By
symmetry, each one will receive half the bandwidth. However, unless the connections start
at the same time, it will take a very long time till they share the bu�er fairly, unlike NR
vs NR where fairness is achieved very fast. We conclude that in Sc vs Sc there is a short
term unfairness. We assume that users are unhappy when treated unfairly, and represent
this with some cost δ.
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• Sc vs NR: The share of NR denoted by α is smaller than that of Sc denoted by 1−α. Thuss
α < 0.5. There are no fairness issues here other than the fact that the shares are shared
unfairly.

We summarize this in Fig. 2.4. We shall assume below that a+ d > 0.5.

Van
H D

Sally
H 0.5− δ 1− α
D α 0.5

Figure 2.4: Aggressive
(H) versus friendly (D)
TCPs

According to Remark 3, this is the "Hawk-Dove" game. It
has a unique mixed equilibrium between aggressive (Hawk)
behavior and the peaceful (Dove) one. We shall use H for Sc
TCP and D for NR.

We observe that NR wins in the isolation test and that Sc wins in the confrontation test.
Neither versions wins the comparison test, but the indi�erence principle holds. There exists a
unique equilibrium which is mixed.

Reccall that we had assumed that 0.5 < a + d. If we assume the opposite inequality to hold
then the game becomes a prisoner's dilema game with a single pure equilibrium.

2.5 Predicting the Evolution of protocols

After introducing di�erent tests and criteria and after introducing the TCP game, we are ready
to examine the question of - which of the criteria are relevant in predicting the structure of the
future Internet.

We adopt in this book game theoretic answers to the above question.

Game theory is concerned with predicting both the outcome (equilibrium) as well as the dy-
namics of competition. The Nash equilibria are the candidates for the possible stationary points
of competition dynamics. This will be discussed in more details at later chapters. Nash equilibria
have the property that if both players start initially at equilibrium and then react to each other by
using say, at a round robin way, their optimal response to the other player, then the players remain
at that equilibrium. In that sense the Nash equilibrium predicts potential stable outcomes of com-
petition. Here we mean by Stable that no player can strictly do better by deviating unilaterally
and playing another action than the equilibrium one.

Note: Nash equilibrium does not state what can or cannot happen when more than one decision
maker changes their strategy (route) simultaneously.

Much later after the introduction of Nash equilibria, evolutionary equilibria notions appeared
as well. The question of convergence when starting away from equilibria as well as convergence in
the presence of mutations have been studied [?].

[?] showed under some technical conditions, that even if mutations continue to appear and we
start away from equilibrium, we shall converge to a dominant equilibrium, if sucuh exists. Here,
an equilibrium is said to be dominant if it outperforms any other equilibrium.

We saw that competition between two TCP versions can be formulated as either one of the
following games: the prisoner's dilema, the Hawk-Dove game or the coordinated game. The two
�rst ones have a unique equilibrium. Thus from the evolutionary game literature (e.g. [?]), we
may predict that in the Hawk-Dove game (that arises in the competition between NR and Sc
versions of TCP) both versions will coexist. We shall compute later in the chapter the proportions
that each policy is used. If the game were to follow the prisoner's dilema then example then the
future Internet would consist of one dominating version of TCP. In the coordination case we would
expect to have convergence to the dominating equilibrium.
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2.6 Background on the evolution of transport protocols

Today, NR turns out to be a very popular version of TCP. Although Sc is more aggressive than
NR, it is more friendly than the TCP used more than twenty years ago, which did not at all adapt
its rate to the congestion. At that time the Internet su�ered from "congestion collapse" periods
during which the throughput was very small and during which many packets were lost and had
to be retransmitted. Van Jacobson then invented the �rst TCP that had an adaptive reaction to
congestion, called TAHOE (TA). With TA, the congstion collapse was prevented. Thus in a game
between TAHOE and the previous version, TA wins the isolation test and looses the confrontation
test.

Reno version came after Tahoe. Reno is slightly more aggressive than Tahoe; in a game against
Tahoe it wins both the isolation as well as the confrontation tests. It thus dominated Tahoe, which
is thus not in use any more. NR is an improved version of Reno and in a game against Reno, NR
dominates.

Much has been written on the comparison between NR and the Vegas version of TCP. The
latter is more friendly than NR; it detects congestion not only through losses but also by measuring
the end-to-end delay. In a game against NR, Vegas wins the isolation test but looses in the
confrontation one.

In what follows, we shall provide more precise de�nitions of the equilibria and of the strategies.
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Chapter 3

Equilibria

3.1 Mixed strategies

Assume that neither actions is dominant in the TPC game. The game approach predicts that
both versions will coexist. The fraction of each is computed so that the average performance of a
protocol is the same under both actions.

Consider again the game depicted in Fig. 2.4. Let this fraction of actions be p and 1− p. Take
a = 0. If Sally plays NR then her utility is

U(NR, p) = (0.5− d)︸ ︷︷ ︸ × p + 1 × (1− p) = 1− (0.5 + d)p.

Probability that
Van plays NR

Payo� for Sally
MNR,NR

Probability that
Van plays Sc

Payo� for Sally
MNR,Sc

Else her utility is

U(Sc, p) = 0.5(1− p).

Equating U(Sc, p) = U(NR, p) we get

p =
1

1 + 2d
.

This is the fraction of sessions that will use Sc. It goes to 1 as d→ 0.

3.2 Nash Equilibrium

We introduced game theory in a context of competition between several actions that are used
by players that interact with each other. The game allows to predict wheather in the "future
Internet" an action would dominate the other or wheather several actions would coexist, and if
so, with what probabilities.

We did not justify this de�nition; in fact there is no reason to assume that a competition
between two versions of protocoles would lead the fraction of each one of them to converge to
some limit value. If we have convergence with the properties that we described, then we say
that the game has a stable equilibrium. In the case of dominating strategies, the equilibrium was
obtained by one version of TCP, so we called it a "pure" equilibrium. Otherwise it was described
as a fraction that uses each versison. We called this an equilibrium in "mixed" strategies.

We note the following cruicial property of an equilibrium. At equilibrium, the stgrategy of each
player turned out to coincide with the best performance it could achieve when the other players
use the equilibrium strategy. Indeed, in case of a dominating action, this was true by de�nition (of
dominating action). In the case of mixed action, this holds by the simple fact that at equilibrium,

21
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any strategy is optimial if the other chooses the equilibrium strategy. (This was the indi�erence
rule).

Let Ai be the �nite set of actions (or of strategies) available to player i. We call a = (a1, ..., aI)
a multi strategy where ai inf Ai and denote by A the set of all multi-strategies. For a multi-strategy
a ∈ A and an action a′ ∈ Ai, de�ne (a′|a−i) to be the multistrategy obtained from a by a deviation
of player i from ai to a′.

We are now in measure of de�ning matrix games.

3.2.1 Nash Equilibrium in Pure Strategies

We start with, as input, the tensor (a tensor is the extension of a matric to dimension larger
than 2) that gives the utility for a player (i.e. the way the player evaluats the performance) of
all possible combinations of actions of all players. Let there be Ni actions available to player i,
i = 1, 2, ..., I. Let U i(k, l) be the utility or payo� for player i when player i chooses action k and
the other player chooses action or strategy l.

In our example we had a symmetric game: U1(j, k) = U2(k, j). We thus spci�ed only one
utility function. More generally there will be as many utility matrices as there are players.

A matrix game is de�ned as a non-cooperative optimization performed by a number of players,
each with a utility function as described. The basic solution concept of this optimization is the
equilibrium.

De�nition 1. We say that a multi-strategy a∗ ∈ A is a "pure" eqeuilibrium if for every player i
and any a ∈ Ai,

U i(a∗) ≥ U i(ai, a∗(−i))
We note that the TCP game does not have a pure equilibrium.

3.2.2 Nash Equilibrium in Mixed Strategies

Let ∆(Ai) be the set of probability measures over the set of actions of player i. These are the mixed
strategies of player i. We de�ne a mixed multi-strategy as a vector of dimension I containing one
mixed strategy per player. We de�ne the utility corresponding to a mixed strategy pair (p, q) as

U(p, q) =
∑

j=1,...N1

∑
k=1,...N2

p(j)U(j, k)q(j)

which we write in vector n otation as pTUq.

De�nition 2. We say that a multi-strategy p∗ ∈ ∆A is a "mixed" eqeuilibrium if for every player
i and any p ∈ Ai,

U i(p∗) ≥ U i(pi, p∗(−i)).
We shall show later that

Theorem 1. A matrix game always has a mixed equilibrium.

We note that we identify a pure strategy as a (degenerate) special case of a mixed strategies.
There are various ways to obtain equilibria of matrix games, see [9, 10]1

3.3 2 player zero-sum games: Upper and Lower Value

This is a special case of U(a, b) := U1(a, b) = −U2(a, b).
Zero-sum games model con�icting situations. It is also used for robust control: a design against

a worst possible situation is done by imagining another player with opposite objectives.
Note: any equilibrium is Pareto optimal: we cannot increase the utility of one without de-

creasing that of another one.

1See http://www.maths.lse.ac.uk/Personal/stengel/TEXTE/agt-stengel.pdf as well as
http://www.maths.lse.ac.uk/Personal/stengel/TEXTE/nashsurvey.pdf
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3.3.1 De�nitions

De�ne the Lower Value:

J := max
a∈A

min
b∈B

U(a, b)

Let a∗ be the argument achieving the maximum, i.e.

min
b∈B

U(a∗, b) = J

We call it the maxmin solution for player 1, or the maxmin optimal strategy.

De�ne the Upper Value:

J := min
b∈B

max
a∈A

U(a, b)

Let b∗ be the argument achieving the minimum, i.e.

max
a∈A

U(a, b∗) = J

We call it the minmax solution, or the maxmin optimal strategy.

We have the following relation:

J = min
b∈B

U(a∗, b) ≤ U(a∗, b∗) ≤ max
a∈A

U(a, b∗) = J

If

max
a∈A

U(a, b∗) = min
b∈B

U(a∗, b)

then (a∗, b∗) is called a saddle point and J = J = J is called the value of the game.

A zero-sum matrix game does not necessarily have a value over the pure strategies.

We next extend the above de�nition to the mixed strategies. Recall the de�nition U(p, q) =
pTUq, and consider the matrix game over the mixed strategies. We de�ne the the maxmin, minmax
and saddle point strategies for the set of mixed strategies in the same way as we did in for the
pure strategies.

3.3.2 Saddle-point theorems

Theorem 2. A zero-sum matrix game over mixed strategies always has a saddle point.

Usually the maxmin and minmax value of a game are de�ned as those
corresponding to pure strategies, where as the value of the game is
de�ned as corresponding to mixed strategies!

Remark 4. One can interpret maxa minb U(a, b) as if there is an order between the moves: �rst
player 1 chooses an action a and then player 2, knowing the choice of player a, minimizes U(a, b).
Indeed, note that when writing minb U(a, b), player 2 makes a choice that depends on a. Denote
by b(a) that choice. Player 1 however maximizes the function minb U(a, b) or eqeuivalently it max-
imizies U(a, b(a)).
When playing over mixed strategies then maxp minq U(p, q) has the interpretation that theh choice
of player 2 may depend on the choice of probability distribution of player 1, but not on its realiza-
tion!

In unconstrained matrix games, as well as in matrix games with orthogonal constraints (see
[11]), a saddle point in mixed strategies always exists, and the saddle point payo� is the value of
the game. Moreover, if (x1, y1) and (x2, y2) are two saddle points, then (x1, y2) and (x2, y1) are
also saddle points. More generally, the following holds for zero-sum games (e.g., [12, p. 126]):
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Lemma 1. (Minmax Theorem)
Let S1 and S2 be convex subsets of linear topological spaces, where S2 is compact. Consider a
function U : S1 × S2 → IR such that
� for each x ∈ S1, y → U(x, y) is convex and lower semi-continuous; and
� for each y ∈ S2, x→ U(x, y) is concave.
Then there exists some y∗ ∈ S2 such that

inf
y∈S2

sup
x∈S1

U(x, y) = sup
x∈S1

U(x, y∗) = sup
x∈S1

inf
y∈S2

U(x, y).

We conclude that under the conditions of the lemma, if S1 is compact as well then a saddle
point exists. This Lemma also holds for games with orthogonal constraints.

3.3.3 Linear Programming Solution

The value of a matrix game satis�es:

J = min
q
J(q)

where

J(q) = max
p

pTUq.

Then

J(q) ≥
∑
b

U(a, b)q(b) ∀ a (3.1)

If any other constant J ′(q) satis�ed the inequality then it would also satisfy

J ′(q) ≥ max
a

U(a, q)

or equivalently, J ′ ≥ J . Hence J ′(q) is the smallest constant that satis�es (3.1) (since it achieves
it with equality. We conclude that J is the smallest solution of J ′(q) ≥ U(a, q). Hence J is the
solution of

Minimize J over all J and q under the constraints J ≥
U(a, q) ∀a, where ∀a, q(a) ≥ 0,

∑
a q(a) = 1.

To solve a zero-sum game in maple, use the code:

with(Optimization):

LPSolve(J,{J >=q1* U11 + q2*U12 , J >=q1* U21 + q2*U22 , q1+q2=1 , q1 >= 0 ,

q2 >= 0});

The second line can be replaced by

LPSolve(J,{J >=q1* U11 + q2*U12 , J >=q1* U21 + q2*U22 , q1+q2=1},

assume=nonnegative);

LPSolve understands this by default as a minimization problem. To overide this, add "maxi-
mize" before the last parenthesis.
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action 1.a action 1.b
action 2.i 2, 1 0, 0
action 2.ii 0, 0 1, 2

Table 3.1: A matrix game [Aumann]

3.4 Corelated Equilibrium

3.4.1 De�nition and properties

Consider the coordination game in Table 12.1. A player maximizes its expected utility. Player 1
chooses columns, Player 2 chooses rows.

There are two pure Nash equilibria: (1.a , 2.i) with the values (2,1), and (1.b , 2.ii) with
values (1,2).

The randomized strategy (1/3,2/3) for player 1 and (2/3,1/3) for player 2 is (the unique)
symmetric equilibrium. The corresponding values are

(2/9)× 1 + (2/9)× 2 = 2/3 for each player

Suppose that an arbitrator suggests suggests to both either (1.a, 2.i) (w.p. 1/2) or (1.b, 2.ii)
(w.p. 1/2 ).

If the players follow the advise they obtain in expectation 3/2 each. Cannot be obtained
without coordination.

The game is still non-cooperative: no "binding contract".
Here, the correlated equilibrium does not dominate the pure Nash equilibria.
There are cases where it dominates all other Nash equilibria.
The coordinator does not have to know anything about the game: all it has to do is �ip a coin

and send signals.
Correlation is needed for coordination. Useful not just in games but also in team problems

(a common objective).
Ref: R. J. Aumann, Journal of Mathematical Economics, 1974.

3.4.2 Applications: ALOHA

Players: N mobile stations transmitting to a Base Station.
If more than one mobile attempts transmission at the same time, the packets are lost.
Strategies: transmission probabilities.
Objective: maximize throughput, constraints on average power.
Correlation mechanism: Each mobile has a serial number within 1, ...,K where K << N .

BS transmits a random number k in 1, ...,K.
Candidate equilibrium: Mobiles with k′ 6= k will not attempt transmission. The others will

transmit with some probability (to determine).
Ref (without correlation): E. A., R. El-Azouzi and T. Jimenez, Computer Networks, 2004.

3.5 Concave games and Nash equilibrium
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Chapter 4

Basic Examples

4.1 Multiple-access game over a collision channel, Transmit
or Wait

Consider two players having a packet to transmit over a collision channel. Each player may
transmit or wait. If both transmit simultaneously then the packets are both lost. The payo� for
each player is one if the transmission is successful. We obtain the matrix game in Figure 4.6.

Transmitting is a dominant strategy for both player. It leads to zero throughput and zero
utility.

Player 2
H D

Player 1
H 0 1
D 0 0

(a) Original Version

Player 2
H D

Player 1
H −E 1− E
D 0 0

(b) Version with energy cost

Figure 4.1: The Multiple-Access Game

We add next an energy cost E if a player transmits. We obtain the matrix game in Figure
4.1(b).

If E ≥ 1 then r = 0 is the unique equilibrium.

Assume 0 < E < 1. We see that the game is of the third type in Remark 3. It is thus a H-D
game with a single mixed equilibrium given by

r = 1− E

This also leads to zero utility but now the equilibrium throughput is

Thp = r(1− r) = E(1− E)

This is maximizied at E = 1/2 which gives an equilibrium throughput of 1/4.

We note that a correlated equilibrium would lead a better throughput. The arbitrator sends
to the mobiles the outcome of a randomization that decides who of them will transmit. A total
throughput of 1 can be achieved.

Why did the utility at equilibrium remain zero? Due to the indi�erence property: at equi-
librium, player 1 is indi�erent between 1st and 2nd row. The utility for the 2nd row is always 0
independently of other players.

27
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Player 2
H D

Player 1
H Q11 Q12

D Q21 Q22

Figure 4.2: High power
(H) versus low power
(D)

Player i can transmit with power pi ∈ A := {PH , PL}. We
now consider capture. Let Qij be the probability that the
transmission of player 1 is successful when using power pi and
the other one uses pj . Example: QHH = p, QDD = q < p,
QHD = 1, QDH = 0. Dominating strategy: H. Gives a
throughput of p to each mobile.

4.2 At what Power to Transmit? The Capture Phenomenon

How to compute capture probability: we have the following expressions for the bit error
probability as a function of the modulation [13] (numerical examples based on these formulas can
be found in [14, 15, 13]):

pe(SINR) =



1
2erfc(

√
κ · SINR) for GMSK

1
2 exp (−SINR) for DBPSK

1
2 exp(− 1

2 · SINR) for GFSK

1
2erfc(

√
SINR) for QPSK

3
8erfc(

√
2
5 · SINR) for 16-QAM

7
32erfc(

√
4
21 · SINR) for 64-QAM

where κ is a constant (that depends on the amount of redundancy in the coding and on the
frequency band), and where erfc is the complementary error function given by

erfc(x) =
2
π

∫ ∞
x

e−ζ
2
dζ.

In the absence of redundancy this gives the following expression for f of a packet of N bits
provided that the bit loss process is independent

f(SINR) = (1− pe(SINR))N

Player 2
H D

Player 1
H p− E 1− E
D 0 q

Figure 4.3: High power (H) versus
low power (D)

We add a cost E for using the high power. H
remains a dominant strategy as long as E <
1− q. For such E, the uhtility is p− E.

Note: The utility at equilibrium can decrease or increase when decrease the entries of the matrix.
This is not the case in optimization, nor in zero-sum games.

4.3 Coordination games over a collision channel

Simple Motivating Example Consider the following basic example. There are two mobiles
i = 1, 2 and two independent channels j = 1, 2. Each mobile transmits at the same time one
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packet: Mobile i transmits a packet over channel i with probability pi and with probability 1− pi
over the other channel. A packet is successfully transmitted if it is the only one that uses the
channel. Thus the transmission success probability of mobile i is

Ui(p) = pipj + (1− pi)(1− pj), j 6= i

Mobile i wishes to maximize the probability Ui of successful transmission of its packet.
The policy that assigns a dedicated channel to each mobile (i.e. p1 = p2 = 1 or p1 = p2 = 0)

is obviously optimal: it involves no collisions and the success probability is one. It is also a Nash
equilibrium. However it requires coordination or synchronization in order to assign each channel
to a di�erent mobile.

The symmetric policy p1 = p2 = 0.5 turns out to be an equilibrium; if mobile i uses pi = 0.5
then no matter what pj mobile j (i 6= j) chooses, it will have the same success probability of 1/2.
Thus no mobile can bene�t by unilaterally deviating from p = 1/2, so it is an equilibrium.

Note that if mobile i had only one option, that of choosing channel i, then the inne�cient
equilibrium would not occur. This is a feature similar to the ine�ciency we have in the prisoner's
dilemma or in the Braess' paradox in which eliminating some options for the players can result
in better performance to every one. Yet if we wanted to implement this idea in our context and
create mobiles with only one channel, then we would face again a synchronization problem. If
half of the mobiles have built in technology for accessing one channel and the other half can only
access the other channel, then two randomly selected mobiles will still be using the same channel
with probability half.

The model and main result Consider 2 mobiles and 2 base stations. The base stations use,
each one, an independent channel (for example, each one uses another frequency). We shall assume
that mobile i has a good radio channel with base station i and a bad one with station j 6= i. More
precisely, let hij be the gain between mobile i and base station j.

Let SINRi denote the Signal to Interference and Noise Ratio corresponding to the signal
received from mobile i at the base station to which it transmits. Each mobile has two pure
strategies: γ, β where γ means transmitting on its good channel and β on its bad one. Then

SINR1(u) =



h11P1

No
if u = (γ, γ)

h12P1

No
if u = (β, β)

h11P1

No + h21P2
if u = (γ, β)

h12P1

No + h22P2
if u = (β, γ)

SINR2(u) =



h22P2

No
if u = (γ, γ)

h21P2

No
if u = (β, β)

h22P2

No + h12P1
if u = (β, γ)

h21P2

No + h11P1
if u = (γ, β)
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Player 2
β γ

Player 1
β

(
h12P1

No
,
h21P2

No

) (
h12P1

No + h22P2
,

h22P2

(No + h12P1)

)
γ

(
h11P1

No + h21P2
,

h21P2

No + h11P1

) (
h11P1

No
,
h22P2

No

)
Figure 4.4: SINR values of the two mobiles

Here No is the thermal noise at each base station and Pi is the �xed transmission power of
mobile i.

Under many modulation schemes the probability of a successful transmission of a packet is
known to be a monotone increasing function of the SINR [16]. We thus assume that mobile i has
a success probability given by fi(SINRi). De�ne

A := f1

(
h11P1

No
,

)
B := f1

(
h11P1

No + h21P2

)

C := f1

(
h12P1

No + h22P2

)
D := f1

(
h12P1

No

)
.

a := f2

(
h22P2

No
,

)
b := f2

(
h22P2

No + h12P1

)

c := f2

(
h21P2

No + h11P1

)
d := f2

(
h21P2

No

)
.

The mobiles are thus faced with the following matrix game:

action γ action β
action γ A, a B, c
action β C, b D, d

Theorem 3. There are exactly three equilibria; the two pure equilibria: (γ, γ) and (β, β), and a
mixed one in which player 1 and 2 select γ with probabilities:

X∗ =
D −B

A+D −B − C
, Y ∗ =

d− b
a+ d− b− c

.

Proof. We note that B < D, b < d, C < A and c < a. The game is thus a standard coordina-
tion game (see http://en.wikipedia.org/wiki/Coordination_game) [17] for which the result is well
known.

The mixed equilibrium is characterized by the indi�erence property: when a mobile uses its
mixed equilibrium policy then the other player is indi�erent between γ and β.

The utility of mobile 1 and 2 at the mixed equilibrium are given by

U∗1 = AY ∗ +B(1− Y ∗), U∗2 = aX∗ + b(1−X∗).

Consider now the symmetric case (A = a,B = b, C = c,D = d). Then we get at the mixed
equilibrium:

U∗ =
(a− c)(d− c) + c(a+ d− b− c)

a+ d− b− c
=

ad− cb
a+ d− b− c
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4.4 The congestion Game

4.5 The Hawk and Dove (HD) Game

Consider a large population of animals. Occasionally two animals �nd themselves in competition
on the same piece of food. An animal can adopt an aggressive behavior (Hawk) or a peaceful
one (Dove). The matrix in Fig. 13.2.1 presents the �tness of player I (some arbitrary player)
associated with the possible outcomes of the game as a function of the actions taken by each one
of the two players. We assume a symmetric game so the utilities of any animal (in particular of
player 2) as function of its actions and those of a potential adversary (in particular of player 1),
are the same as those player 1 depicted in Figure 13.2.1. The utilities (i.e. �tness) represent the
following:

An encounter D�D results in a peaceful, equal-sharing of the food which translates to a
�tness of 0.5 to each player.

An encounter H�H results in a �ght in which with equal chances, one or the other player
obtains the food but also in which there is a positive probability for each one of the animals to be
wounded. Then the �tness of each player is 0.5-d, where the 0.5 term is as in the D�D encounter
and the −d term represents the expected loss of �tness due to being injured.

An encounter H�D or D�H results in zero �tness to the D and in one unit of utility for
the H that gets all the food without �ght.

Player II
H D

Player I
H 0.5− d 1
D 0.5 0.5

Figure 4.5: A H�D game in matrix form

Player II
H D

Player I
H A11 A12
D A21 A22

Figure 4.6: Generalized H-D game

PPP
One can think of other scenarios that are not covered in the original H�D game, such as the

possibility of a Hawk to �nd the Dove, in a H�D encounter, more delicious than the food they
compete over. A generalized version [18] of the HD game given in Figure 4.6 is characterized by
A11 < A22 < A12 and A21 < A22. In that case,

1. if A11 > A21 then the pure strategy H is the unique ESS,

2. If A11 < A21 then there is a unique ESS p = (pL, pH), it is a mixed strategy given by
pH = u/(u+ v) where Aij = J(i, j), i, j ∈ {H,D}, u = A12−A22, v = A21−A11.

Remark 5. (i) Note that there are no settings of parameters for which the pure strategy D is an
ESS in the H�D game (or in its generalized version).
(ii) In case 2 above, the strategies (H,D) and (D,H) are pure Nash equilibria in the matrix game.
Being asymmetric, they are not candidates for being an ESS according to our de�nition. There
are however contexts in which one obtains non-symmetric ESS, in which case they turn out to be
ESS.

4.6 TCP over wireless

During the last few years, many researchers have been studying TCP performances in terms
of energy consumption and average goodput within wireless networks [19, 20]. Via simulation,
the authors show that the TCP New-Reno can be considered as well performing within wireless
environment among all other TCP variants and allows for greater energy savings. Indeed, a
less aggressive TCP, as TCP New-Reno, may generate lower packet loss than other aggressive
TCP. Thus the advantage of an aggressive TCP in terms of throughput could be compensated
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with energy e�ciency of a more gentle TCP version. (In Section ?? we shall illustrate another
consideration that a�ects the competition between TCP versions.) The goal of this section is to
illustrate this point, as well as its possible impact on the evolution of the share of TCP versions,
through a simple model of an aggressive TCP.

The model. We consider two populations of connections, all of which use AIMD TCP.
A connection of population i is characterized by a linear increase rate αi and a multiplicative
decrease factor βi. Let ζi(t) be the transmission rate of connection i at time t. We consider the
following simple model for competition.

(i) The RTT (round trip times) are the same for all connections.
(ii) There is light tra�c in the system in the sense that a connection either has all the resources

it needs or it shares the resources with one other connection. (If �les are large then this is a light
regime in terms of number of connections but not in terms of workload).

(iii) Losses occur whenever the sum of rates reaches the capacity C: ζ1(t) + ζ2(t) = C.
(iv) Losses are synchronized: when the combined rates attain C, both connections su�er from

a loss. This synchronization has been observed in simulations for connections with RTTs close to
each other [21]. The rate of connection i is reduced by the factor βi < 1.

(v) As long as there are no losses, the rate of connection i increases linearly by a factor αi.
We say that a TCP connection i is more aggressive than a connection j if αi ≥ αj and βi ≥ βj .

Let βi := 1− βi. Let yn and zn be the transmission rates of connection i and j, respectively, just
before a loss occurs. We have yn + zn = C. Just after the loss, the rates are β1yn and β2zn. The
time it takes to reach again C is

Tn =
C − β1yn − β2zn

α1 + α2

which yields the di�erence equation:

yn+1 = β1yn + α1Tn = qyn +
α1Cβ2

α1 + α2

where q = α1β2+α2β1
α1+α2

. The solution is given by

yn = qny0 +
(
α1Cβ2

α1 + α2

)
1− qn

1− q
.

HD game: throughput-loss tradeo�

In wireline, the utility related to �le transfers is usually taken to be the throughput, or a function
of the throughput (e.g. the delay). It does not explicitly depend on the loss rate. This is not
the case in wireless context. Indeed, since TCP retransmits lost packets, losses present energy
ine�ciency. Since energy is a costly resource in wireless, the loss rate is included explicitly in
the utility of a user through the term representing energy cost. We thus consider �tness of the
form Ji = Thpi − λR for connection i; it is the di�erence between the throughput Thpi and the
loss rate R weighted by the so called tradeo� parameter, λ, that allows us to model the tradeo�
between the valuation of losses and throughput in the �tness. We now proceed to show that our
competition model between aggressive and non-aggressive TCP connections can be formulated as
a HD game. We study how the fraction of aggressive TCP in the population at (the mixed) ESS
depends on the tradeo� parameter λ.

Since |q| < 1, we get the following limit y of yn when n→∞:

y =
α1Cβ2

α1 + α2
· 1

1− q =
α1β2C

α1β2 + α2β1

.

It is easily seen that the share of the bandwidth (just before losses) of a user is increasing in its
aggressiveness. Hence the average throughput of connection 1 is

Thp1 =
1 + β1

2
× α1β2

α1β2 + α2β1

× C.
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The average loss rate of connection 1 is the same as that of connection 2 and is given by

R =
1
T

=
(
α1

β1

+
α2

β2

)
1
C

where T =
β1β2C

α1β2 + α2β1

with T being the limit as n→∞ of Tn.
Let H corresponds to (αH , βH) and D to (αD, βD) such that αH ≥ αD and βH ≥ βD. Then, for

i = 1, 2, Thpi(H,H) = Thpi(D,D). Since the loss rate for any user is increasing in α1, α2, β1, β2

it then follows that J(H,H) < J(D,D), and J(D,H) < J(D,D). We conclude that the utility
that describes a tradeo� between average throughput and the loss rate leads to the HD structure.

The mixed ESS is given by the following probability of using H:

x∗(λ) =
η1 − η2λ

η3
where

η1 =

(
µ

1 + β1

2
− 1 + β2

4

)
C, η2 =

1

C

(
α1

β1

− α2

β2

)
,

η3 = C(
1

2
− µ)

β1 − β2

2
, µ =

α2(β1)

α2(β1) + α1(β2)
.

where µ := 1−µ. Note that η2 and η3 are positive. Hence, the equilibrium point x∗ decrease lin-
early on λ.We conclude that applications that are more sensitive to losses would be less aggressive
at ESS (Braess type paradoxes do not occur here).

For more details on this model, including the tradeo� between transient and steady-state
behavior, we refer the reader to [22].
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Chapter 5

Stackelberg Equilibrium and

application to network neutrality

5.1 De�nition and properties

Stackelberg game one introduces hierarchy between players. Actions are not taken anymore simul-
taneously. In a two level game, there are leaders that take actions �rst and then the others follow
and take actions accordinigly. There is thus assymetry in the information: A follower decides
knowing the leaders' current move.

This can be viewed as a game where the solution notion is a Nash equilibrium (so we "forget"
the asymetry) but where the actions of the followers are in fact "strategies": they are functions of
what the actions of the other player.

In a two player zero sum game, the two possible notions of Stackelberg give the upper and the
lower value, respectively.

This remaining of the Chapter is based on [?].

5.2 Introduction to the network neutrality issue

Network neutrality is an approach to providing network access without unfair discrimination
among applications, content, nor the speci�c source of tra�c. What is discrimination and what is
fair discrimination? If there are two applications or two services or two providers that require the
same network resources and one is o�ered better quality of service (shorter delays, higher transmis-
sion capacity, etc.) then there is a discrimination. When is a discrimination �fair"1? A preferential
treatment of tra�c is considered fair as long as the preference is left for the user2. Internet service

1 The recent decision on Comcast v. the FCC was expected by the general public to deal with the subject
of �fair� tra�c discrimination, as the FCC ordered Comcast to stop interfering with subscribers tra�c generated
by peer-to-peer networking applications. The Court of Appeals for the District of Columbia Circuit was asked to
review this order by Comcast, arguing not only on the necessity of managing scarce network resources, but also
on the non-existent jurisdiction of the FCC over network management practices. The Court decided that the FCC
did not have express statutory authority over the subject, neither demonstrated that its action was "reasonably
ancillary to the ... e�ective performance of its statutorily mandated responsibilities". The FCC was deemed, then,
unable to sanction discrimatory practices on Internet's tra�c carried out by american ISPs, and the underlying
case on the �fairness� of their discriminatory practices was not even discussed.

2Nonetheless, users are just one of many actors in the net neutrality debate, which has been enliven throughout
the world by several public consultations on new legislation on the subject. The �rst one, proposed in the USA
(expired on 26/04/2010), was looking for the best means of preserving a free and open Internet. The second one,
carried out in France (�nishing 17/05/2010), asks for the di�erent points of view over net neutrality. A third one
is intended to be presented by the UE in the summer of 2010, looking for a balance on the parties concerned as
users are entitled to an access the services they want, while ISPs and CPs should have the right incentives and
opportunities to keep investing, competing and innovating. See [23, 24, 25].
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providers (ISPs) may have interest in discrimination either for technological problems or for eco-
nomic reasons. Tra�c congestion has been a central argument for the need to discriminate tra�c
(for technological reasons) and moreover, for not practicing network neutrality, in particular to
deal with high-volume peer-to-peer tra�c. However, many ISPs have been blocked or throttled
p2p tra�c independently of congestion conditions.

There may be many hypothetical ways to violate the principle of network neutrality. Hahn and
Wallsten wrote that network neutrality �usually means that broadband service providers charge
consumers only once for Internet access, do not favor one content provider over another, and do
not charge content providers for sending information over broadband lines to end users." (p. 1 of
[26]) We therefore restrict our attention here to the practices of these types of network neutrality.

That net neutrality acts as a disincentive for capacity expansion of their networks, is an argu-
ment recently raised by ISPs. In [27] the validity of this claim was checked. Their main conclusion
is that under net neutrality the ISPs invest to reach the social optimal level, while under-or-over
investing is the result when net neutrality is dropped. In this case, ISPs stand as winners, while
content providers (CP) move to a worst position. Users that rely on services that have paid the
ISPs for preferential treatment will be better o�, while the rest of the users will have a signi�cantly
worse service.

ISPs often justify charging content providers by their need to cover large and expensive amount
of network resources. This is in particular relevant in the 3G wireless networks where huge in-
vestments were required for getting licenses for the use of radio frequencies. On the other hand,
the content o�ered by a CP may be the most important source of the demand for Internet access;
thus, the bene�ts of the access providers are due in part to the content of the CPs. It thus seems
"fair" that bene�ts that ISP make of that demand would be shard by the CPs.

We �nd this notion of fair sharing of reveneus between economic actors in the heart of coop-
erative game theory. In particular, the Shapley value approach for splitting reveneus is based on
several axioms and the latter fairness is on of them. Many references have advocated the use of
the Shapley value approach for sharing the pro�ts between the providers, see, e.g., [28, 29]. We
note however that the same reasoning used to support payments by access providers to content
providers (in the context of can be used in the opposite direction. Indeed, many CPs receive third
party income such as advertising revenue thanks to the user demand (eyeballs) that they create.
Therefore, using a Shapley value approach would require content providers to help pay for the
network access that is necessary to create this new income.

The goal is to study the impact of such side payments between providers on the utilities of all
actors. More precisely, we study implications of one provider being at a dominating position so as
to impose payments from the other one3. We examine these questions using simple game theoretic
tools. We show how side payments may be harmful for all parties involved (users and providers).

Another way to favor a provider over another one is to enforce a leader-follower relation to
determine pricing actions. We show how this too can be harmful for all.

5.3 Basic model: three collective actors and usage-based
pricing

We consider the following simple model of three actors,

• the internauts (users) collectively,

• a network access provider for the internauts, collectively called ISP1, and

• a content provider and its ISP, collectively called CP2.

3In the European Union, such dominating positions in the telecommunications markets are controlled by the
article 14, paragraph 3 of the Directive 2009/140/EC, considering the application of remedies to prevent the leverage
of a large market power over a secondary market closely related.
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In this section, the two providers are assumed peers; leader-follower dynamics are considered in
Section 5.11 below. The internauts pay for service/content that requires both providers. Assume
that they pay pi ≥ 0 to provider i (CP2 being i = 2 and ISP1 being i = 1) and that their demand
is given by

D = D0 − pd

where

p = p1 + p2 ≥ 0, D ≥ 0.

So, provider i's revenues are

Ui = Dpi, i = 1, 2.

5.4 Collaboration

The total price that the providers can obtain if they cooperate is maximized at pi = D0/(4d). The
total revenue per provider is then Umaxi = D2

0/(8d). The demand is then D0/2.

5.5 Fair competition

If the providers do not cooperate then the utility of provider i is obtained by computing the Nash
equilibrium. We get:

∂Ui
∂pi

= D − pid = 0, i = 1, 2. (5.1)

This gives p1 = p2 = D0/(3d). The demand is now D0/3, larger than in the cooperative case, and
the revenue of each provider is D2

0/9, less than before.
Next consider the competitive model and assume we install side payments: CP2 is requested

to pay p3 to ISP1 for �transit" costs. So, the revenues of the providers are:

U1 = [D0 − (p1 + p2) · d] (p1 + p3)
U2 = [D0 − (p1 + p2) · d] (p2 − p3)

As the model so far is symmetric, we can in fact allow for negative value of p3 which would model
payment from the ISP1 to CP2 instead, e.g., payment for copyright, as discussed below.

5.6 Discussion of side payments

At this point we render it asymmetric by assuming that p3 is determined by ISP1 for the case
p3 > 0, i.e. additional transit revenue from the content provider in a �two sided" payment model
to ISP1 [30, 31]. Then, unless D = 0 there is no optimal p3: as it increases, so does U1. Thus,
at equilibrium necessarily D = 0, and the revenues of both service and content providers are 0.
Hence p1 and p2 sum up to D0/d. Then by decreasing p1 slightly, the demand will become strictly
positive, so ISP1 can increase its utility by U1 without bound by choosing p3 su�ciently large.
Therefore, at equilibrium p1 = 0 and p2 = D0/d. If p2 > p3 then by a slight decrease in p2,
U2 strictly increases so this is not equilibrium. We conclude that at equilibrium, p3 ≥ p2. To
summarize, the set of equilibria is given by {p1 = 0, p2 = D0/d and p3 ≥ D0/d}.

Thus by discriminating one provider over the other and letting it charge the other provider,
both providers lose. Obviously the internauts do not gain anything either, as their demand is zero!

We have considered above side payment from the CP2 to ISP1. In practice, the side payment
may go in the other direction. Indeed, there is a growing literature that argues that ISP1 has to
pay to CP2. This conclusion is based on cooperative game theory (and in particular on Shapley
values) which stipulates that if the presence of an economic actor A in a coalition creates revenue
to another actor B, then actor A ought to be paid proportionally to the bene�ts that its presence
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in the coalition created. In our case, the CP2 creates a demand of users who need Internet access,
and without the CP2, ISP1 would have less subscribers.

The use of Shapley value (and of a coalition game approach, rather than of a non-cooperative
approach) has the advantage of achieving Pareto optimality. In particular this means that the
total revenue for ISP1 and CP2 would be those computed under the cooperative approach.

Side payment to the CP2 from ISP1 may also represent payment to the copyright holders of
the content being downloaded by the internauts. In particular, a new law is proposed in France,
by a member of parliament of the governing party, to allow download of unauthorized copyright
content and in return be charged proportionally to the volume of the download, with an average
payment of about �ve euros per month. A similar law had been already proposed and rejected
�ve years ago by the opposition in France. It suggested to apply a tax of about �ve euros on those
who wish to be authorized to download copyrighted content. In contrast, the previously proposed
laws received the support of the trade union of musicians in France. If these laws were accepted,
the service providers would have been requested to collect the tax (that would be paid by the
internauts as part of their subscription contract). Note that although p3 < 0 in our model could
represent these types of side payments, the copyright payments per user are actually not decision
variables.

5.7 Revenue generated by advertising

We now go back to the basic collaborative model to consider the case where the CP2 has an
additional source of revenue from advertisement that amounts to p4D. p4 is assumed to be a
constant. The total income of the providers is

Π = (D0 − pd)(p+ p4) (5.2)

Then
∂Π
∂p

= D0 − 2pd− dp4 (5.3)

Equating to zero, we obtain

p =
D0 − p4d

2d
(5.4)

The total demand is (D0 + p4d)/2, and the total revenues at equilibrium are

Umax
t =

D2
0 + 2 d p4D0 + d2 p2

4

4 d
(5.5)

This result does not depend on the way the revenue from the internauts is split between the
providers.

5.8 The case where p2 = 0

In particular, the previous result covers the case where p2 = 0, i.e., the case where advertising is
the only source of revenue for the content provider CP2. One may consider this to be the business
model of the collective consisting of (i) BitTorrent permanent seeders and (ii) specialized torrent
�le resolvers (e.g., Pirate Bay).

Note that BitTorrent permanent seeders may be indi�erent to downloading to BitTorrent
leecher clients (particularly during periods of time when the seeder workstations are not otherwise
being used) because of �at-rate pricing for network access, i.e., a �at-rate based on capacity
without associated usage-based costs (not even as overages).
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5.9 Best response

The utilities for the network access provider ISP1 and the content provider CP2 are, respectively,

U1 = [D0 − (p1 + p2) · d] (p1 + p3) (5.6)

and

U2 = [D0 − (p1 + p2) · d] (p2 − p3 + p4). (5.7)

We �rst show that for any p2, it is optimal for the ISP1 to choose p1 = 0. First consider the
problem of the best choice of p1 and p3 assuming the quantity p1 + p3 is constant; clearly, U1

strictly decreases in p1 so that a best response cannot have p1 > 0.
Thus, if p2 is not controlled (in particular if p2 = 0 so that CP2's only revenue is from a third

party and not directly from the users), then ISP1 would gain more by charging the CP2 than by
charging the users. This is also consistent with the simple fact that ∂U1/∂p3 ≥ ∂U1/∂p1.

5.10 Nash equilibrium

With p1 = 0 and p3 ≥ 0, the utility of ISP1 is

U1 = [D0 − p2d] p3 (5.8)

Thus the condition on the best response of ISP1 for a given p2 gives p2 = D0/d, i.e., the demand
is zero. On the other hand, for this p2 to be a best response for U2, p3 = p2 + p4. We conclude
that there is a unique Nash equilibrium given by p1 = 0, p2 = D0/d, and p3 = D0/d+ p4.

5.11 Stackelberg equilibrium in network neutrality

Stackelberg equilibrium corresponds to another aspect of asymmetric competition, in which one
competitor is a leader and the other a follower. Actions are no longer taken independently: here,
�rst the leader takes an action, and then the follower reacts to this action.

Let's restrict to p3 ≥ 0.
We assume that the ISP1 is the leader. Given p1 and p3, U2 is concave in p2. So, a necessary

and su�cient condition for p2 to maximize this is

∂U2

∂p2
= D0 − d · (p2 − p3 + p4)− d · (p1 + p2) = 0 (5.9)

holds with equality for p2 > 0. That is, to maximize U2,

p2 =
1
2

(D0

d
+ p3 − p1 − p4

)
> 0. (5.10)

Substituting p2 in U1, we obtain:

U1 = [D0 − (p1 + p2) · d] (p1 + p3)

=
1
2

[D0 − 3p1d− p3d+ p4d] (p1 + p3)

We now compute the actions that maximize the utility U1 which is concave in (p1, p3). We have

∂U1

∂p1
=

D0 − 4dp3 − 6dp1 + dp4

2
≤ 0 (5.11)

∂U1

∂p3
=

D0 − 2dp3 − 4dp1 + dp4

2
≤ 0 (5.12)
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For p1 > 0, (5.11) should hold as equality. Subtracting (5.11) from (5.12) we get p3 ≤ −p1, and
hence they are zero. This conclusion is in contradiction with our assumption p1 > 0.

Assume that p1 = 0 and p3 > 0. Then U1 is concave in p3 and (5.12) holds with equality.
Hence

p3 =
D0

2d
+
p4

2
(5.13)

maximizes U1. Substituting in (5.10) we get

p2 =
1
4

(3D0

d
− p4

)
(5.14)

We conclude that if p4d < 3D0 Then the Nash equilibrium is p1 = 0, and p3 and p2 are given,
respectively, by (5.13) and (5.14).

Since we assume here that p2 ≥ 0, then in case p4d ≥ 3D0, we will have p2 = 0 since this value
maximizes (5.14).

5.12 Conclusions and on-going work

Using a simple, parsimonious model of linearly diminishing user/consumer demand as a function
of price, we studied a game between collective players, the user ISP and content provider, under
a variety of scenarios including: non-neutral two-sided transit pricing, copyright payments made
by the ISP, the e�ects of �at-rate pricing, advertising revenue, cooperation, and leadership. In
particular, we demonstrated under what conditions non-neutral transit pricing of content providers
may result in revenue loss for all parties in play (i.e., so that at least one player opts out of the
game, where all players are necessary for positive outcome).

In on-going work, we are considering issues of non-monetary value and copyright. Moreover, we
are including the users as active players. Finally, we are considering the e�ects of content-speci�c
(not application neutral) pricing.

5.13 Exercise

Find all Stackelberg equilibria in the following coordination game given in Table 5.1. Are there
equilibria in mixed strategies?

action 1.a action 1.b
action 2.i 2, 1 0, 0
action 2.ii 0, 0 1, 2

Table 5.1: A coordination game [Aumann]



Chapter 6

Further Notions of Equilia

6.1 The tra�c assignment problem and Wardrop Equilib-
rium

Figure 6.1: The assignment problem and competitive routing

Given the fundamental nature of equilibria in many large-scale systems, it is of no surprise
that researchers studying transportation networks have been preoccupied with developing models
that reproduce this equilibrium, as a function of network characteristics and user demand levels.
Typically, transport equilibrium models consider vehicles to be the fundamental units seeking an
equilibrium, or, in the case of public transport, the individual traveler. In both of these cases,
since the number of users is generally very large, the Wardrop concept, that treats individual user
contributions to the costs as in�nitesimal, is preferred to the (in this respect, more general) Nash
paradigm.

In the context of telecommunication networks, the Wardrop equilibrium is used most often to
model the situation in which the routed entities are packets, and routing decisions are taken at
the nodes of the networks (rather than by the users) so as to minimize the (per-packet) delay. In
many actual networks, the routers at the nodes seek to minimize the per-packet delay in terms of
the number of �hops,� or nodes, to the destination. There are, however, situations in which it is
more advantageous to work with actual delays as cost metrics, rather than the number of hops (see
Bertsekas and Gallager 1987, Gupta and Kumar, 1997), and it is in these cases that the Wardrop
equilibrium has been used to describe the resulting �ow patterns. This is the case, for example,
in ad-hoc networks in which both users as well as base stations are mobile, or where there are
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no base stations so that users are responsible to relay messages of other users. For these type of
networks a Wardrop type equilibrium has been advocated in Bertsekas and Gallager, 1987.

Wardrop equilibria have also been used in telecommunication networks to model a large number
of users that can determine individually their route and in which the routed object is a whole
session, see Korilis and Orda (1999) (whose model includes in addition some side constraints on
the quality of service).

A third context in which Wardrop equilibrium has been used outside of transportation is in
distributed computer networks, in which the routed objects are jobs. An individual job can be
processed in any of several interconnected nodes (computers) and the routing decision is taken
so as to minimize its expected delay in the system (composed of both communication as well as
processing delay). Much material on that application can be found in [32].

The de�nition of the steady state equilibrium of a tra�c network was put forth by J.G. Wardrop
in his 1952 treatise [33] which provided two di�erent de�nitions of tra�c assignment concepts.
The �rst is commonly referred to as the Wardrop, or tra�c equilibrium, principle and can be
understood as a variant of Nash equilibrium for networks having a contimuum of players, where
a single player is negligible. It states that �The journey time on all the routes actually used are
equal, and less than those which would be experienced by a single vehicle on any unused route.�

The alternative social optimal framework is given by Wardrop's second principle, which states
that �The average journey time is a minimum.� While some point to the economist Pigou, who
stated analogous principles in his 1920 Economics of Welfare, as the rightful originator of these
ideas, they had not been applied to networks, and transportation networks in particular, until
Wardrop's seminal work.

The Nash equilibrium with �nitely many decision makers is also relevant in the above road
tra�c framework. A decision maker could be a driver but could also correspond to a group
of drivers for whom the trajectory is determined by some common decision omaker. When the
decision makers in a game are discrete and �nite in number, a Nash equilibrium can be achieved
without the costs of all used routes being equal, contrary to Wardrop's equilibrium principle. In
some cases, Wardrop's principle represents a limiting case of the Nash equilibrium principle, as
the number of players becomes very large [34].

The second Wardrop principle, that of system optimality, assumes that congested networks
can be globally optimized. While this can be true for a network which is entirely controlled by a
single operator, it is not so with networks of road tra�c or with disaggregated telecommunication
networks.

The �rst Wardrop principle, stated above, can be expressed mathematically to state that the
�ow on every route r serving a commodity, or origin-destination (OD) pair, w, is either zero, or its
cost is equal to the minimum cost on that OD pair. Along with the fact that the cost on any route
serving an OD pair is at least as high as the minimum cost on that OD pair, and the satisfaction
of demand for each OD pair, we obtain the following system:

hwr(cwr − πw) = 0, r ∈ Rw, w ∈W, (6.1)

cwr − πw ≥ 0, r ∈ Rw, w ∈W, (6.2)∑
r∈Rw

hwr = dw, w ∈W (6.3)

where hwris the �ow on route r ∈ Rw, the set of routes joining node pair w ∈W,the set of origin-
destination node-node pairs. The cost or delay on that route is cwr, and πw is the minimum cost
on any route joining node pair w. The demand for service between the node pair w is denoted dw.
De�ne the graph as G = (N ,A). Then, adding non-negativity restrictions hwr ≥ 0 and πw ≥ 0.

6.2 Evolutionary Stable Strategies

Consider a large population of players. Each individual needs occasionally to take some action. We
focus on some (arbitrary) tagged individual. The actions of some M (possibly random number
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of) other individuals may interact with the action of the tagged individual (e.g. some other
connections share a common bottleneck). In order to make use of the wealth of tools and theory
developed in the biology literature, we shall restrict here (as they do), to interactions that are
limited to pairwise, i.e. to M = 1. This will correspond to networks operating at light loads,
such as sensor networks that need to track some rare events such as the arrival at the vicinity of
a sensor of some tagged animal.

We de�ne by J(p, q) the expected payo� for our tagged individual if it uses a strategy p when
meeting another individual who adopts the strategy q. This payo� is called ��tness" and strategies
with larger �tness are expected to propagate faster in a population.

We assume that there are N pure strategies. A strategy of an individual is a probability
distribution over the pure strategies. An equivalent interpretation of strategies is obtained by
assuming that individuals choose pure strategies and then the probability distribution represents
the fraction of individuals in the population that choose each strategy.

Suppose that the whole population uses a strategy q and that a small fraction ε (called �mu-
tations") adopts another strategy p. Evolutionary forces are expected to select q against p if

J(q, εp+ (1− ε)q) > J(p, εp+ (1− ε)q) (6.4)

A strategy q is said to be ESS if for every p 6= q there exists some ε̂y > 0 such that (6.4) holds for
all ε ∈ (0, ε̂y).

In fact, we expect that if for all p 6= q,

J(q, q) > J(p, q) (6.5)

then the mutations fraction in the population will tend to decrease (as it has a lower reward,
meaning a lower growth rate). The strategy q is then immune to mutations. If it does not but if
still the following holds,

J(q, q) = J(p, q) and J(q, p) > J(p, p) ∀p 6= q (6.6)

then a population using q are �weakly� immune against a mutation using p since if the mutant's
population grows, then we shall frequently have individuals with strategy q competing with mu-
tants; in such cases, the condition J(q, p) > J(p, p) ensures that the growth rate of the original
population exceeds that of the mutants. A strategy is ESS if and only if it satis�es (6.5) or (6.6),
see [35, Proposition 2.1].

The conditions to be an ESS can be related to and interpreted in terms of Nash equilibrium
in a matrix game. The situation in which an individual, say player 1, is faced with a member of a
population in which a fraction p chooses strategy A is then translated to playing the matrix game
against a second player who uses mixed strategies (randomizes) with probabilities p and 1 − p,
resp. The central model that we shall use to investigate protocol evolution is introduced in the
next subsection along with its matrix game representation.
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Chapter 7

S-modular games

We have seen in several examples in previous Sections that equilibria best response strategies have
either the "Join the Crowd" property or the the "Avoid the Crowd" property, which typically leads
to threshold equilibria policies. These properties turn out to be also useful when we seek to obtain
convergence to equilibria from a non-equilibrium initial point. These issues will be presented in
this section within the framework of S-modular games due to Yao [36] who extends the notion of
submodular games introduced by Topkis [37]. We then apply it to several queueing models.

S-modularity is then use to study a competitive model that describes the interaction between
competing telecommunications service providers (SPs), their subscribers, and a network owner.
Competition takes place in pricing as well as in terms of the quality of service (QoS) they o�er.
The subscribers' demand depends not only on the price and QoS of that SP but also upon those
of its competitors. We establish conditions for existence and uniqueness of the equilibria, compute
them explicitly and characterize their properties.

7.1 Model, de�nitions and assumptions

General model are developed in [37, 36] for games where the strategy space Si of player i is a
compact sublattice of Rm. By sublattice we mean that it has the property that for any two
elements x, y that are contained in Si, also min(x, y) (denoted by x ∧ y) and max(x, y) (denoted
by x∨ y) are contained there (by max(x, y) we mean the componentwise max, and similarly with
the min). We describe below the main results for the case that m = 1.

De�nition 3. The utility fi for player i is supermodular if and only if

fi(x ∧ y) + fi(x ∨ y) ≥ fi(x) + fi(y).

It is submodular if the opposite inequality holds.

If fi is twice di�erentiable then supermodularity is equivalent to

∂2fi(x)
∂x1∂x2

≥ 0.

Monotonicity of maximizers. The following important property was shown to hold in [37]. Let
f be a supermodular function. Then the maximizer with respect to xi is increasing in xj , j 6= i.

More precisely, de�ne the best response

BR∗1(x2) = argmaxx1f(x1, x2);

if there are more than one argmax above we shall always limit ourselves to the smallest one (or
always limit ourselves to the largest one). Then x2 ≤ x′2 implies BR∗1(x2) ≤ BR∗1(x′2). This
monotonicity property holds also for non-independent policy sets such as (7.1), provided that they
satisfy the ascending property (de�ned below).
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De�nition 4. (Monotonicity of sublattices) Let A and B be sublattices. We say that A ≺ B
if for any a ∈ A and b ∈ B, a ∧ b ∈ A and a ∨ b ∈ B.

Next, we introduce some properties on the policy spaces.
Consider two players. We allow Si to depend on xj

Si = Si(xj), i, j = 1, 2, i 6= j. (7.1)

Monotonicity of policy sets We assume

xj ≤ x′j =⇒ Si(xj) ≺ Si(x′j).

This is called the Ascending Property. We de�ne similarly the Descending Property.
Lower semi continuity of policies We say that the point to set map Si(·) is lower semi contin-

uous if for any xkj → x∗j and x
∗
i ∈ Si(x∗j ) (j 6= i), there exist {xki } s.t. xki ∈ Si(xkj ) for each k, and

xki → x∗i .

7.2 Existence of Equilibria and Round Robin algorithms

Consider an n-player game. Yao [36, Algorithm 1] and Topkis [37, algorithm I] consider a greedy
round robin scheme where at some in�nite strictly increasing sequence of time instants Tk, players
update their strategies using each the best response to the strategies of the others. Player l updates
at times Tk with k = mn+ l, m = 1, 2, 3, ....

Assume lower semi-continuity and compactness of the strategy sets. Under these conditions,
Supermodularity together with the ascending property imply monotone convergence of the payo�s
to an equilibrium [36]. The monotonicity is in the same direction for all players: the sequences of
strategies for each player either all increase or all decrease.

The same type of result is also obtained in [36, Thm. 2.3] with submodularity instead of
supermodularity for the case of two players, where the ascending property is replaced by the
descending property. The monotone convergence of the round robin policies still holds but it is in
opposite directions: the sequence of responses of one player increases to his equilibrium strategy,
while the ones of the other player decreases.

In both cases, there need not be a unique equilibrium.
Yao [36] further extends these results to cases of costs (or utilities) that are submodular in

some components and supermodular in others. The notion of s-modularity is used to describe
either submodularity or supermodularity. Another extension in [36] is to vector policies (i.e. a
strategy of a player is in a sublattice of Rk).

Next we present several examples for games in queues where s-modularity can be used. The
�rst two examples are due to Yao [36].

7.3 Example of supermodularity: queues in tandem

Consider a set of queues in tandem. Each queue has a server whose speed is controlled. The utility
of each server rewards the throughput and penalizes the delay. Under appropriate conditions, it
is then shown in [36] that the players have compatible incentives: if one speeds up, the other also
want to speed up.

More precisely, consider two queues in tandem with i.i.d. exponentially distributed service
times with parameters µi, i = 1, 2. Let µi ≤ u for some constant u. Server one has an in�nite
source of input jobs There is an in�nite bu�er between server 1 and 2. The throughput is given
by µ1 ∧ µ2.

The expected number of jobs in the bu�er is given [36] by

µ1

µ2 − µ1
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when µ1 < µ2, and is otherwize in�nite.

Let

• pi(µ1 ∧ µ2) be the pro�t of server i,

• ci(µi) be the operating cost,

• g(·) be the inventory cost.

The utilities of the players are de�ned as

f1(µ1, µ2) := p1(µ1 ∧ µ2)− c1(µ1)− g
(

µ1

µ2 − µ1

)

f2(µ1, µ2) := p2(µ1 ∧ µ2)− c2(µ2)− g
(

µ1

µ2 − µ1

)
.

The strategy spaces are given by

S1(µ2) = {µ1 : 0 ≤ µ1 ≤ µ2},

S2(µ1) = {µ2 : µ1 ≤ µ2 ≤ u}.

It is shown in [36] that if g is convex increasing then fi are supermodular. So we can apply the
results of the previous subsection, and obtain (1) the property of "joining the crowd" of the best
response policies, (2) existence of an equilibrium, (3) convergence to equilibrium of some round
robin dynamic update schemes.

7.4 Example of submodularity: �ow control

We consider now an example for submodularity. There is a single queueing centre with two input
streams with Poisson arrivals with rates λ1 and λ2. The rates of the streams are controlled by 2
players.

The queueing center consists of c servers and no bu�ers. Each server has one unit of service
rate.

When all servers are occupied, an arrival is blocked and lost.

The blocking probability is given by the Erlang loss formula:

B(λ) =
λc

c!

[
c∑

k=0

λk

k!

]−1

where λ = λ1 + λ2.

Suppose user i maximizes

fi = ri(λi)− ci(λB(λ)).

ci is assumed to be convex increasing. λB(λ) is the total loss rate.
Then it is easy to check [36] that fi are submodular.

Two di�erent settings can be assumed for the strategy sets. In the �rst, the available set for
player i consists of λi ≤ λ. Alternatively, we may consider that the strategy sets of the players
depend on each other and the sum of input rates has to be bounded: λ ≤ λ. Then Si satisfy the
descending property. We can thus apply again the results of the section 7.2.
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7.5 A �ow versus service control

Exponentially inter-arrivals as we used in previous examples are quite appealing to handle math-
ematically, and they can model sporadic arrivals, or alternatively, information packets that arrive
one after the other but whose size can be approximated by an exponential random variable. In
this example we consider, in contrast, a constant time T between arrivals of packets, which can
be used for modeling ATM (Asynchronous Transfer Mode) networks in which information packet
have a �xed size.

We consider a single node with a periodic arrival process, in which the �rst player controls
the constant time period T ∈ [T , T ] between any two consecutive arrivals. We consider a single
server with no bu�er. The service time distribution is exponential with a parameter µ ∈ [µ, µ],
which is controlled by the second player. If an arrival �nds the server busy then it is lost. The
loss probability is given by

Pl = exp(−µT ),

which is simply the probability that the random service time of (the previous) customer is greater
than the constant T .

The transmission rate of packets is T−1, but since a fraction Pl is lost then the goodput (the
actual rate of packets that are transmitted successfully) is

G =
1
T

(1− exp(−µT )).

We assume that the utility of the �rst player is the goodput plus some function of the input
rate T−1. The server earns a reward that is also proportional to the goodput, and has some extra
operation costs which is a function of the service rate µ. In other words,

J1(T, µ) =
1
T

(1− exp(−µT )) + f(T−1), J2(T, µ) =
1
T

(1− exp(−µT )) + g(µ).

We then have for i = 1, 2

∂Ji
2

∂T∂µ
= −µ exp(−µT ) ≤ 0.

We conclude that the cost is submodular.

7.6 Modeling Network Equilibrium with Price and Quality-
of-Service Characteristic

Competitive routing and equilibrium models for telecommunications networks generally assume a
single characteristic through which an equilibrium is computed, such as delay [38], prices [39, ?],
or even loss probabilities [?]. However, in order to take into account Quality of Service (QoS) on
a network, it is generally necessary to incorporate into the model more than one parameter. A
straightforward example is to include both prices and some measure of QoS. Other multi-criteria
models may incorporate, for example, delay and reliability, the latter representing the QoS, price
or delay and jitter, etc.

In this paper, we present a general model for computing a bi-criteria Nash equilibrium of
several telecom providers. We shall then examine particular functional forms, and the resulting
equilibrium properties, when the two parameters of each providers are prices and a measure of
QoS.

Often, in research on competitive network routing and equilibrium models, the demands are
assumed to be either given, as constants, or elastic but given by a function of a single parameter.
In this paper we assume that the demand for the services of a given service provider can be
described by a function that depends on the vectors of prices and qualities of service (QoS) of all
service providers.
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Our methodology is strongly inspired by [?] who studied a dynamic competitive inventory
control model that includes both pricing as well as a quality parameter. The authors reduced the
problem to a static game which is a special case of the general form of games that we shall study
in our paper.

Section 7.7 provides the general model setting and some general theorems for existence and
uniqueness of equilibria. Section 7.7.2 then presents the linear demand model and establishes some
preliminary properties of the equilibrium for fairly general relation between the cost functions and
QoS of the service providers, in the case where the QoS are �xed and competition occurs only
through prices. The following two sections obtain stronger characterizations of the equilibria and
analyze competition both in prices and in QoS. Two speci�c QoS measures are considered: delay
(Section 7.8) and loss probabilities (Section 7.9). Section 7.9 includes several di�erent possible
ways of modeling loss probabilities including packet loss versus session rejection probability, and
the in�uence of incorporating large-deviation scaling. We conclude with a number of promising
avenues for extending these results.

Literature review

Whereas equilibria in transportation networks have been investigated for more than �fty years,
this issue appeared much later in telecommunication networks, with the initial work on problems of
competitive routing [?, 38], decentralized �ow control [40, 41] and resource allocation [?]. One rea-
son for the growing interest in competitive approaches to network management is the deregulation
of the telecommunication monopolies. For surveys on competitive games in telecommunications,
see [4, 3].

In our model, we do not take into account network topology, as in the above references, but
rather model the total service proposed by each SP as a single entity. In other words, the price
and QoS proposed by an SP will not depend on the physical source or destination, distance, etc.
that underlies the request of each user. On the other hand, our model does take into account the
quantities requested by users.

Telecommunications equilibria as a function of the price charged have been considered in great
detail, as pricing has become a subject of intense research debate in the community. Numerous
models exist, from utility maximizing approaches [?, ?] to auction-type approaches [?]. In these
contributions, price and quantity requested have been the only parameters.

Another body of work has considered price as an endogeneous variable, which is determined as
a function of the degree of saturation on the network. Typically in these approaches, the price is a
shadow price, or Lagrange multiplier on inequality constraints, such as capacity restrictions. The
reader is referred to [42, 43, 44, ?] for further details on those approaches. Finally, we mention
work on de�ning equilibria on telecom networks as a function of other characteristics, such as loss
probabilities, such as in [?].

In all of these approaches, however, a common point is that only one exogeneous characteristic
gives rise to a competitive equilibrium. However, it is clear that, if one wishes to model QoS
e�ects, more than one exogenous variable will need to be used. In this vein, J. Van Mieghem
and P. Van Mieghem [?] consider the problem of pricing and scheduling of telecom services, in
which the services are di�erentiated according to throughput, delay, and loss. While the authors
consider fairness in scheduling, they do not compute equilibria or model competitive behavior.
Park, Sitharam, and Chen [45] on the other hand model a �QoS provision game� in which QoS
is de�ned by a vector of attributes. In their model, however, they do not provide existence or
uniqueness results on the equilibria, as the particular user utility functions they employ do not
satisfy su�cient concavity conditions. Rather, they provide results on identifying Nash equilibria,
and Pareto, and system-optimal solutions.
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7.7 Model and general properties

7.7.1 Model setting

Let us consider a game in which there are N service providers, SP, the set of which is denoted
by I = {1, 2, .., N}. Each provider has two parameters to set as regards the service it o�ers:
(p, f) ∈ RN+N

+ . (We use bold face to denote a vector, e.g. p and denote its ith component
by pi.) Although the two parameters can be quite general, we shall regard the �rst as prices
(pi is the price that SP i charges his subscribers per unit demand) and the second as some QoS
measure (delay, loss or rejection probability, etc). Then, SP i experiences a demand for its service,
Di : RN+N

+ 7→ R+ which depends not only on its own parameters, pi and fi, but also on the prices
and QoS o�ered by its competitors; that is, each demand function Di depends upon the entire
price vector p = (p1, p2, .., pN ) and the entire QoS vector f = (f1, ..., fN ). The demand functions
themselves can take on a number of functional forms, each with its own consequences upon the
resulting equilibrium. In this work, however, we shall consider only a linear demand model, which
will be de�ned further in the following section.

The utility functions of the service providers are given by U : RN+N
+ 7→ R+. Finally, we must

de�ne the strategy space of the N service providers. We shall suppose that all service providers'
strategies are de�ned by the following orthogonal constraints; the strategy space, Ri, of provider
i is given by the subset of R2:

Ri = {(pi, fi) : 0 ≤ ĝi(fi) ≤ pi ≤ pmax; 0 ≤ fmin
i ≤ fi ≤ fmax

i }, (7.2)

where pmin
i = ĝi(fi). (The dependence of pmin

i on fi through the function ĝi will allow us to
eliminate explicitly policies that will result in negative pro�ts for a service provider). The fact
that there are maximum prices re�ects the fact that beyond some reasonable price, the demand
will be zero (what ever the prices of competitors and quality of services are). In addition, ĝi is
assumed convex so that the strategy space of player i is convex, for all i ∈ I. (This will be needed
in Theorem 4). We further de�ne:

Rpi(fi) = {pi : 0 ≤ ĝi(fi) ≤ pi ≤ pmax}, (7.3)

Rfi = {fi : 0 ≤ fmin
i ≤ fi ≤ fmax

i }, (7.4)

R = R1 × · · ·RN (7.5)

Rp(f) = Rp1(f)× · · ·RpN (f) (7.6)

Rf = Rf1 × · · ·RfN . (7.7)

Along with the model of the service providers, we include a model of the (single) network owner,
who may charge each service provider, i, a cost per unit of bandwidth requested as a function of
the two criteria it requires, pi and fi. Then, the total price charged to the service provider will
be a function of that per-unit price and of the demand that the provider i experiences. That is,
given the aggregate demand di = Di(p, f) of SP i, we associate with SP i a cost function given
by Ri(pi, fi, di), representing the fee that i pays to the network owner.

We next de�ne the Nash equilibria that we are interested in computing. The �rst involves each
service provider setting a single parameter, as a function of those of all other providers, and the
second involves simultaneous setting of both parameters by all providers, as a function of those of
all other providers. As already mentioned, our approach is inspired by [?] who studied a dynamic
competitive inventory control model that include both pricing as well as a quality parameter.

De�nition 5. [Single-parameter Nash equilibrium] Let Ui(p, f) be the net revenue1 of service
provider i, when the vector of prices set by all the providers is given by p, and the vector of
Quality of Service parameters, f , of all the providers is �xed at some predetermined point, f̂ .
Then, a single-parameter Nash equilibrium in p at f̂ is the vector p∗ that solves the following
system for all i ∈ I.

1The net revenue can be expressed as the income minus the cost Ri. Examples will be given in later sections.
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Ui(p∗, f̂) = max
pi∈Rpi(f̂)

Ui(p∗1, ..., p
∗
i−1, pi, p

∗
i+1, .., p

∗
N , f̂). (7.8)

This equilibrium corresponds to a price equilibrium for a �xed QoS vector f̂ .

De�nition 6. [Two-parameter Nash equilibrium] Let Ui(p, f) be the net revenue of service provider
i, when the pair of vectors of parameters set simultaneously by all the providers is given by (p, f).
Then, a two-parameter Nash equilibrium in (p, f) is the vector couple (p∗, f∗) that solves the
following system for all i ∈ I.

Ui(p∗, f∗) = max
(pi,fi)∈Ri

Ui(p∗1, ..., p
∗
i−1, pi, p

∗
i+1, .., p

∗
N , f

∗
1 , ..., f

∗
i−1, fi, f

∗
i+1, .., f

∗
N ). (7.9)

7.7.2 General demand model

We shall suppose that the average demand, Di(p, f), is linear in all prices and QoS levels. For a
particular SP i, the demand for its service, Di should be decreasing in the price it charges, pi, but
increasing in the prices charged by its competitors, pj , j 6= i. The analogous relationship holds in
service quality, but in that case, Di is increasing in fi and decreasing in fj , for j 6= i. Then, we
may write

Di(p, f) = ai − bipi +
∑

j∈I, j 6=i

cijpj + βifi −
∑

j∈I, j 6=i

γijfj , (7.10)

with bi, cij , βi and γij positive constants.
We shall make the following blanket assumptions, which will be in e�ect throughout this study:

Assumption 1. Without loss of generality, we shall assume that the demand function of each
service provider satis�es, for all i ∈ I,

Di(pmax − pmin
i ,0−i, f) ≤ 0, ; ∀f ∈ Rf , (7.11)

where, as before, pmin
i = ĝi(fi), and 0−i is the N − 1-dimensional null vector.

The above assumption should be understood simply as imposing some relation between the
parameters that de�ne the demand functions. It could seem an realistic assumption, since it
requires the demand to possibly be negative. However, we note that the nonpossitivity of the
demand function is required to hold for values of the prices that are not necessarily within the
set of feasible strategies Ri's. Therefore the assumption could be understood as requiring that if
we extrapolated linearly the demand out of the feasible region and allowed the prices of all other
service providers to be zero, then we would get a nonpositive demand.

We would expect, in practice, that an even stronger assumption would likely be satis�ed,
namely that Di(pi,0−i, f) ≤ 0, ; ∀f ∈ Rf ; ∀pi ∈ Rpi(fi). We require, for technical purposes,
however, only this weaker assumption, that the demand for each provider's services be non-positive
when competitor's prices are null, and his own prices are given by pmax − pmin

i = pmax − ĝi(fi).

Assumption 2. The constants b and c satisfy:

bi >
∑
j 6=i

cij , i ∈ I. (7.12)

Moreover, assume that Di is non-negative over the strategy space.

Su�cient condition for Assumption 1 : Let Assumption A.6 hold. In view of (15.3), if we
choose pmax large enough then Assumption 1 will hold.

Assumption A.6 will be needed to ensure the uniqueness of the resulting equilibrium. It
is furthermore a reasonable condition, in that Assumption A.6 implies that the in�uence of an
SP's price is signi�cantly greater on its observed demand than the prices of its competitors.
This condition could then take into account the presence of customer loyalties and/or imperfect
knowledge of competitors' prices.
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7.7.3 General QoS model

Along with the model of the service providers, the (single) network owner charges each service
provider, i, a cost per unit of bandwidth requested. We assume that the amount of bandwidth
µi requested by SP i depends on the demand it experiences and on the QoS it wishes to o�er
(the higher the demand and the better the QoS, the higher µi will be). For example, if the QoS
is linear in the standard Kleinrock delay function (obtained from an M/M/1 queuing model), i.e.
fi = c− 1/(µi − di), then µi(fi, di) = di + 1/(c− fi).

Thus, given the aggregate demand di = Di(pi, fi), the fee paid by SP i can be written as

Ri = viµi(fi, di)

where µi(fi, di) ∈ [0, B] is again the bandwidth required in order to guarantee the QoS, fi, at a
demand level of di for SP i, and vi is the price to be paid per unit of bandwidth.

7.7.4 Utility model

The revenue of SP i is given by piDi(p, f), whereas the pro�t (or net revenue) of SP i is the
di�erence between the revenue and the fee it pays to the network owner,

Ui(p, f) = piDi(p, f)−Ri(fi, di). (7.13)

In the sequel, we shall show the uniqueness of Nash equilibrium for the price game (7.8) in which
the capacity µi required by user i has the following form:

µi(fi, di) = digi(fi) + hi(fi), (7.14)

where gi and hi are positive functions.
Hence, the pro�t function becomes

Ui(p, f) = Di(p, f)(pi − vigi(fi))− vih(fi).

In the single-parameter Nash game, the strategy space of each SP i is given by (7.2) and in
the two-parameter game, the strategy space is given by (7.3) where pmin = ĝi(fi) = vigi(fi). Note
that the sets Ri, and Rpi, i ∈ I are convex when gi is a convex function.

7.7.5 Properties of the general model

The question is then, under general assumptions on the model functions and data, when can we
ensure the existence and uniqueness of the resulting equilibrium across service providers. To this
end, we make the following assumptions that concern the properties of the utility functions.

Assumption 3. Without loss of generality, express the net revenue (or utility) of service provider
i as Ui = Ûi(p, f , di) = Ui(p, f), i ∈ I where, as before, di = Di(p, f). Assume that Ui is upper
semi-continuous in (p, f) ∈ R, for all i ∈ I.

Under Assumption 3, one has the following general result on the existence of a Nash equilibrium
among the N service providers.

Theorem 4. [Existence] Under the Assumption 3 and the de�nition of the strategy spaces R =
Ri× · · ·RN , there exists at least one single-parameter (resp., two-parameter) Nash equilibrium of
the service providers' game.

Proof: The strategy space for each i ∈ I is convex and compact. The utility functions are assumed
u.s.c in both arguments. The existence of a Nash point follows (see e.g. [46]).

We �rst consider the single-parameter price game (7.8) which arises when the vector of quality
of service levels of all providers is �xed. Then, we shall consider the two-parameter price and QoS
game.
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The following theorem is a generalization of [?, Thrm. 5] that established uniqueness of an
equilibrium for a similar setting but when hi(.) are all zero and for some speci�c functions gi(.).
By allowing for general gi and hi we shall be able to handle in the next sections a large number
of quality of service functions that are typical in networks.

Theorem 5. [Uniqueness of Price-based Nash equilibrium] Consider the price game (7.8) which
arises when the vector of quality of service levels f is �xed, and assume that Ri(f) are nonempty,
i ∈ I. Then

1. The price game has a unique equilibrium p∗(f), with

p∗(f) = (I − T )−1Γ−1q (7.15)

where Γ = diag(2b1, ..., 2bN ), Tii = 0, Tij = cij
2bj

for i 6= j and qi = bivigi(fi) + ai + βifi −∑
j 6=i γijfj.

2. The equilibrium prices p∗i are increasing in each of the unit prices vj.

3. The equilibrium prices p∗i are decreasing in fj, j ∈ I when

g′j(fj) <
∑
l∈I(L−1)ilγjl − (L−1)ijβj

(L−1)ijbjvj

and increasing otherwise.

Proof: The existence of a Nash equilibrium of the price game (7.8) was demonstrated in Theorem
4. Therefore, we show the uniqueness of the equilibrium point.

Since p∗(f) is a Nash equilibrium, it follows that p∗i maximizes the function Ui(pi,p∗−i, f),
where p−i = (p1, .., pi−1, pi+1, .., pN ). Moreover , we have

lim
pi→vigi(fi)

∂Ui(pi, p∗−i, f)
∂pi

= di(vigi(fi), p∗−i, f) ≥ 0 (7.16)

lim
pi→pmax

∂Ui(pi, p∗−i, f)
∂pi

= −bipmax + bivigi(fi) +Di(pmax,p∗−i, f)

= ai − 2bipmax +
∑
j 6=i

cijp
∗
j + bivigi(fi) + βifi −

∑
j 6=i

γijfj

≤ ai − 2bipmax + pmax
∑
j 6=i

cij + bigi(fi) + βifi −
∑
j 6=i

γijfj(7.17)

< ai − bipmax + bivigi(fi) + βifi −
∑
j 6=i

γijfj (7.18)

= di(pmax − vigi(fi),0−i, f)
≤ 0 (7.19)

where the transition (7.17)-(7.18) is due to the Assumption A.6 and the last transition is due to
Assumption (1). Thus, p∗i is unique solution of the optimality conditions:

0 =
∂Ui(p, f)
∂pi

= −bi(pi − vigi(fi)) + di(p, f). (7.20)

Then, p∗ is a solution to the following linear system

Lp = q (7.21)

where Lii = 2bi, Lij = −cij for i 6= j and qi = bivigi(fi) + ai + βifi −
∑
j 6=i γijfj .

To show the uniqueness of Nash equilibrium, it su�ces to show that the linearsystem (7.21)
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admits a unique solution. We observe that the matrix L can be written as: L = Γ(I − T ) with
Γ = diag(2b1, ..., 2bN ), and

T =


0

... c1N
2b1

. . .

cN1
2bN

... 0

 .

The matrix T is substochastic since
∑
j 6=i cij

2bi
≤ bi

2bi
< 1. Thus L−1 exists and is equal to (I −

T )−1Γ−1 and
p∗(f) = L−1q = (I − T )−1Γ−1q.

Writing explicitly one term from the equilibrium price vector, p∗i (f), and rearranging terms to
identify dependencies on fi and fj independently, j ∈ I, j 6= i, we have that

p∗i (f) = (L−1)ii(ai + (bivigi(fi)) + fi((L−1)iiβi −
∑
j 6=i

(L−1)ijγji) +

∑
j 6=i

(L−1)ij(aj + bjvjgj(fj) + βjfj)−
∑
j∈I

∑
l 6=i

(L−1)ijγjlfl (7.22)

Then, taking partial derivatives, we obtain:

∂p∗i (f)
∂fj

= (L−1)ijbjvjg′j(fj) + (L−1)ijβj −
∑
l∈I

(L−1)ilγjl, (7.23)

which is negative when

g′j(fj) <

∑
l∈I(L−1)ilγjl − (L−1)ijβj

(L−1)ijbjvj
. (7.24)

Next we make the following assumptions on the functions gi and hi appearing in De�nition
(7.14) of µi. This will guarantee the uniqueness of the equilibrium (p∗, f∗) in the price-QoS game
(7.9) which we shall compute. Several examples of this structure will be given in Sections 7.8 and
7.9.

Assumption 4. Let hi(.) = 0. Moreover, suppose that g(.) ∈ C2 is convex increasing, and its
derivative satis�es for all i ∈ I

lim
fi→fmax

i

g′i(fi) = +∞.

This assumption will be satis�ed in most of the queuing systems we study. The following result
establishes the uniqueness of Nash equilibrium in which prices and QoS levels are set by all players
simultaneously.

Theorem 6. [Uniqueness of Price and QoS-based Nash equilibrium] Ket Assumption ?? hold. The
price-QoS problem (7.9) has a unique two-parameter Nash equilibrium (p∗, f∗), with f∗i the unique
solution to the following equations, for every i ∈ I,

g′i(f
∗
i ) =

βi
vibi

if
βi
vibi
≥ g′i(fmin

i )

f∗i = 0 if
βi
vibi

< g′i(f
min
i )

Proof: Let
Ũi(p, f) = log[pi − vigi(fi)] + log[Di(p, f)].
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Note that a vector (p∗, f∗) is an equilibrium in the original utilities if and only if it is an equilibrium
in terms of their logarithms, i.e. of the functions Ũi.

Since gi is convex by assumption, Ui is concave in (p, f). Under Assumption 4, we have that

lim
fi→fmax

i

∂Ũi(p, f)
∂fi

= lim
fi→fmax

i

−vig′(fi)
pi − vigi(fi)

+
βi

Di(p∗, f)
= −∞. (7.25)

This implies there will not be a Nash equilibrium at the constraint boundary where fi = fmax
i ,

i ∈ I. To show the uniqueness of the Nash solution, we must thus examine the interior of the
feasible region with respect to the upper bound on the fi and show that there is precisely one
point, (p∗, f∗), which solves simultaneously the utility maximization problems of each provider,
i ∈ I. Note from (7.25) that the lower limit, limfi→fmin

i
∂Ũi(p, f)/∂fi may be either positive or

negative, and as such, the Nash equilibrium may arise at a point for which f∗i = fmin
i for some

i ∈ I.
On the other hand, we do not need Lagrange multipliers for the constraints on pi since p

∗
i is

obtained at a point where the partial derivative (7.20) is zero, possibly at the lower boundary,
(7.16) and (7.19).

That is, it is necessary to consider the following Kuhn-Tucker conditions in which a Lagrange
multiplier, αi represents the lower bound constraint on fi for each i. In other words, (p∗, f∗) is a
Nash equilibrium if for every i ∈ I, there exist non-negative Lagrange multipliers αi such that

0 =
∂Ũi(p, f)
∂pi

=
1

(pi − vigi(fi))
+

−bi
Di(p∗, f)

(7.26)

−αi =
∂Ũi(p, f)
∂fi

=
−vig′i(fi)
pi − vigi(fi)

+
βi

Di(p∗, f)
(7.27)

αi(fi − fmin
i ) = 0, αi ≥ 0 (7.28)

By multiplying (7.26) by 1/bi and (7.27) by 1/βi and substituting the resulting equations, we
obtain

αi

βi
=
vig
′
i(fi)/βi − 1/bi
pi − vigi(fi)

, and αi(fi − fmin
i ) = 0 (7.29)

It follows that

g′i(f
∗
i ) =

βi
vibi

if
βi
vibi
≥ g′i(fmin

i )

f∗i = fmin
i if

βi
vibi

< g′i(f
min
i )

Fixing f = f∗, we obtain p∗ through (7.15). Thus (p∗, f∗) is the unique Nash equilibrium.
Next, we consider two applications of this framework, making use of two di�erent QoS measures.

7.8 Case study I: expected delay as QoS

We shall suppose in this section that the measure de�ning the QoS, f, corresponds to some function
of the expected delay. We shall use the Kleinrock delay function2 which is a common delay function
used in networking games [38]. Instead of Minimizing delay, we consider the maximization of the
reciprocal of its square-root (in that way the QoS fi indeed increases as the delays decrease (this
is similar to [?]):

fi =
1√

Delay
=
√
µi − di (7.30)

2This function corresponds to a queuing delay in an M/M/1 queue with �rst-in-�rst-out discipline or to the
more general M/G/1 queue under processor sharing delay.
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Thus µi(fi, di) = dig(fi) + hi(fi) where gi(fi) = 1 is indeed convex and where hi(fi) = f2
i . The

cost that SP i pays the network owner is vi[(f2
i ) + di]. Then, the net revenue of SP i that it

wishes to maximize is then

Ui(p, f) = Di(p, f)(pi − vi)− vif2
i . (7.31)

We observe that this pro�t function is special case of the one de�ned in (7.14), by taking gi(fi) = 1
and hi(fi) = f2

i .
We shall make the following assumption:

Assumption 5. The constants b, v, and β satisfy:

2bivi > β2
i , i ∈ I (7.32)

Remark 6. Note that, for price-sensitive demands, i, this assumption is likely to hold, since in that
case, bi >> βi. For relatively price-in-sensitive demands, who value above all QoS, Assumption 5
may still hold if the unit price for capacity charged by the network owner to SP i, vi is high.

We now proceed with the analysis of the price-QoS game (7.9) (two-parameter) in which prices
and services levels are set by all SPs simultaneously.

Theorem 7. Let Assumption 5 hold. The price-QoS game (7.9) with QoS, f given by (7.30) has
a unique Nash equilibrium p∗, f∗), with p∗i increasing in each vj, j ∈ I.

Proof: Assumption 3 is satis�ed by (7.9) with (7.30) and (7.31). Hence, by Theorem 4, there
exists a Nash equilibrium.

We next show that the Nash equilibrium is unique. We have seen, in the previous section, that
the partial derivatives of the pro�t functions with respect to price variables pi of each providers i
will be zero. In this section, the upper and lower bounds on the quality of service variables, fi may
or may not be active, and so we take a Lagrangian relaxation of those constraints and examine
the Kuhn Tucker conditions of the resulting Lagrangian.

To show the uniqueness of the Nash equilibrium solution, we show �rst that the pro�t functions
Ui are jointly strictly concave in (pi, fi) for all providers, i ∈ I, so that the solution to system
de�ned by the Kuhn Tucker conditions is uniquely de�ned.

To this end, note �rst that

∂Ui(p, f)
∂pi

= −bi(pi − vi) +Di(p∗, f) and
∂Ui(p, f)
∂fi

= βi(pi − vi)− 2vifi

∂2Ui(p, f)
∂p2

i

= −2bi < 0,
∂2Ui(p, f)
∂pi∂fi

= βi, and
∂2Ui(p, f)
∂f2

i

= −2vi < 0.

Since ∂2Ui
∂f2
i

= −2vi < 0 and ∂2Ui
∂p2i

= −2bi < 0, it su�ces to show that the determinant of the

Hessian matrix H is positive, where

H =


∂2Ui
∂p2i

∂2Ui
∂pi∂fi

∂2Ui
∂fi∂pi

∂2Ui
∂f2
i


We have

detH[Ui(p, f)] =
∂2Ui
∂f2

i

∂2Ui
∂p2

i

−
(
∂2Ui
∂pi∂fi

)2

= 4bivi − β2
i > 0

The latter inequality follows from Assumption 5.
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We note that any solution to the following Kuhn-Tucker conditions is a Nash equilibrium: For
every i ∈ I, there exist non-negative Lagrange multipliers αi and λi such that

0 =
∂Ui(p, f)
∂pi

= −bi(pi − vi) +Di(p∗, f) (7.33)

αi − λi =
∂Ui(p, f)
∂fi

= βi(pi − vi)− 2vifi (7.34)

αi(fi − fmin
i ) = 0, λi(fmax

i − fi) = 0 (7.35)

where αi and λi are the Lagrange multipliers corresponding to the min and max constraints on
the values of fi. As before, we do not need Lagrange multipliers for the constraints on pi since p

∗
i

is obtained at a point where the partial derivative (7.33) is zero, possibly at the lower boundary,
(7.16) and (7.19).

It follows from (7.34) that

if λi = 0 and αi = 0, f∗i =
βi
2vi

(pi − vi) (7.36)

if αi > 0, f∗i = fmin
i (7.37)

if λi > 0, f∗i = fmax
i (7.38)

Hence, it follows that p∗ is solution of the following linear system

Ap = r (7.39)

where

Aii = 2bi − δ{λi−αi=0}
β2
i

2vi
,

Aij = −cij + δ{λj−αi=0}γij
βj
2vj

,

Ri = bivi + ai + δ{λi−αi=0}
β2
i

2
−
∑
j 6=i

δ{λj−αj=0}γij
βj
2

+ βi(δ{λi>0}f
max
i + δ{αi>0}f

min
i )

−
∑
j 6=i

γij(δ{λi>0}f
max
j + δ{αj>0}f

min
i ).

To show the uniqueness of Nash equilibrium, it su�ces to show that the linear system (7.39)
admits a unique solution. We observe that the matrix A can be written as: A = Γ1(I − T1) with
Γ1 = diag(2b1 − δ{λi−αi=0}

b21
2v1

, ..., 2bN − δ{λi−µi=0}
b2N
2vN

), and

T1 =


0

...
c1N−δ{λi−µi=0}γ1N

βN
2vN

2b1−δ{λi−µi=0}
β2
1

2v1

. . .

cN1−δ{λi−µi=0}γN1
β1
2v1

2bN−δ{λi−µi=0}
β2
N

2vN

... 0


We observe that the matrix T is substochastic since∑

j 6=i cij − δ{λi−µi=0}γij
βj
2vj

2bi − δ{λi−µi=0}
β2
i

2vi

≤
∑
j 6=i cij

2bi −
β2
i

2vi

≤ bi

2bi −
β2
i

2vi

<
bi
bi

= 1.
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The third inequality follows from Assumption 5. Thus A−1 = (I − T1)−1Γ−1
1 and

p∗i =
∑
j∈I

(A−1)ij(bjvj + aj + δ{λj−αj=0}
β2
j

2
−
∑
k 6=j

δ{λk−αk=0}γjk
βk
2

+βj(δ{λj>0}f
max
j + δ{αj>0}f

min
j )

−
∑
k 6=i

γjk(δ{λj>0}f
max
k + δ{αk>0}f

min
j )).

We conclude that (p∗, f∗) is the unique solution of Kuhn-Tucker conditions (7.33)-(7.34) and
therefore the unique Nash equilibrium to the price-QoS game (7.9).

7.9 Case study II: Loss or rejection probability as QoS

In this section, the quality of service corresponds to the loss probability, where one may model
packet loss probabilities (e.g. at some common input queue) or rejection probability in a loss
network (such as a circuit switched network).

fi = (1− P iloss)1/s, (7.40)

where P iloss is the loss probability. i.e,.

P iloss := G(ρi)

with, as usual, ρi = di/µi is the tra�c intensity, and s ≥ 1 is a scaling coe�cient that adjusts the
relative importance of the QoS parameter with respect to price. Note that when s = 1, QoS enters
linearly in the demand function, D, whereas for s > 1, the QoS increases as a concave function of
its parameters; in other words, for s > 1, we allow for decreasing rates of return on the quality of
service provided.3

We will use the notation G′(ρ) to denote the derivative with respect to ρ and we assume
that G′(ρ) is positive function over the interval (0,+∞). Hence, the loss probability is strictly
increasing in ρ, and the function G−1 exists. Consequently, for all i ∈ I,

gi(fi) =
1

G−1(1− fsi )
(7.41)

Indeed, since G−1 exists, then di/µi = ρi = G−1(1− fi), it follows that µi = 1
G−1(1−fi)di. Hence

from (7.14), the function gi is given by (7.41). Note that fmin
i = 0 and fmax

i = 1 for every i ∈ I.
We are going to present some important special cases for which the assumption A4 is veri�ed.

In 7.9.1 and 7.9.3 we consider only the linear relationship between QoS and loss probability, that
is s = 1, whereas in 7.9.2 we give results for strictly concave f as well.

7.9.1 Packet loss probability: a basic M/M/1/K queuing model

In this paragraph, the quality of service corresponds to the loss probability, or probability of a
full bu�er, in the M/M/1/K queue. We note that this could be a good approximation for the loss
probabilities if the service provider o�ers access to a network, and the bottleneck in terms of losses
is in some common input bu�er to that network. Thus,

G(ρi) :=

 (1− ρi)ρKii /(1− ρKi+1
i ) if 0 ≤ ρi < 1, Ki = 1, 2, 3, ..,

1/(Ki + 1) if ρi = 1, Ki = 1, 2, 3, ..,
(7.42)

3Decreasing rates of return means that the marginal bene�t of QoS decreases with increasing QoS levels This
phenomenon is observed often in practice; the amount that a user is willing to pay, per unit of QoS, decreases as
the level increases.
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where Ki is the bu�er size. Clearly, the derivative G
′(ρ) is positive, hence we can use the above

framework. Let the concavity coe�cient satisfy s = 1, implying that QoS measure f and loss
probabilities are linearly related [see (7.40)].

Example 3. For Ki = 2, gi is

gi(fi) =
2fi

1− fi +
√

1 + 2fi − 3f2
i

The next lemma characterizes some properties of the function gi with respect to service levels
fi, i ∈ I.

Lemma 2. The function gi(.) ∈ C2 is convex, increasing, and its derivative satis�es

lim
fi→1

g′i(fi) = +∞, and lim
fi→0

g′i(fi) = 1.

Proof: See Appendix.

The above result implies that the function gi veri�es Assumption 4. Hence, from Theorem 6,
we have the following result.

Corollary 1. The price-QoS game (7.9) has a unique two-parameter Nash equilibrium (p∗, f∗),
with f∗i the unique solution to the equations

g′i(f
∗
i ) =

βi
vibi

if
βi
vibi
≥ 1

f∗i = 0 if
βi
vibi

< 1

and p∗ is then obtained through (7.15).

7.9.2 Packet loss probability: incorporating large-deviation scaling

Let Ploss be, as above, the loss probability for a M/M/1/K queue with K the bu�er size at the
queue. Given the probability of loss from (7.42), where ρi := di

µi
, and letting the arrival rate,

capacity and bu�er size be scaled by a factor n, as in many-source large-deviation scaling, we
obtain, by letting n→∞,

lim
n→∞

(1− ρi)ρnKi
1− ρnK+1

i

=
(di − µi)+

di
, (7.43)

with (·)+ = max{0, ·}. Note that even though the bu�er size goes to ∞, the delay remains
constant as the capacity, µi, also goes to ∞. In a deterministic �uid model, this has the simple
interpretation of fraction of �uid lost when the arrival rate exceeds capacity.

Using (7.42), the quality of service is then given by

fi =
[
1− (di − µi)+

di

]1/s

. (7.44)

Note that (7.44) is not a di�erentiable function due to the max operation. However, since the
QoS measure remains constant (fi = 1) when the capacity exceeds the demand, it is su�cient to
consider that the largest capacity implemented would be µi = di. Hence, we shall neglect the max
operation in (7.44), and then the bandwidth required in order to guarantee the QoS fi is given
by:

µi = gi(fi)di with gi(fi) = fsi
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The pro�t of SP i is in turn given by:

Ui(p, f) = Di(p, f)(pi − vifsi ) (7.45)

where the strategy space is given by the subset Ri where

Ri = {(pi, fi) : pmin
i ≤ pi ≤ pmax

i ; 0 ≤ fi ≤ 1}

We shall require the following assumption, which is likely to hold, since none of the constants β, v
or b should be zero in this setting.

Assumption 6. The constants b, v, and β satisfy:

βi − bivi 6= 0 (7.46)

Theorem 8. The price-QoS problem (7.9) with Quality of Service f as in (7.44) has a unique
two parameter Nash equilibrium (p∗, f∗), with f∗i is given by:

1. For concave QoS coe�cient, s > 1, that is, under decreasing rate of return on the QoS,

f∗i =

{ (
βi
svibi

)
1
s−1 if βi

svibi
< 1,

0 if βi
svibi

≥ 1.

2. For s = 1, that is, under constant rate of return on the QoS level, βi 6= bivi, i ∈ I, so that

f∗i =
{

1 if βi < vibi,
0 if βi > vibi.

}
Proof: For all s > 0, the function gi is convex, this implies that the function Ui is concave.
Hence, we need only to show that that the pro�t function of each provider i is jointly log-concave
in (pi, fi) for s = 1. Recall that Ũi denotes logUi. Note that

∂Ũi(p, f)
∂pi

=
1

(pi − vifi)
− bi
Di(p∗, f)

and
∂Ũi(p, f)
∂fi

= − vi
(pi − vifi)

+
βi

Di(p∗, f)

∂2Ũi(p, f)
∂p2

i

=
−1

(pi − vifi)2
− b2i
D2
i (p∗, f)

< 0,
∂2Ũi(p, f)
∂pi∂fi

=
vi

(pi − vifi)2
+

biβi
D2
i (p∗, f)

∂2Ũi(p, f)
∂f2

i

=
−v2

i

(pi − vifi)2
− β2

i

D2
i (p∗, f)

< 0.

Since ∂2Ũi
∂f2
i
< 0 and ∂2Ũi

∂p2i
< 0, it su�ces to show that the determinant of the Hessian matrix H is

positive, where

H =


∂2Ũi
∂p2i

∂2Ũi
∂pi∂fi

∂2Ũi
∂fi∂pi

∂2Ũi
∂f2
i


We have

detH[Ũi(p, f)] =
∂2Ũi
∂f2

i

∂2Ũi
∂p2

i

− (
∂2Ũi
∂pi∂fi

)2 =
(
Di(pi − vifi)

)−4

(
[D2

i + b2i (pi − vifi)2][v2
iD

2
i + β2

i (pi − vifi)2]− [viD2
i + biβi(pi − vifi)2]2

)
=

(βi − bivi)2

D2
i (pi − vifi)2

> 0

The latter inequality follows from Assumption 6.
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Next, we shall establish the uniqueness of the equilibrium. Note �rst that any solution to the
following Kuhn-Tucker conditions is a Nash equilibrium: For every i ∈ I, there exist non-negative
Lagrange multipliers αi and λi such that

0 =
∂Ũi(p, f)
∂pi

=
1

(pi − vifsi )
− bi
Di(p∗, f)

(7.47)

λi − αi =
∂Ũi(p, f)
∂fi

= − svif
s−1
i

(pi − vifsi )
+

βi
Di(p∗, f)

(7.48)

αifi = 0, λi(1− fi) = 0, (7.49)

where, as before, αi and λi are the Lagrange multipliers corresponding to the min and max
constraints on the values of fi; note, also as before, that we do not need Lagrange multipliers for
the constraints on pi since p

∗
i is obtained at a point where the partial derivative (7.33) is zero,

possibly at the lower boundary, (7.16) and (7.19). By multiplying (7.47) by βi and (7.48) by bi,
and summing the resulting equations, we obtain

bi(λi − αi) =
βi − svibifs−1

i

(pi − vifsi )
(7.50)

Now, we are going to detemine the QoS for s > 1. We have use the fact that the partial derivative
∂Ũi(p,f)
∂fi

is positive. Hence we do not need the Langrage mulitiplier αi for the constraint fi−fmini ≥
0. According to this, (7.50) becomes

biλ
i =

βi − svibifs−1
i

(pi − vifsi )

We deduce that

f∗i =

{ (
βi
svibi

)
1
s−1 if βi

svibi
≤ 1,

1 if βi
svibi

> 1.

Letting now s = 1. It follows, then, from (7.50) with s = 0 that

f∗i =
{

0 if βi < vibi
1 if βi ≥ vibi

Fixing f = f∗, we obtain that p∗ is the unique solution of the linear system given by (7.21). Thus
(p∗, f∗) is consequently is the unique Nash equilibrium.

7.9.3 Session rejection probability: the Erlang loss formula

Consider now a model handling blocked calls in which there areK servers available, and each newly
arriving customer is given his own server; if a customer arrives when all servers are occupied, that
customer's request is lost. This system is of particular interest in telephone networks, and is known
as Erlang's loss formula. In terms of our notation, we have:

P iloss = Gi(ρi) =
(ρi)Ki/Ki!∑Ki
j=0(ρi)j/j!

(7.51)

We begin by taking the �rst derivatives of Gi(.) with respect to ρ. After some simpli�cation, we
obtain

G′i(ρi) =

∑Ki−1
j=0 (Ki − j)ρKi+j−1

i /Ki!j!

[
∑Ki
j=0(ρi)j/j!]2

> 0 (7.52)

Hence the function G−1
i exists.
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Let the concavity coe�cient, s = 1 implying that QoS measure f and loss probabilities are
linearly related (see (7.40). The following lemma characterizes some properties of the function gi
with respect to fi.

Lemma 3. The function gi(.) ∈ C2 is convex, increasing, and its derivative satis�es

lim
fi→1

g′i(fi) = +∞, and lim
fi→0

g′i(fi) =
1
Ki

Proof: See Appendix.

Combining the last lemma with Theorem 6 we obtain the following result.

Corollary 2. The two-parameter price-QoS game (7.9), with QoS de�ned as in (7.42) with s = 1
and session loss probability given by (7.51), has a unique Nash equilibrium (p∗, f∗), with f∗i the
unique solution to the equations

g′i(f
∗
i ) =

βi
vibi

if Ki ≥
vibi
βi

f∗i = 0 if Ki <
vibi
βi

and p∗ is obtained through (7.15).

7.10 Appendix

Proof of Lemma 2

We require the second derivative of gi(.) with respect to fi. Hence we have

g′i(fi) =
[G−1

i (1− fi)]′

{G−1
i (1− fi)}2

, (7.53)

and

g′′i (fi) =
−[G−1

i (1− fi)]′′{G−1
i (1− fi)}2 + 2{[G−1

i (1− fi)]′}2[G−1
i (1− fi)]

{G−1
i (1− fi)}4

(7.54)

[G−1
i (x)]′ =

1
G′i(G

−1
i (x))

, and [G−1
i (x)]′′ = − G′′i (G−1

i (x))
{G′i(G

−1
i (x))}3

(7.55)

We will �nd that the second derivative of gi(.) is positive. Since Gi(.) is increasing function, then
G−1
i is also increasing, thus from (7.53), g−1

i (.) is also increasing function. On the other hand,
we have Theorem 3 in [?] states that the loss probability Gi(ρ) is a convex of µi with di �xed,
then from (7.55), the concavity of G−1

i is immediate. Thus from (7.54), the convexity of gi is
immediate.

Let us now calculate the limit of g′i as fi → 1. Working with equations (7.53) and (7.55), we
have

Φ(a) := lim
fi→a

g′(fi) = lim
fi→a

[
1

{G−1
i (1− fi)}2

1
G′i(G

−1
i (1− fi))

]
(7.56)

Making the change of variable G−1
i (1− fi) = X we have

Φ(a) := lim
X→G−1

i (1−a)

1
X2G′i(X)

= lim
X→G−1

i (1−a)

(1−XK+1)2

X2K+2 − (K + 1)XK+2 +KXK+1
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Further, it is clear that since Gi(0) = 0 then G−1
i (0) = 0. Combining the last two we have

Φ(1) = lim
fi→1

g′(fi) = lim
X→0

X2K+2 − 2XK+1 + 1
X2K+2 − (K + 1)XK+2 +KXK+1

= +∞

Let us now show the limit of g′i as fi → 0. We see that limG−1
i (y) = +∞ as y → 1 since the limit

of Gi(ρ) as ρ→ +∞ is 1. Consequently,

Φ(0) = lim
fi→0

g′(fi) = lim
X→+∞

X2K+2 − 2XK+1 + 1
X2K+2 − (K + 1)XK+2 +KXK+1

= lim
X→+∞

X2K+2

X2K+1
= 1

which proves the desired result.

Proof of Lemma 3

The Proposition 3 in [?] states that the Erlang loss formula is strictly convex in µi, keeping di
�xed. Hence the concavity of gi follows along similar lines.

Let us now calculate the limit of g′i as fi → 1. Similarly, we have

Φ(1) = lim
fi→1

g′(fi) = lim
X→0

(
∑Ki
j=0X

j/j!)2

X2(
∑Ki−1
j=0 (Ki − j)XKi+j−1/(Ki!j!))

= +∞

and

Φ(0) = lim
fi→0

g′(fi) = lim
X→+∞

(
∑Ki
j=0X

j/j!)2

X2(
∑Ki−1
j=0 (Ki − j)XKi+j−1/(Ki!j!))

(7.57)

= lim
X→+∞

X2Ki/(Ki!)2

X2Ki/(Ki!(Ki − 1)!)
=

1
Ki

(7.58)

which proves the desired result.

7.11 Conclusions

We have presented a framework for modeling the complex interactions among telecom and Internet
service providers through a class of one- and two-parameter Nash equilibrium models. The novel
properties of the models are the use of demand functions which describe each service providers'
customer set, and take into account not only the characteristics of that service provider, (SP),
i, but also of all other SP, j, the presence of two parameters describing each SP's service price
and Quality of Service (QoS) level, and the generality of the utility functions, which permit
incorporating complex functions such as those describing loss probabilities, decreasing rate of
return, and other general QoS forms.

The following potentially interesting avenues for further research have arisen during this study.

• It could be valuable to consider nonlinear expressions for the demand experienced by each
SP. One could envisage some general concave functions, or the logit or probit models, for
example. The logit model has the positive feature of allowing closed form expressions for the
choice probabilities across SP, but su�ers the drawback of requiring an i.i.d. assumption
on those probabilities. The probit model allows for covariances across SPs, but requires
numerical simulation, in general, to obtain solutions.

• It could be of interest to incorporate explicitly the network of each SP into the model.
Indeed, in this work, the characteristics of each provider's network have been aggregated into
a single pair of functions, representing some sort of average service one would experience
using that service provider. However, it is well known that QoS, and in some cases, price,
vary considerably across the paths of a single SP. In addition, the demand experienced by
an SP depends naturally on the source and destination of the demand.
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Chapter 8

Potential games and Equivalent

Games

8.1 Equivalent Games: How to Transform a Game

In this section we identify some transformations of a game that keep its equilibrium strategies
unchanged.

Theorem 9. Consider an I-player game. Ai is the set of actions of player i and U i(a) is his utility
function, where a is a multistrategy. Consider for any i one of the following transformations:

• Adding functions of the actions of other players:

Û i(a) := U i(a) + f i(a(−i))

where f i is an arbitrary function of the actions of all players other than i.

• Composing with a monotone increasing function:

•
Û i(a) := g(U i(a))

a∗ is an equilibrium for the game with utilities U i if and only if is an equilibrium for game with
utilities Û i.

8.1.1 Example: transforming a game into a global optimization problem

As an example, consider a two player multi-access game where each player i has two actions:
transmit denoted by "1" or listen denoted by "0". If both transmit then there is a collision and
the packet is lost. Assume that both players wish to maximize the global throghput, given by

Θ = a1a2

where a1 and a2 are the actions of the two players. In addition, each player has a cost of h per
energy. The utilities for the players are thus given by

U i(a1a2) = a1a2 − hai
According to the above Theorem, it follows that the equilibria for this game conincide with the one
in which we add to each player i = 1, 2 the extra utility −haj for j 6= i. After this modi�cation,
the utilities of the players become the same, both wishing to maximize

U(a1a2) = a1a2 − h(a1 + a2)

We thus transformed the game into a global optimization problem. A solution to the global
optimization problem is obviously a Nash equilibrium for that problem. By the Theorem above it
is thus an equilibrium for the original game.

65
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8.1.2 Example: transforming a non zero-sum game into a zero-sum
game

Consider the same Example as in the previous section but this time with

U1(a1a2) = a1a2 − ha1,

U2(a1a2) = −a1a2 − ha2,

In other words, player 2 tries to cause harm and to minimize the throughput that the other player
tries to maximize. Both players have in addition, energy costs.

Consider next the transformed utilities:

Û1(a1a2) = a1a2 − ha1 + ha2,

Û2(a1a2) = −a1a2 − ha2 + ha1,

Now the utilities sum to zero. We thus transformed the game into a global zero-sum game. A
saddle point for the zero-sum game thus provides us an equilibrium for the original game.

8.2 Exercises

1. Compute the equilibrium and the utility at equilibrium in the Multiple-Access with Capture
when pricing the high power.

2. Consider a two person game with performance measures U1 and U2. De�ne for α ∈ [0, 1]
the corresponding cooperative utility with cooperation degree α:

V 1(a) = αU1(a) + (1− α)U2(a).

Note that for α = 1 we get the standard non-cooperative game, for α = 0.5 we get the team
problem, for α = 0 we have the "altruistic" problem, where player 1 wishes to maximize the
performance of player 2. Analyze the Multiple-Access game when the utility of player 1 is
V 1(a) and where

• The utility of Player 2 is V 2(a),

• The utility of Player 2 is U2(a),



Chapter 9

Measuring the Quality of an

Equilibria

In this lecture, we focus on measuring and de�ning e�ciency of points in the utility set of a given
game. Consider for example the following game in pure strategies:

Choice A Choice B
Choice A (00, 10) (20, 79)
Choice B (79, 20) (50, 50)

If you were a system operator and could dictate or advise the two users, what would you tell them?
Intuitively, the set of choices (B,B) seems like an interesting one, as it is fair in the sense that the
two users would receive the same utility. On the other hand, the choices (A,B) and (B,A) are also
of interest since they would give one of the two players a higher payo� and a comparable global
payo�.

Consider a normal form game (N ,S,U). The set of players is N with their strategy space
S =

∏
n∈N Sn and Sn be the possible strategies of player n (note that this set can be discrete or

continuous). Finally, U =
∏
n∈N Un is the utility set functions, that is Un is a set of mappings

from S to a totally ordered space (typically the set of real numbers R). Yet, even though there
exists a total order on the utilities sets of each player, there is no natural and compatible total
order on their product, making comparisons between utility points hazardous.

Appropriate ways to de�ne an optimal point in the context of systems shared by several users
is the topic of this lecture. It is strictly analogous to simultaneously optimizing several objectives
in a single user system. This second approach has been extensively studied in the context of multi-
criteria optimization. In this lecture, we start by reviewing a few techniques used in multi-criteria
optimization and their equivalent in game theory (Section ??). We then present the de�nition of
Pareto optimality, based on the canonical partial order on Rn and its properties (Section ??). We
also discuss its connections with the classical de�nitions in multi-criteria optimization. Finally,
we discuss possible measures of the ine�ciency, based on the distance of a given point (Nash
equilibrium) to the Pareto border (Section 9.5).

9.1 Pareto E�ciency

The notion of Pareto optimality is based on the extension of the canonical order to Rn.

9.1.1 De�nition

De�nition 7 (Canonical partial orders). We consider the following orders as being canonical.

67
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• The canonical partial 4 order on Rn+ is de�ned by:

u 4 v ⇔ ∀k : uk ≤ vk

The classical strict partial order ≺ is de�ned accordingly. (u 4 v ⇔ u ≺ v and u 6= v.)

• We also de�ne an additional strict partial order� on Rn+, namely the strict Pareto-superiority,
by:

u� v ⇔ ∀k : uk < vk

We can then de�ne the Pareto set as the optimal points for 4:

De�nition 8 (Pareto optimality). A choice u ∈ U is said to be Pareto optimal if

∀v ∈ U,∃i, vi > ui ⇒ ∃j, vj < uj .

In other words, u is Pareto optimal if it is maximal in U for the canonical partial order on Rn+.
Roughly speaking, a point is said to be Pareto optimal if it is impossible to increase the perfor-

mance of a criteria without decreasing that of another one. With the previous notations, this can be
written: x is Pareto optimal i� ∀y,∃i ∈ 1..I, ui(y) > ui(x) ⇒ ∃j ∈ 1..I, uj(y) < uj(x). In other
words, a Pareto optimal point is such that there exists no point that is greater, component-wise.

A policy function is said to be Pareto-optimal if for all U ∈ U , α(U) is Pareto-optimal.

The key idea here is that Pareto optimality is a global notion. Even in systems that consists
of independent elements, the Pareto optimality cannot be determined on each independent sub-
system. Such phenomena has been exhibited in [47]. The considered system is a master-slave
platform in which the master can communicate with as many slaves as it needs at any time. The
master holds a in�nite number of tasks corresponding to N applications, and each of them can be
executed on any slave. The authors study the system at the Nash equilibrium (each application
competing with each other for both resource and CPU). Although the problems associated with
each machine is independent, the authors show that for any system with one slave the equilibrium
is Pareto optimal, while Pareto ine�ciency can occur in multiple slave systems (see Figure 9.1 and
9.1.1).

M

21

1 2

12

b1 = 1

b2 = 2

w1 = 2

w2 = 1

Figure 9.1: A master-slave system: 2 applications and 2 computing slaves

9.1.2 Properties

Pareto Optimality and Aggregation Function

De�nition 9 (f -increasing). A policy α is said to be f -increasing if f ◦ α is monotone. Any
f -optimizing policy is thus f -increasing.

Pareto optimality and monotony of the index optimization are closely related, as illustrated in
the following results.

Theorem 10. Let α be an f -optimizing policy. If f is strictly monotone then α is Pareto-optimal.

Proof. Suppose that α is not Pareto optimal. Then, there exists U = U(S) such that α(U) is not
Pareto optimal. Hence, there exists v ∈ U such that α(U) ≺ v, and hence f(α(U)) < f(v), which
contradicts the de�nition of α(U).
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(a) A case of a single master and two slaves system: the throughput achieved by
this allocation is 1 for the two applications (green and blue)
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(b) Same machines and applications: with this allocation (which is the Nash Equi-
librium), each application gets a throughput of 3/4. If green is numbered 1 and
blue is 2, the allocation is (1/2, 1/4) on the �rst slave and (1/4, 1/2) on the second
slave. Hence, if each slave was alone, the allocation would be Pareto optimal.

Theorem 11. Let α be an f -optimizing policy. If α is Pareto-optimal then f is monotone.

Proof. Suppose that f is not monotone. Then there exists u ≺ v such that f(v) ≺ f(u). Consider
U = {u, v}. As u ≺ v and α is Pareto-optimal, then α(U) = v which is in contradiction with
f(v) ≺ f(u).

Arithmetic and geometric mean indexes are examples or strictly monotone index. On the other
hand, the Jain index is an example of non-monotone index. The min and the max index are also
not strictly monotone, which is why, max-min fairness or min-max fairness are recursively de�ned
in the literature (see lecture on bargaining).

Continuity

Let H(Rn+) denote the set of non-empty compact sets of Rn+ and C denote the set of non-empty
compact and convex sets of Rn+. The canonical partial order on H(Rn+) is the classical inclusion
order: ⊆.

In the following, we assume that U(S) the set of all utility sets is either equal to H(Rn+) or
C(Rn+). Any negative result regarding C(Rn+) also applies to H(Rn+).

To study the continuity of policy functions, we need a topology on U(S). That is why in the
following, we use the classical metric on compact sets.

De�nition 10 (Hausdor� metric). Considering a metric function d on Rn+, one can de�ne the
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distance from x to the compact B as:

d(x,B) = min{d(x, y)|y ∈ B}

The distance from the compact A to the compact B as:

d(A,B) = max{d(x,B)|x ∈ A}

The Hausdor� distance between two compacts A and B can thus be de�ned as:

h(A,B) = max(d(A,B), d(B,A))

(H(Rn+), h) and (C(Rn+), h) are complete metric spaces [48] and we can thus study the continuity
of policy functions under pretty clean conditions.

Let us assume that a con�guration r made of p resources is modeled as an element r of Rp+.
A set of con�gurations R is thus a compact of H(Rp+). Let us assume that utility of users g are
continuous functions from Rp+ to Rn+. Then utility sets U = U(S) are built with the help of R and
g.

U :

{
(H(Rp+), C0(Rp+,Rn+)) → H(Rn+)
(R, g) 7→ {g(r)|r ∈ R}

The mapping U being continuous, α◦U represents the sensibility of the allocation with respect
to resources and utility functions. Continuity of the allocation α is thus an essential feature.
Indeed, it ensures that a slight change in the system resources would not signi�cantly a�ect the
allocation. In dynamically changing systems, this ensures a certain stability. It also ensures that
a slight error in utility functions does not a�ect too much the allocation.

Theorem 12. The Pareto set of a convex utility set is not necessarily compact.
The function P from C(Rn+) to H(Rn+) that associates to U the closure of its Pareto set is not

continuous.

Proof. Let us �rst exhibit a convex utility set whose Pareto set is not closed. Let C = {(x, y, z) ∈
R3

+|x2 + y2 ≤ 1, 0 ≤ z ≤ 1 − 1
2
x2−2y2+1

1−y }. The set C is depicted on Figure 9.2. We have

P(C) = {(x, y, 1− 1
2
x2−2y2+1

1−y )|x2 + y2 ≤ 1, x+ y ≥ 1, x > 0} ∪ {(0, 1, 1)}, which is not closed.
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Figure 9.2: Convex set whose Pareto set is not closed. The segment [A,B[ does not belong to the
Pareto set.

Let us consider P from C(Rn+) to H(Rn+) that associate to U the closure of its Pareto set.

Figure 9.3 depicts a converging sequence of convex Cn such that P(Cn) does not converge to
P(C∞).
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C0 P(C0) Cn P(Cn) C∞

P(C∞)

Figure 9.3: P is not continuous.

Theorem 13. Let α be a general Pareto-optimal policy function. α is not continuous.

Proof. We prove that α cannot be continuous with the simple instances depicted on Figure 9.4.
The only Pareto-optimal points are A and B. Therefore α has to choose in the �rst set between
A and B. If A1 is chosen, then by moving A1 to A0, the choice has to �jump� to B, hence α is
not continuous.

A0

B
An

B A∞ B

Figure 9.4: General Pareto-optimal policies are discontinuous: a path leading to discontinuity.

Remark 7. There exists continuous and non-continuous convex Pareto-optimal policy functions.

Proof. Let us consider a policy function α optimizing the sum of utilities. The two convex sets on
Figure 9.5 show that α is not continuous around the set K = {(x, y)|x+y ≤ 1}. This discontinuity
is due to the fact that many di�erent points of K simultaneously optimize the sum.

Figure 9.5: Optimizing
∑
: a discontinuous convex policy.

The policy function α optimizing the product
∏

of utilities is continuous though. As
∏

is
strictly monotone, α is Pareto-optimal. Moreover, as for any c, Ic = {x ∈ Rn+|

∏
xi ≥ c} is

strictly convex, for any convex, there is a single point optimizing the
∏
. Let us assume by

contradiction that α is not continuous at the point C. Then there exists Cn converging to C and
such that xn = α(Cn) converges to x∞ 6= α(C). As our sets are compact, there exists a sequence
yn ∈ Cn such that yn converges to α(C). By de�nition, we have ∀n,

∏
(yn) ≤

∏
(xn). Therefore∏

(α(C)) ≤
∏

(x∞), which is absurd as α(C) is optimal in C for
∏

and α(C) 6= x∞.
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Monotony

We state in this sub-section two results on monotonicity of index and policy functions. The �rst
one emphasizes that index-functions only measure a speci�c characteristic of performance measure,
and are hence not compatible. This explains why allocations that are e�cient (optimizing the
arithmetic mean) cannot (in general) also be fair (optimizing the geometric mean).

The second result states that, even when restricted to convex utility sets, policy functions
cannot be monotone. This infers that even in Braess-free systems (see lecture on routing games),
an increase in the resource can be detrimental to some users.

De�nition 11 (Braess-paradox). A policy function α is said to have Braess-paradoxes it there
exists U1 and U2 such that

U1 ⊂ U2 and α(U1)� α(U2)

with � de�ned as in de�nition 7. A policy function such that there is no Braess-paradox is called
Braess-paradox-free.

Theorem 14. Let f and g be two monotone index functions. A g-optimizing policy αg is f -
increasing if and only if αg is f -optimizing.

Proof. If αg is f -optimizing, then αg is clearly f -increasing.
Let us assume that αg is not f -optimizing. We de�ne the partial order ≺f (resp. ≺g) on Rn+

by x ≺f y i� f(x) ≤ f(y). We have ≺f 6=≺g, otherwise αg would be f -optimizing. Thus there
exists x1 and x2 such that: x1 ≺f x2 and x2 ≺g x1. Considering U = {x1} and U ′ = {x1, x2},
shows that αg is not f -increasing.

In other words, a policy optimizing an index f is always non-monotone for a distinct index g.

Theorem 15. Even if convex, policy functions cannot be monotone.

Proof. Let us consider α a monotone convex policy function and let us consider the three following
convex sets U1 = {(0, 1)}, U2 = {(1, 0)}, and U3 = {(x, 1− x)|0 ≤ x ≤ 1} (see Figure 9.6).

U1

U2

U3

Figure 9.6: Even convex policy functions cannot be monotone.

We necessarily have α(U1) = (0, 1) and α(U2) = (1, 0). As U1 and U2 are subsets of U3, we
have α(U3) < (1, 1), which is absurd because no such point belongs to U3.

9.1.3 Conclusion

In this section, we have established the following results:

• Indexes should be strictly monotone to ensure Pareto-Optimality.

• Continuity (of allocations) is only possible when considering convex utility sets.
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• It is impossible to ensure that the growth of the utility set does not incur the decrease of
the utility of some player (i.e. policy functions cannot be monotone, even when restricting
to convex utility sets).

• A policy optimizing a given index f leads to erratic values of an other index g when growing
utility sets (unless f and g induce the same optimization).

Note that even though being Braess-paradox-free does not lead to bad properties, it does not
give any information on the e�ciency of such policies. For example, an allocation α that would
be de�ned as returning 1/1000 of the optimum of the aggregation operator sum to all users
would obviously be Braess-paradox-free but is very ine�cient. This calls for more quantitative
characterization of e�ciency.

9.2 Fairness

9.3 Price of Anarchy

9.4 Multi-Objective Related Measures

9.4.1 Considered Problem

Consider a traveler who goes from Paris to Lyon. He can either take the train (quick but expensive)
or a bus (cheap but slow). What choice should he make?

This problem belongs to a family called multi-criteria or multi-objective optimizations. In
these problems, we do not aim at maximizing one criteria, but simultaneously optimizing severals.

Mathematically speaking, if (ui)i∈1..I is a set of I optimization criteria, the problem consists
of �nding x that maximizes (u1(x), u2(x), ..., uI(x)) subject to the system constraints.

Obviously, if the criteria are con�icting (like price and duration of a trip), no solution x can
optimize simultaneously the di�erent criteria.

Example 1: Scheduling

Consider a set of n tasks and m identical machines. The size of a task is the time it needs to
be processed on a machine. The scheduling problem consists in �nding an assignment (and an
ordering) of tasks to machines such that it maximizes some criteria.

Typical criteria found in the literature are:

• The makespan, that is the time of completion of the last task in the system. This represents
the point in time where all tasks have been processed.

• The average completion time is the average time stamp at which tasks have �nished their
execution in the system.

• The average response time or average �ow is the average di�erence between the completion
time of a task and its arrival time in the system.

• The average stretch or slowdown is the average response time per unit size of a task (i.e.
divided by the processing time).

Among the various scheduling policies that were proposed in the literature, we can mention the
list scheduling family. In a list schedule, the di�erent tasks are ranked according to some criteria
in a waiting list. Then, each time one of the machines of the system becomes idle, the task ranked
�rst in the waiting list is executed in the machine and removed from the list. Two basic ordering
policies were proposed, namely, the increasing size order and decreasing size order. The associated
schedules are the SPT (Shortest Processing Time) and the LPT (Longest Processing Time).
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These two policies are, in a sense opposite, and hence exhibit good performance according to
di�erent criteria: the SPT is e�cient for the average completion time while the LPT exhibit good
performance when considering the makespan.

Example 2: Networking

Usually, the considered quality-of-service (QoS) performance measure is the throughput, that is to
say the average amount of information that is transmitted per second. This is particularly relevant
in the case of large �les, where the overall transmission time is proportional to the throughput.

Yet, in real-time environments, like audio or video communications, the system response time
is crucial, and a large delay is not acceptable. Because of the long distance the signal has to go
through, satellite communications su�er from a noticeable delay.

In streaming video, another performance measure, the jitter is of particular interest. The jitter
is the variation of delay. When watching a video, a sudden increase of the delay might cause the
bu�er to be empty and the video might stop.

These di�erent performance measures are often con�icting. For instance, jitter is usually
caused by retransmission of lost packets. By adding redundancy to the transmission, a lower loss
probability can be achieved, at a cost of a lower throughput.

Depending on the type of considered application, one or several of these performance measure
can be appropriate to represent the quality of a connection.

9.4.2 Di�erent Approaches

Di�erent approaches were proposed in the literature. We review below a few popular ones.

Aggregating the Criteria

The �rst option is to aggregate the di�erent criteria into a global one:

De�nition 12 (Index function or Aggregation Operator). An index function f is a function of

the form: f :
{
U(S) ⊂ Rn+ 7→ R

u = (u1, u2, ..., uI) → f(u)

De�nition 13 (Index-optimizing). A policy function α is said to be f -optimizing if for all U(S),
f(α(U(S))) = supu∈U(S) f(u) [49].

In spite of the old saying, "you can't compare apples and oranges", this is typically done
in a number of works where the utility associated to an allocation is a gain (some performance
evaluation measure) minus a cost function. The "gain" can be the throughput, the probability of
successful transmission, while the "cost" could be the energy consumption (mobile devices) or the
price paid (to obtain a service).

Common indexes are:

• Arithmetic mean:
∑
i ui.

• Minimum: mini ui.

• Maximum: maxi ui.

• Geometric Mean:
∏
i ui.

• Harmonic Mean: 1∑
i 1/ui

.

• Quasi-arithmetic Mean: f−1( 1
n

∑n
i=1 f(ui)) where f is a strictly monotone continuous

function on [0,+∞]. The particular case where f is de�ned by f : x → xδ has been widely
studied [50]. The �ve previous index are particular case of this index for particular values
of δ (respectively, 1,−∞,+∞, 0 and −1).
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• Jain: (
∑
ui)

2

n
∑
u2
i
(see [51]).

• Ordered Weighted Averaging: OWA(u1, . . . , un) =
∑
i wi.uσ(i) where σ is a permutation

such that uσ(1) ≤ uσ(2) ≤ · · · ≤ uσ(n).

All these indexes are continuous, however, some of them are not strictly monotone. We will see
in the following that this has important repercussions (Section 9.1.2).

Solution

isolines
aggregation function

Solutions

Achievable

2nd criterium

1st criterium

f (u) = 12

f (u) = 10

f (u) = 3

Figure 9.7: Example of aggregation optimization: A case with two criteria. The set of "achievable
solutions" is the set of points (u1, u2) such that exists an possible x such that u1(x) = u1 and
u2(x) = u2. The curves in red represent the isolines of the aggregation function f for di�erent
values. The optimum value is obtained at the blue point, corresponding to a value of 10 for the
aggregation function.

Optimizing One, Bounding the Others

Another option is to optimize one of the criteria, while bounding the others to some acceptable
levels. In this case, the optimization problem becomes:
For some j ∈ {1..I}, and some (εi)i∈1..I,i6=j , Find x that maximizes uj(x) such that ∀i 6= j, ui(x) ≥
εi.

For instance, in a video communication, one might want to (lower) bound the delay by 0.2
seconds, while maximizing the throughput so as to use a compression rate with quality loss as low
as possible.

Hierarchical Optimization

Let us rank the di�erent criteria. Let σ a permutation in 1..I, and an order ≺ on the criteria:
uσ(1) ≺ uσ(2).... Among the di�erent solutions that maximize uσ(1), consider those that also
maximize uσ(2), and among them, whose that maximize uσ(3) and so on.

This approach is suited in systems where there is a main criterion whose optimum solution is
not unique. Then, the other criteria, serve as tie-breaking rule.
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Solution

Solutions

Achievable

2nd criterium

1st criterium
ε

Figure 9.8: Optimizing and Bounding. The set of "achievable solutions" is the set of points
(u1, u2) such that exists an possible x such that u1(x) = u1 and u2(x) = u2. The solution point x
maximizes u2(x) constraint to u1(x) ≥ ε1.

Zenith Optimization

Consider these I optimization problems:
x1 = argmax u1(x)
x2 = argmax u2(x)
...
x1 = argmax uI(x)

The point u1(x1), u2(x2), ..., uI(xI) represents the ideal point where all criteria would be maxi-
mized. Of course such a point does not exists (life is not perfect). It is called the zenith.

Then, an algorithm is said (A1, A2, ..., AI)-optimal if, in the worse case (worse possible scenario,
in terms of topology for instance), it computes a point y such that ∀i, ui(x)/ui(y) ≤ 1/Ai.

Suppose that SCmax is a scheduling policy that is ρCmax-optimal for the makespan and
SMinSum is a scheduling policy that is ρMinSum-optimal for the sum of the completion time
(recall that these are objectives to be minimized). Let α be a parameter (given). Let l =
αCScmaxmax . If tasks are adequately split into two sets and scheduled according to SCmax or
SMinSum depending on the set they belong to, it can be shown that the obtained schedule is
a ((1 + α)ρCmax, (1 + 1/α)ρMinSum)-approximation of the zenith solution of MaxAndSum (Stein
and Wein, [52]).

9.4.3 Links and Use with Game Theory

As mentioned earlier, Game Theory deals with multiple user, each of them optimizing a single
valued function. Meanwhile, in multi-objective approaches, a single user aim at optimizing a
multiple valued function.

The di�erent approaches used in multi-objective optimization have reciprocal applications in
game theory

• Some aggregation operators are used to de�ne fair sharing, mostly in resource allocation
based problems (cf lecture on bargaining and fairness).

• optimizing one, bounding the others is useful when di�erent types of users interact (for real
time applications, which require a �xed amount of bandwidth vs elastic applications)
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Solution

Solutions

Achievable

2nd criterium

1st criterium

Figure 9.9: Hierarchical Optimization. The set of "achievable solutions" is the set of points
(u1, u2) such that exists an possible x such that u1(x) = u1 and u2(x) = u2. The solution point
x maximizes u2(x). As more than one point satis�es this property, the point maximizing u2(x) is
chosen in this set.

• hierarchical optimization

• Zenith optimization is used for measuring ine�ciencies of points (see Section 9.5).

9.5 Sel�sh Degradation Factor

How to measure the e�ciency of a given policy is still an open question. We discuss in this section
the popular Price of Anarchy [53] and the Sel�sh Degradation Factor, a more topological point of
view and explain how it relates to the notion of ε-approximation [54].

9.5.1 Price of Anarchy and Index-Optimizing Based Metrics

Index-optimizing based metrics are easy to compute, continuous and generally conserve Pareto-
superiority (under some mild conditions). It is thus natural to select an index f and to try to
compare an allocation to the optimal one for f . Papadimitriou [53] introduced the now popular
measure �price of anarchy� that we will study in this section.

For a given index f , let us consider α(f) a f -optimizing policy function. We de�ne the ine�-
ciency If (β, U) of the allocation β(U) for f as

If (β, U) =
f(α(f)(U))
f(β(U))

≥ 1

= max
u∈U

f(u)
f(β(U))

. (9.1)

Papadimitriou focuses on the arithmetic mean Σ de�ned by Σ(u1, . . . , uk) =
∑K
k=1 uk. The price

of anarchy φΣ is thus de�ned as the largest ine�ciency:

φΣ(β) = sup
U∈U

If (β, U) = sup
U∈U

∑
k α

(Σ)(U)k∑
k β(U)k

In other words, φΣ(β) is the approximation ratio of β for the objective function Σ. This measure
is very popular and rather easy to understand. However, we will see that it may not re�ect what
people have in mind when speaking about �price of anarchy�.
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Figure 9.10: Zenith Optimization. The set of "achievable solutions" is the set of points (u1, u2)
such that exists an possible x such that u1(x) = u1 and u2(x) = u2. The zenith
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Figure 9.11: Utility set and allocations for SM,N (N = 3,M = 2), with u2 = · · · = uN .

Consider the utility set SM,N = {u ∈ RN+ |u1/M +
∑N
k=1 uk ≤ 1} depicted in Fig 9.11. As

the roles of the uk, k ≥ 2 are symmetric, we can freely assume that u2 = · · · = uN for metrical
index-optimizing policies.

Remark 8. This example was taken from the master-slave scheduling problem of [47].

It is then easy to compute the following index optimizing allocation:

• α(Σ)(SM,N ) = (M, 0, . . . , 0) corresponds to the allocation optimizing the average utility (sum
aggregator);

• α(min)(SM,N ) =
(

1
N−1+1/M , . . . , 1

N−1+1/M

)
corresponds to the symmetric Pareto point

(called max-min fair allocation [55], see lecture on bargaining and fairness);

• α(Π)(SM,N ) =
(
M
N ,

1
N , . . . ,

1
N

)
corresponds to the optimum of the product of utilities, also

called proportionally fair allocation (product aggregator, see course on bargaining)
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Note that, α(Σ), α(min), and α(Π) are Pareto optimal by de�nition. One can easily compute the
price of anarchy of the Product aggregator optimizer:

IΣ(α(Π), SM,N ) =
M

M
N + N−1

N

−−−−→
M→∞

N.

The price of anarchy is therefore unbounded. However, the fact that this allocation is Pareto-
optimal and has interesting properties of fairness (it corresponds to a Nash Bargaining Solu-
tion [55], see lecture on bargaining) questions the relevance of the price of anarchy notion as a
Pareto e�ciency measure.

Likewise, the ine�ciency of the max-min fair allocation is equivalent to M for large values of
M (as opposed to K for the non-cooperative equilibrium). It can hence be unbounded even for
bounded number of applications and machines. This seems even more surprising as such points
generally result from complex cooperation and are hence Pareto optimal. These remarks raise
once more the question of the measure of Pareto ine�ciency.

These are due to the fact that a policy optimizing an index f is always non-monotone for a
distinct index g (from Theorem 14). Hence any policy (including Pareto optimal ones) optimizing
a distinct index from the arithmetic mean will experience a bad price of anarchy. Note that the
previous problems are not speci�c to the e�ciency measure arithmetic mean. The same kind of
behavior can be exhibited when using the min or the product of the throughputs for instance.

That is why Pareto ine�ciency should be measured as the distance to the Pareto border and
not to a speci�c point.

9.5.2 Sel�shness Degradation Factor

De�nition

The distance from β(U) to the closure of the Pareto set P(U) in the log-space is equal to:

d∞(log(β(U), log(P(U))) = min
u∈P(u)

max
k
| log(β(U)k)− log(uk)|

Therefore, we can de�ne

I(β, U) = exp(d∞(log(β(U), log(P(U)))

= min
u∈P(u)

max
k

max
(
β(U)k
uk

,
uk

β(U)k

)
(9.2)

Topological interpretation and connection with ε-approximation

To quantify the degradation of Braess-like Paradoxes (the degree of Paradox), Kameda [56] intro-
duced the Pareto-comparison of α and β as ρ(α, β) = mink αkβk . Therefore, α is strictly superior

to β i� ρ(α, β) > 1. Intuitively ρ represents the performance degradation between α and β.
Indeed, what we are interested in is in fact some kind of distance of a point to the Pareto set.

As researchers are used to look at factors when evaluating the performance of an algorithm, this
distance to the Pareto set should be measured in the log space. As we have seen in the previous
section, the ine�ciency measure for the sel�shness degradation factor is closely related to the
distance to the Pareto set. More precisely, we prove that being close to the Pareto set implies a
small measure of ine�ciency. However, the converse is true only when the utility set has some
particular properties.

Let us recall the classical expansion de�nition:

X ⊕ a = {y|d(x, y) ≤ a, for some x ∈ X}

This de�nition can be easily expanded as:

X ⊗ a = exp(log(X)⊕ log(a))
= {y| exp(d(log(x), log(y)) ≤ a for some x ∈ X}
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De�nition 14 (ε-approximation). [54] de�nes an ε-approximation of P(U) as a set of points S
such that for all u ∈ U there exists some s ∈ S such that ∀k : uk ≤ (1 + ε)sk.

Remark 9. Note that a (A,A, .., A)-(Zenith) optimization is a A-approximation of the Zenith.

With the previous notations, it is easy to see that:

Theorem 16. S ⊆ U is an ε-approximation of P(U) i� P(U) ⊆ S ⊗ exp(ε).

Figure 9.12(b) depicts the expansion of log(P(U)) by ε so that it contains log(β(U)). It is easy
to show that:

Lemma 4. I(β, U) ≤ exp(ε)⇔ β(U) ∈ P(U)⊗ exp(ε).

In other words, I(β, U) ≤ exp(ε) i� β(U) is no farther than ε from P(U) in the log space.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

eγ

eγ

(a) U and β(U) in the original space

 0.01  0.1  1

 0.01

 0.1

 1

γ

γγ

(b) U and β(U) in the log-space:
log(β(U)) ∈ log(P(U))⊕ γ

Figure 9.12: Distance to the Pareto set

Conclusion

When comparing the de�nitions of IΣ and I, the latest may seem harder to compute as it relies
on ¶(U). However, what we are interested in is measuring the distance to the Pareto set and
no index-based ine�ciency measure can re�ect this distance. Then can only re�ect a particular
property of the allocation such as fairness. Note that in mono-criteria situations, it is natural to
compare a solution to an intractable optimal solution, generally using approximations or lower
bounds. Therefore, similar approaches should be used in multi-criteria settings to compute I. This
ine�ciency measure is thus a natural extension of the classical mono-criteria performance ratio.

A system (e.g., queuing network, transportation network, load-balancing, ...) that would be
such that the Nash equilibria are always Pareto optimal would have a sel�shness degradation factor
equal to one. The sel�shness degradation factor may however be unbounded on systems where non-
cooperative equilibria are particularly ine�cient. The relevance of this de�nition is corroborated
by the fact that ε-approximations of Pareto-sets de�ned by Yannakakis and Papadimitriou [54]
have a degradation factor of exp(ε) ' 1 + ε.

9.6 Examples: Schedulling

We present two games that fall into this categories. The �rst is the problem of when to arrive at
a bank. The second is of when to retry to make a phone call. We then brie�y mention a third
related game that also involves retransmission decisions and that is related to access to a radio
channel.
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9.6.1 When to arrive at the bank?

The aim of this example is to illustrate that a very common situation that we frequently face is
in fact a queueing game, where the decision is of when to queue.

We consider the following scenario. A bank opens between 9h00 to 12h00. All customers that
arrive before 12h00 are served that day. A random number X of customers wish to get a service
at a given day. Service time are i.i.d. with exponential distribution. The order of service is FCFS
(First Come First Served). Each customer wishes to minimize her own expected waiting time, i.e.
the expected time elapsed from her arrival at the bank till she gets served.

This problem has been studied in [57]. The authors show that there exists a symmetric equi-
librium distribution F of the arrival time with support [T0, 12h00] for all players, with T0 < 9h00,
such that if all customers follow F , then no individual has an incentive to deviate from using the
distribution F .

We �nally note that if we eliminate the FCFS regime among those who arrive before the bank
opens, then T0 = 9h00. This could reduce average waiting time!

9.6.2 When to retry to make a phone call?

We are all used to obtaining occasionally a busy signal when attempting to make phone calls.
This signal is either due to the fact that the destination is currently busy with another phone call
or to congestion that may cause calls to be blocked. A person whose call is blocked may typically
retry calling. The goal of the example, taken from [58, 59], is to analyze the individual's choice of
time between retrials.

The model: Calls arrive according to a Poisson process with average rate λ. Service rates are
i.i.d. with mean τ and �nite variance σ2. Let S2 := τ2 +σ2 and ρ := λτ . Between retrials calls are
said to be "in orbit". Times between retrials of the ith call in orbit are exponentially distributed
with expected value of 1/θi.

We note that exponentially distributed times are frequently used in models in telecommuni-
cations, and in particular in telephony models due to much accumulated experimental results. In
particular, it is known that the duration of phone calls is well modeled by the exponential distribu-
tion. The exponential distribution is also attractive mathematically since it leads to simple Marko-
vian models due to its memoryless property (i.e. the property P (X > t + s|X ≥ t) = P (X > s)
for any t, s > 0).

We assume that each retrial costs c, and the waiting time costs w per time unit.
We begin by presenting the performance of the socially optimal policy [60].

The socially optimal policy. The expected time in orbit when all retrials use the same pa-
rameter θ is

W =
ρ

1− ρ

(
1
θ

+
S2

2τ

)
,

so the average cost per call is

(w + cθ)W =

ρ

1− ρ

(
cS2

2τ
θ +

w

θ

)
+

ρ

1− ρ

(
wS2

2τ
+ c

)
.

This is minimized at

θ∗ =

√
2wτ/c
S

.

A remarkable observation is that this rate is independent of the arrival rate!
If θ∗ is used, the two terms that depend on θ turn out to be equal: the waiting cost and the

retrial costs coincide.
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The game In the game case, the authors of [60] compute g(θ, γ), which is the expected waiting
time of an individual who retries at rate γ while all the others use retrial rate θ. This allows them
to obtain the equilibrium rate:

θe =
wρ+

√
w2ρ2 + 16wτc(1− ρ)(2− ρ)/S2

4c(1− ρ)
.

We observe that θe monotone increases to in�nity as λ increases (to 1/σ).

Conclusions. Here are some conclusions from this example.

1. The ratio between the cost at equilibrium and the globally optimal cost tends to in�nity.
Thus, the noncooperative nature of the game leads to high ine�ciency.

2. The equilibrium retrial rate is larger than the globally optimal retrial rate. They tend to
coincide as ρ→ 0.

3. Both equilibrium and optimal retrial rates are monotone decreasing in the variance of the
service times.

4. There is a unique equilibrium.

9.6.3 Access to a radio channel: when to retransmit

Phone calls are not the only example where we �nd retransmissions. Another example, typical
to cellular communications as well as satellite communications, is in the access of packets to a
common radio channel. If more than one terminal attempt to transmit a packet at the same time
then a collision occurs and all terminals involved in the collision have to retransmit their packet
later. A terminal wishes typically to maximize the throughput (i.e. the expected average number
of successful transmissions). A further cost may be incurred per each transmission attempt (it
could represent the energy consumption). The problem has various formulations as stochastic
games, in which each terminal controls the time till it attempts a retransmission of a packet
that has collided, or the probability of its retransmission at a given time slot [?, 61, 62]. In
[?], a comparison between a cooperative solution and a noncooperative solution is presented. It
is shown that as the arrival rate of packets increases, the cooperative solution tends to reduce
the retransmission probabilities; retransmissions are thus delayed so as to avoid more collisions.
Due to this behavior, the throughput was shown to increase with the arrival rate of packets. In
the noncooperative case, a single symmetric equilibrium is obtained in which, in contrast, the
retransmission probabilities tend to increase with the arrival rate of packets. Thus, as the arrival
rate increases, terminals become more aggressive, and the system throughput decreases. For large
arrival rates it decreases to zero.



Chapter 10

Computing Equilibria

10.1 Zero-Sum matrix games

We introduced games and equilibria �rst through some properties related to a symmetric 2 × 2
matrix game with 2 players and then through their standarnd de�nitions. We show now that the
de�nition implies this structure in a more general setting.

Theorem 17. Consider a 2× 2 matrix game with 2 players. The game need not be symmetric. If
the equilibrium strategy of a player is not pure then that player is indi�erent between his actions.

Proof. Let (p, r) be an equilibrium. Assume that p is not pure. p maximizes U1(q, r) over q
where

U1(q, r) = qU1(T, r) + (1− q)U1(B, r).

Since p is an interior point, it is obtained at the q for which the derivative of U1(q, r) equals zero.
The latter gives

U1(T, r) = U1(B, r).

Theorem 18. Consider a 2× 2 matrix game with 2 players where player 1 has the utility matrix
A (as in Figure 10.1). Assume that no player has a dominating strategy. Then there is a unique
mixed equilibrium (p, r) where

r =
A22 −A12

A11 −A12 −A21 +A22
(10.1)

If the game is symmetric then p = r and the utility of each player at equilibrium is

U1(r, r) =
A11A22 −A12A21

A11 −A12 −A21 +A22
(10.2)

Proof. We have

U1(T, r) = rA11 + (1− r)A12, U1(B, r) = rA21 + (1− r)A22.

Equating them, we get (10.1).

Player 1
Player 2 H D

H A11 A12

D A21 A22

Figure 10.1: Utility for
player 1

83
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Next we show that r is indeed a probability measure. We note that the enumerator of (10.1)
is non-zero. Indeed, if A22 = A12 then player 1 has a dominating strategy: it is 1 if A11 ≥ A21

and is 2 if A11 ≤ A21.
We show that the denominator is non-zero. Assume A11 ≥ A21. Then A12 < A22 otherwize 1

would be a dominant strategy for player 1. Hence A11 −A21 −A12 +A22 < 0 Assume A11 ≤ A21.
Then A12 > A22. Hence A11 −A21 −A12 +A22 > 0.

We conclude that the denominator in the expression for (10.1) for r is non-negative and that
indeed 0 < r < 0.

Since U1(B, r) = U1(T, r), p is indeed optimal when the other player uses r. We can similarly
derive the optimal r when the other player uses p. Thus (p,r) where r is given in (10.1) are in
equilibrium.

Substituting r in the expression rA11 + (1− r)A12 for U1(1, r) gives (10.2).

10.2 Computing Wardrop Equilibria

Basic Wardrop model

Recalll that at Wardrop equilibrium the �ows satisfy the following (Section 6.1).

hwr(cwr − πw) = 0, r ∈ Rw, w ∈W, (10.3)

cwr − πw ≥ 0, r ∈ Rw, w ∈W, (10.4)∑
r∈Rw

hwr = dw, w ∈W (10.5)

where hwris the �ow on route r ∈ Rw, the set of routes joining node pair w ∈W,the set of origin-
destination node-node pairs. The cost or delay on that route is cwr, and πw is the minimum cost
on any route joining node pair w. The demand for service between the node pair w is denoted
dw. De�ne the graph as G = (N ,A). Then, adding non-negativity restrictions hwr ≥ 0 and
πw ≥ 0, the resulting system of equalities and inequalities can be seen as the Karush-Kuhn-Tucker
(KKT) optimality conditions of the following optimization problem, known as the Beckmann
transformation (Beckmann, 1956).

min f(x) =
∑
l∈A

∫ xl

0

tl(xl)dx =
∑
l∈A

∫ ∑
i∈N xil

0

tl(x)dx

subject to ∑
r∈Rw

hwr = dw, w ∈W, (10.6)

∑
w∈W

∑
r∈Rw

hwrδ
l
wr = xl, l ∈ A, (10.7)

xl ≥ 0, l ∈ A, (10.8)

where xil is the �ow of users from OD pair i on link l, xl is
∑
i∈N xil and δlwr is a 0− 1 indicator

function that takes the value 1 when link l is present on route r ∈ Rw.

10.2.1 Wardrop equilibrium and Potential games

The fact that Wardrop equilibrium can be obtained using an equivalent optimization problem with
a single player having some cost f(x) is a feature common to a whole class of games known as
potential games. This class of games was formally introduced by Monderer and Shapley (1996) for
the case of �nitely many players. It was extended in Sandholm (2000) to the case of population
games, which includes the setting of Wardrop equilibrium.
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In developing the concept of potential games, game theorists seem not to have been aware of
the huge literature on road tra�c equilibria starting from Wardrop (1952) and Beckmann (1956).
Monderer and Shapley write in Monderer and Shapley (1996): "To our knowledge, the �rst to
use potential functions for games in strategic form was Rosenthal (1973)". Interestingly enough,
this reference (see also Rosental, 1973b) includes a discrete version of Wardrop equilibrium with
�nitely many players, called "congestion games".

The original de�nition of a potential for a game is as follows. Introduce the following N -player
game G = (N ; (Si)i∈N ; (ηi)i∈N ) where Si is the action set of player i, S = ×i∈NSi and ηi(s) is
the payo� for player i when the multistrategy s ∈ S is used. For s ∈ S, let (s|ti) denote the
multistrategy in which player i uses ti instead of si and other players j 6= i use sj . A potential for
the game is de�ned in Monderer and Shapley (1996) as a real valued function P on S s.t. for each
i, every s ∈ S and every ti ∈ Si, P (s|ti) − P (s) = ηi(s|ti) − ηi(s). Existence and uniqueness of
equilibria of potential games in that setting has been established in Monderer and Shapley (1996)
and Neyman (1997)1.

An adaptation of this de�nition is needed for population games, see Chap. 3 of Patriksson
(1994) and Sandholm (2000), in which there are N classes of populations of �in�nitesimal� players,
where the �mass� of players of type i is given by some constants di. Let α(j, t) be the fraction of
members of population type j that use action t ∈ Si. A multistrategy is the collection α = (α(j, t)).
We assume that the payo� ηi for a player of class i is a function of his own action as well as of
the multistrategy α. Let Si be the set of actions available to a player of population i, i = 1, ..., N .
We say that α∗ is an equilibrium if for any i, any s ∈ Si and any t ∈ Si such that α∗(i, t) > 0,
ηi(t;α∗) ≥ ηi(s;α∗). Equivalently, letting f = −η, we say that �ow α∗ is in equilibrium if the
following variational inequality problem (VIP) holds for all α ∈ S: f(α∗)(α− α∗) ≥ 0.

We then de�ne P to be a potential for the population game if for each s, the vector of payo�s
η(s) is the gradient of P (s). Under mild conditions on the payo� functions and strategy sets, one
can thus establish the existence and uniqueness of equilibria in potential population games. (See
Chap. 3 of Patriksson, 1994.)

10.2.2 Commodity�link-variable models

In telecommunication network models, the variable of interest is often the commodity-link �ow,
xil, rather than the total link �ow, xl. In this section, we consider a typical model based on
commodity-link �ows as the decision variable, and through it, derive some relations between Nash
and Wardrop equilibria.

We have seen that the Wardrop equilibrium can be computed using an equivalent convex
optimization problem (related to the potential). We show below that reminiscence of this potential
appears also in problems of Nash equilibria with �nitely many users: all equilibria satisfying some
conditions on the commodity-link �ow (condition (10.13) below) have the same total link �ow that
can be obtained from some convex optimization problem.

In the network routing problem, the decision variables xil are restricted by the non-negativity
constraints for each link l and player i: xil ≥ 0 and by the conservation constraints for each player
i and each node v:

riv +
∑

j∈In(v)

xij =
∑

j∈Out(v)

xij (10.9)

where riv = di if v is the source node for player i, r
i
v = −di if v is its destination node, and riv = 0

otherwise; In(v) and Out(v) are respectively all ingoing and outgoing links of node v. (di is the
total demand of player i).

A typical commodity-link cost function, for the ith commodity on link l, is given by

fil(xil) = xiltl

∑
j∈Il

xjl

 , (10.10)

1Uniqueness is in fact established among the class of correlated equilibria, of which Nash equilibria is a subset.
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where Il is the set of commodities (players) using link l. Note that this model resembles the
system optimal model de�ned in Wardrop's second principle. The Lagrangian with respect to the
conservation of �ow constraints is

Li =
∑
l∈A

xiltl

∑
j∈Il

xil

+
∑
v∈N

πi,v

riv +
∑

j∈In(v)

xij −
∑

j∈Out(v)

xij

 ,

for each player i. Thus a vector x with nonnegative components satisfying (10.9) for all i and v is
an equilibrium if and only if the following Karush-Kuhn-Tucker (KKT) condition holds:

Let xuv =
∑
i∈A xi,uv, where xi,uv is the �ow of users from OD pair i on the link de�ned by

node pair u, v. There exist Lagrange multipliers πi,u for all nodes u and all players, i, such that
for each pair of nodes u, v connected by a directed link (u, v),

tuv(xuv) + xi,uv
∂tuv(xuv)
∂xuv

≥ πi,u − πi,v,

with equality if xi,uv > 0.
De�ne πu =

∑
i πi,u. Taking the sum over all players we get the following necessary conditions

for x to be an equilibrium for each link (u, v):

Ituv(xuv) + xuv
∂tuv(xuv)
∂xuv

≥ πu − πv, (10.11)

with equality if xi,uv > 0 for all i, where I is the total number of players.
Assume that all players have the same source and destination, and let d be the sum of com-

modity demands. Then (10.11) are the KKT conditions for optimality of the vector {xl} with
nonnegative components satisfying the conservation of �ow constraints in the routing problem
(single commodity) where the cost to be minimized is given by∑

l∈A

xltl(xl) + (I − 1)
∫ xl

0

tl(y)dy, (10.12)

and where the total demand to be shipped from the common source to the common destination
is d; in particular, (10.11) holds with equality if xuv > 0. Assume further that tl are strictly
convex, or more generally that expression (10.12) is strictly convex. Then this problem has a
unique solution in total link �ows, which we denote (x∗l ).

Now, let {xil} be a Nash equilibrium for the original problem having costs (10.10) with the
property:

A1. Whenever xil > 0 for some i and l then xjl > 0 for all players j. (10.13)

A1 describes a property of the equilibrium: if (at equilibrium) one player sends positive �ow
through a link, then so do all other players. Under assumption A1, it follows that for all l,∑
i xil = x∗l . Note however, that this is not true in general if A1 does not hold, since x∗l need not

be expressible as the sum over I of some nonnegative xil that satisfy (10.9).
Remark The above is an alternative proof to the one in Orda, Rom and Shimkin (1993) of the
uniqueness of the total link �ows at all Nash equilibria satisfying A1.

Taking the limit in (10.12) as the number of players I → ∞, the second term in (10.12)
dominates, and by continuity of the functions and compactness of the feasible set, we observe that
both the objective function and the solution approach that of the Wardrop equilibrium.

10.2.3 General models and variational inequalities

The basic equilibrium model imposes a number of simpli�cations on the model of the tra�c �ow
phenomenon, and in particular, on the travel time, or impedance, functions.

Most notably, for the potential function to exist, the travel time function, tl, de�ned for each
link of the network, l ∈ A, must be integrable. The most common way for this to occur is that
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the travel time on a link l depends only upon the �ow present on the link l, that is, tl(x) = tl(xl).
This simpli�cation, in the tra�c context, means that interactions between di�erent tra�c streams
at junctions cannot be modeled within this paradigm (even if we use a virtual link to model the
node), since then, the travel time on a link l that reaches the junction is a function of �ows on
some or all links meeting link l at the junction, that is, tl(x) = tl(x1, . . . , xl, . . . , xm) (and is not
just a function of the sum of �ows). The simpli�cation also imposes that only a single class of
users is modeled, since multiple classes of users would interact on each link, resulting once again
in multivariate link travel time functions. In short, when the identities (in terms of multiple user
classes, or the multiple links they use) is needed in the cost function of a single link, then the
single-class model is no longer applicable.

When the link travel time functions are multivariate, it is usually the case that no potential
that can be obtained by integrating the travel time functions as in the basic model. Examples of
multivariate link cost functions can be found in the literature on modeling signalizes junctions on
a road network Heydecker (1983). Other examples can be found in the modeling of multimodal
networks, such as networks on which buses and cars share the road space or trucks and light
vehicles, since each tra�c class e�ects the tra�c di�erently, and each class has its own travel
time function, depending on all classes present on the link. Some characteristics of this type of
multivariate cost functions can be found in Toint and Wynter (1995).

Although the potential function approach cannot be used to describe the multivariate equilib-
rium, the Wardrop equilibrium conditions are valid regardless of whether the cost functions are
univariate or multivariate, and they can be expressed for both types of cost functions in a compact
variational framework.

In telecommunication network planning, link impedance functions can often be quite complex,
due to the underlying probabilistic phenomena as well as the interacting cost components of delay,
packet loss, jitter, etc... A typical form of the commodity-link cost functions (see, for example,
Orda Rom and Shimkin, 1993) is

til(xil, xl) = xiltl(xl) =
xil

Cl − xl
, (10.14)

where, as before, xl =
∑
i=1..I xil is the �ow of all classes i on link l. The constant Cl is the

capacity of link l. The user classes in this case correspond to commodities, or origin-destination
demands. For more justi�cation on this type of delay models, see Baskett et al. (1975), Kameda
and Zhang (1995). In some simple settings, such as a network of parallel arcs, when the sum of
the demands of all classes is less than link capacity, or on some one-commodity networks, Orda,
Rom and Shimkin (1993) show uniqueness of the Nash equilibrium. Also under �diagonal strict
convexity�, the authors show uniqueness of the Nash equilibrium, yet this condition only holds
under quite restrictive conditions on the cost functions or on the topology (Altman et al., 2002).
In Orda, Rom and Shimkin (1993) and Altman and Kameda (2001), uniqueness of the link class
�ows is shown for costs of the form (10.14) for general networks under assumption A1 (see eq.
(10.13).

We can analyze the Wardrop equilibrium for this system easily by expressing it as the solution
{x∗i } of the following variational inequality:

ti(x∗)T (x∗i − xi) ≤ 0, (10.15)

for all feasible class-�ow vectors, xi, where, as above, the vector x =
∑
i=1..I xi and ti = t for all

classes i = 1..I. Since the Jacobian of the mapping t is clearly singular (∂ti(x)/∂xj = ∂tj(x)/∂xi
for all i, j), we recover the nonuniqueness of the equilibrium (in the variable xi) that was observed
by Orda, Rom and Shimkin (1993) to occur on general networks.

We can also contrast the Wardrop and Nash equilibria through this example. The Nash
equilibrium x∗i satis�es ∑

l∈Ri

x∗ilt(x
∗
il, x

∗
6=il) ≤

∑
l∈Ri

xilt(xil, x∗6=il)
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for each user class i = 1..I, where the index 6= i includes all classes not equal to i. Rewriting, we
obtain that

∑
l∈Ri x

∗
ilt(x

∗
il, x

∗
6=il)−

∑
l∈Ri xilt(xil, x

∗
6=il) ≤ 0 for each i ∈ I and therefore when

t(x∗il, x
∗
6=il)− t(xil, x∗6=il) = 0, (10.16)

the above reduces to
∑
l∈Ri(x

∗
il − xil)t(x∗il, x∗6=il) ≤ 0, for each i ∈ I, which is equivalent to the

(Wardrop) VIP with cost operator t and classes given by users i ∈ I. Indeed, (10.16) occurs
precisely when the in�uence of an additional user on the cost, t, is 0.

Another example of general costs in telecommunications can be found in Altman, El-Azouzi,
and Abramov (2002), where the network model includes dropping of calls if capacity is exceeded.
The cost criterion for each user class i is the probability that his message is rejected along its
path, given by

Bi(x) = 1−
∑

m∈Si
∏I
j=1(xmjj /mj !)∑

m∈S
∏I
j=1(xmjj /mj !)

.

S is the set of feasible �states�; Si is the set of states for which another call of user i can still be
accepted (without violating capacity constraints), m is the system state whose jth component mj

is the number of class j calls in the system. Hence the number of terms in the cost function depends
upon the con�guration and capacity constraints of the network. (The larger the number of feasible
paths for a user class, the more terms present.) When each class, which can be represented by an
origin-destination pair, seeks a Wardrop equilibrium, the corresponding variational inequality is
to �nd x∗i such that Bi(x∗)T (x∗i −xi) ≤ 0, for all xi, for all classes i. Even in the simplest topology
of parallel links, it has been shown in Altman, El-Azouzi, and Abramov (2002), that there may
exist several equilibria with di�erent total link �ows.

Depending on the form of monotonicity satis�ed by the cost operator in the variational in-
equality, one can choose convergent algorithms for its solution, as well as determine whether or
not the solution will be unique. Weaker forms of monotonicity for which the mathematical prop-
erties and a number of convergent algorithms are known include pseudo-monotonicity and strong
nested monotonicity. (See Marcotte and Wynter, 2001, Cohen and Chaplais, 1988 ,for the latter.)

10.2.4 Additive versus non-additive models

The most widely studied performance measure investigated to date in transportation, computer
and telecommunication networks has been the expected delay. In transportation networks, this
cost metric leads naturally to models in which the route costs are additive functions of link costs
along the route, that is cr(x) =

∑
l∈R tl(xl).

In telecommunication networks, exogenous arrivals of jobs or of packets are modeled as Poisson
processes. Delays at links are modeled by in�nite bu�er queues with i.i.d. service times, inde-
pendent of the interarrival times. In the particular case in which the service time at a queue is
exponentially distributed, then whenever the input process has a Poisson distribution so will the
output stream. This makes the modeling of service times through exponential distributions quite
appealing, and makes the cost along a path of tandem queues additive. However, the expected
delay turns out to be additive over constituent links in a general topology under a much more
general setting, known as BCMP networks (named after its authors Baskett et al., 1975).

Indeed, as long as the exogenous arrivals have Poisson distributions and under fairly general
assumptions on the service order and service distribution, the expected delay over each link is given
by the expected service time divided by (1-ρ), where ρ is the product of total average tra�c �ow
at the queue and the expected service time. This general framework also allows for the modeling
of multiclass systems, i.e. where di�erent tra�c classes require di�erent expected service times at
a queue, see Kameda and Zhang (1995).

Other more general types of separable additive cost functions have been used in telecommuni-
cation networks which can represent physical link costs due to congestion pricing, see e.g. Orda,
Rom and Shimkin (1993).

However, in both transportation and telecommunication networks, equilibrium models in which
path costs are not the sum of link costs do arise.
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In the transport sector, when environmental concerns are taken into account, such as the
pollution associated with trips, non-additive terms arise. Path costs due to tolls or public transport
costs are generally non-additive as well, since they are calculated over entire paths, and cannot be
decomposed into a sum of the costs on component links.

In Gabriel and Bernstein (1997) and Bernstein and L. Wynter (2000), the authors discussed
properties of a bicriteria equilibrium problem in which both time delay and prices are modeled
on the links. Non-additivity arises from the nonlinear valuation of the tradeo� between time and
money, known as a nonlinear value of time. For example, users are willing to pay more (or less)
per minute for longer trips than for shorter trips. That is, a route cost function may be expressed
as cr(x, p) = V

(∑
l∈Ri tl(xl)

)
+
∑
l∈Ri pl, where V : <m+ 7→ <+ is the nonlinear value of time

function.
In telecommunication networks, many important performance measures are neither additive

nor separable. The �rst example is that of loss probabilities when the network contains �nite
bu�er queues. We note that in this case there is no �ow conservation at the nodes2 This model
has been dealt with by light tra�c approximations which are additive and separable, see Dinan,
Awduche and Jabbarie (2000), Jiménez (2001).

Another performance measure (already mentioned in the previous subsection) that has been
studied in the context of network equilibrium is that of rejection probabilities. The network
consists of resources at each link, and requests for connections between a source and a destina-
tion. The resources are limited, and a connection can only be established if there are su�ciently
many resources along each link of a route between the source and destination. For the case
where connections arrive according to a Poisson process and where calls last for an exponentially
distributed duration (these assumptions model telephone networks well), simple expressions for
rejection probabilities (i.e. the probability that an arriving call will �nd the line busy) are avail-
able. These expressions are neither separable nor additive. Such networks have been studied in
Altman, El-Azouzi, and Abramov (2002), Bean, Kelly, and Taylor, (1997).

When route costs are no longer the sum of constituent link costs, algorithms for solving the
network equilibrium problems must be modi�ed; indeed, underlying most algorithms for the net-
work equilibrium problem is a shortest path search, and standard searches all suppose additive
path costs. One algorithm for the non-additive route cost model can be found in Gabriel and
Bernstein (2000) while another is provided in the article by M. Patriksson [XXX].

2Note that �ow conservation fails even in the case of in�nite queues when one considers multicast applications
in which packets are duplicated at some nodes, see Boulogne and Altman (2002).
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Chapter 11

Routing Games: Applications

11.1 The Braess paradox

The service providers or the network administrator may often be faced with decisions related to
upgrading of the network. For example, where should one add capacity? Where should one add
new links?

A frequently-used heuristic approach for upgrading a network is through bottleneck analysis,
where a system bottleneck is de�ned as �a resource or service facility whose capacity seriously
limits the performance of the entire system� (see p. 13 of [?]). Bottleneck analysis consists of
adding capacity to identi�ed bottlenecks until they cease to be bottlenecks. In a non-cooperative
framework, however, this heuristic approach may have devastating e�ects; adding capacity to a
link (and in particular, to a bottleneck link) may cause delays of all users to increase; in an
economic context in which users pay the service provider, this may further cause a decrease in the
revenues of the provider. This problem was identi�ed by Braess [63] in the transportation context,
and has become known as the Braess paradox. See also [?], [?]. The Braess paradox has been
studied as well in the context of queuing networks [?], [64], [65], [66], [?].

In the latter references both queuing delay as well as rejection probabilities were considered
as performance measures. The impact of the Braess paradox on the bottleneck link in a queuing
context as well as the paradoxical impact on the service provider have been studied in [?]. In all
the above references, the paradoxical behavior occurs in models in which the number of users is
in�nitely large and the equilibrium concept is that of Wardrop equilibrium, see [?].

It has been shown, however, in [?], [67], that the problem may occur also in models involving a
�nite number of players (e.g. service providers) for which the Nash framework is used. The Braess
paradox has further been identi�ed and studied in the context of distributed computing [?], [?],
[?] where arrivals of jobs may be routed and performed on di�erent processors. Interestingly, in
those applications, the paradox often does not occur in the context of Wardrop equilibria; see [?].

In [?] (see also [?]), it was shown that the decrease in performance due to the Braess paradox
can be arbitrarily larger than the best possible network performance, but the authors showed also
that the performance decrease is no more than that which occurs if twice as much tra�c is routed.
The result was extended and elaborated upon in more recent papers by the same authors. In [?], a
comment on the results of [?] was made in which it is shown that if TCP or other congestion control
is used, rather than agents choosing their own transmission rates, then the Braess phenomenon
is reduced considerably. Indeed, this conclusion can be reached intuitively by considering (as is
well known in the study of transportation equilibria) that the system optimal equilibrium model
(in which the sum of all delays are minimized) does not exhibit the Braess paradox; congestion
control serves to force transmission rates to such a system optimal operating point.

An updated list of references on the Braess paradox is kept in Braess' home page at http://homepage.ruhr-

uni-bochum.de/Dietrich.Braess/#paradox
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11.2 Architecting equilibria and network upgrade

The Braess paradox illustrates that the network designer, the service provider, or, more generally,
whoever is responsible for setting the network topology and link capacities, should take into
consideration the reaction of (non-cooperative) users to her or his decisions. Some guidelines for
upgrading networks in light of this have been proposed in [?], [?], [?], [?], [67], so as to avoid the
Braess paradox, or so as to obtain a better performance. Another approach to dealing with the
Braess paradox is to answer the question of which link in a network should be upgraded; see, for
example, [?] who computes the gradient of the performance with respect to link capacities.

A more ambitious aim is to drive the equilibrium to a socially optimal solution. In [?] this is
carried out under the assumption that a central manager of the network has some small amount
of his or her own �ow to be shipped in the network. It is then shown that the manager's routing
decision concerning his own �ow can be taken in a way so that the equilibrium corresponding to
the remaining �ows attain a socially optimal solution.

11.3 Analyzing the original Braess paradox

We introduce in Figure 11.1 the topology of the original Braess paradox. The total demand is L.

X3

X5

X4

X1
X2

f

f

g

g

h

L

Figure 11.1: The topology of the original Braess paradox

The Figure provides for every link, its corresponding cost density as well as the amount of
�ow in that link. We shall show how the structure of the cost functions chosen simpli�es the
computations of the equilibrium.

We notice that the costs have been chosen such that the following properties hold:

• P1. link 3 and link 2 have the same cost function associated to them.

• P2. link 1 and 4 have the same cost.

• P3. the cost function f (of links 2 and 3) is linear

• P4. f + g is strictly increasing.

These properties simplify a lot the computations of the equilibrium, as we shall see next.
Case 1: x5 is not used at equilibrium. Then �ow conservation implies that x1 = x3 and

x2 = x4. Hence
g(x1) + f(x1) = g(x2) + f(x2)

Property P4 then implies that x1 = x2. The conservation of �ow at the source then imply that

x1 = x2 = x3 = x4 =
L

2
.
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Case 2: x5 is also used at equilibrium. Assume that the cost is such that both route 1-3,
as well as 2-4 are used at equilibrium. Then according to Wardrop's principle

g(x1) + f(x3) = f(x2) + g(x4). (11.1)

We now express x5:
x5 = x1 − x3 = −x2 + x4.

The two equalities follow from the conservation of �ows at the node to the left and to the right of
link 5.

As f is linear then this equation implies

f(x1)− f(x3) = −f(x2) + f(x4).

Summing with (11.1), we get

f(x1) + g(x1) = f(x4) + g(x4).

As f + g is strictly increasing then this equation implis x1 = x4. Hence also x2 = x3 (by the
previous equation).

Now, the conservation of �ows at the source node implies that x2 = L− x1. Hence

x5 = x1 − x3 = x1 − x2 = 2x1 − L.

As route 1-5-4 is also used then

g(x1) + h(x5) = f(x2).

We conclude that
g(x1) + h(2x1 − L) = f(L− x1).

This gives x1.
In particular, if g, h, f are all linear with the form

f(x) = fax+ fb, g(x) = gax+ gb, h(x) = a1x+ hb

Then

x1 =
−gb + haL− hb + faL+ fb

ga + 2ha + fa

which as we saw, equals also x4, and

x3 = x2 = L− x1 =
gb + haL+ hb − fb + gaL

ga + 2ha + fa

In the original reference of Braess we have L = 6, f(x) = 50 + x, g(x) = 10x. Thus fa =
1, fb = 50, ga = 10, gb = 0. If link 5 is absent (or if h2 is very large) then we get Then x1 = x2 = 3,

D13 = D24 = 83.

Take h = 10 + x so that ha = 1 and hb = 10. We observe that x1 = x2 = x3 = x4 = 3 is no
more an equilibrium. Indeed, With x1 = x3 = 3, the cost of the unused path is D154 = 70 which
is strictly smaller than that of the path that is used: D13 = 83.

The Wardrop equilibrium turns out to be x1 = 4 = x4, x2 = L−x1 = 2 = x3, x5 = x1−x2 = 2,
At equilibrium, the delays over all paths equal 92.
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Chapter 12

Improving the Quality of Equilibria

12.1 Setting up Appropriate Prices

12.1.1 Shadow Prices

12.1.2 Pigou Prices

12.1.3 Repercussion Prices

12.2 Coordinating Players: the Role of the Correlator

The concenpt of Correlated equilibrium is due to R. J. Aumann [68]. The following game is taken
from that reference:

action 1.a action 1.b
action 2.i 2, 1 0, 0
action 2.ii 0, 0 1, 2

Table 12.1: A matrix game [Aumann]

The game has two pure Nash equilibria:
(1.a , 2.i) with the values (2,1), and (1.b , 2.ii) with values (1,2).

The randomized strategy (1/3,2/3) for player 1 and (2/3,1/3) for player 2 is (the unique)
symmetric equilibrium. The corresponding values are

(2/9)× 1 + (2/9)× 2 = 2/3 for each player

Suppose that an arbitrator suggests to both either (1.a, 2.i) (w.p. 1/2) or (1.b, 2.ii) (w.p.
1/2 ). If the players follow the advice they obtain in expectation 3/2 each. Cannot be obtained
without correlation.

This is an example of a correlatead game. The game is still non-cooperative: no "binding
contract". Here, the correlated equilibrium does not dominate the pure Nash equilibria. There
are cases where it dominates all other Nash equilibria. The coordinator does not have to know
anything about the game: all it has to do is �ip a coin and send signals. Correlation is needed for
coordination.

Correlation is useful not just in games but also in team problems (a common objective).
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Chapter 13

General equilibrium: Dealing with

Constraints

13.1 Routing games and constraints

We represent a network as a graph with a set of nodes and directional links. A link has a cost
(delay) per �ow unit, that depends on the total �ow through it.

Consider K classes of users, each class i has a �xed demand φi to ship from a source si to a
destination di node. The strategy of a user is given by a vector describing the amount of �ow to
be shipped over each link of the network.

The cost of a path is the sum of the link costs.

We consider the following constraints:
(i) non-negative �ows and
(ii) conservation constraints: for each node and class, the sum of entring class �ow equals the sum
of its leaving �ows.

These areOrthogonal constraints: The constraints of class i do not depend on the strategies
of other classes.

13.1.1 Routing: Common capacity constraints

We add to the model of the previous subsectionn side constraints. Each link ` has a capacity
constraint: the total �ow over it cannot exceed C`.

We say that link ` has a Common Capacity Constraint (CCC) for users in a group M(`)
if violation of the capacity of link ` for some i ∈M(`) implies its violation ∀j ∈M(`).

` has a CCC for some M(`) i� for any multistrategy satisfying the link constraints, ∀i ∈M(`)
send positive tra�c on `.

Interpretation: If the capacity of link ` is exceeded then all those using it su�er (delay or
losses). Users not using the link are not a�ected.

CCC are non-orthogonal. The constraints of class i depend on the strategies of other classes.

Next consider the case of N classes, as described in Fig. 13.1.1.

User i has a dedicated direct path to the destination (link Si�Di) and an alternative path
Si�Bi�B2�Di that shares a common bus B1�B2 with the others.

Example: assume the demand φi of player i is of i units and that the capacity of each direct
links Si�Di is k. As k decreases, the number of users that have to ship �ow over the common bus
increases.

Hence the bus is a CCC for all users in a group M(Sk) where Sk decreases in k. It is
given by Sk = {N,N − 1, ..., N − k}.
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2 Users Example (�g
13.1):
Each user has a direct dedi-
cated path and a second al-
ternative path that traverses
a common bus.

Let the demands of class 1
and 2 be given by φ1 = φ2 =
4, Cl = 3,∀l.
Then ` = (S1 − S2) has a
CCC for M(`) = {1, 2}.
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Figure 13.1: 2 users Example
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13.2 Rosen coupled constraints: non-uniqueness fo value

13.2.1 Example: matrix game

Player 2
L R

Player 1
T 0 (2) 1 (0)
B −1 (0) 0 (0)

• Player 1 (2) chooses T or B. (L or R, respectively).

• The strategies of player 1 and 2 are the probabilities written as row vectors: x = (x(T ), x(B))
and y = (y(T ), y(B)), respectively.

• There are two matrices: U - utilities and D - constraints. The entries of U (of D) are in
black (in red, resp.).

• Player I maximizes the expected outcome xUy′ and player II minimzes it. (y′ is the transposed of
y).

• As in Rosen, the constraint is common to both players:

xDy′ ≤ ρ. (13.1)

where ρ is some constant taken to be 0 in this Example.



13.3. PROPERTIES OF ZERO-SUM GAMES WITH ROSEN'S CONSTRAINTS 99

Player 2
L R

Player 1
T 0 (2) 1 (0)
B −1 (0) 0 (0)

Player 2
L R

Player 1
T 0 (2) 1 (0)
B −1 (0) 0 (0)

Consider x = (1, 0) (choose T with probability 1). In order for the constraint to hold, player II has to
play y = (0, 1) (choose R with probability 1). Hence

max
x

min
y
xUy′ = U(T,R) = 1.

Next assume Player II chooses y = 1. To meat the constraint, Player I has to play B with probability
1. Hence

min
y

max
x

xUy′ = U(B,L) = −1.

We conclude that a value does not exist. Moreover, we obtain the surprising unusual inequality

max
x

min
y
xUy′ > min

y
max

x
xUy′.

13.2.2 Networking game Example: parallel links

xik is the amount of �ow that player i sends over link k.
fk(xk):= cost per unit �ow of link k, where xk = x1

k + x2
k is the total �ow on link k.

Let f1 = 0, f2(xl) = xl, C1 = 5, C2 = 10,
φ1 = φ2 = 3.
Player 1 maximizes J(x) = x1

2(x1
2 + x2

2)
and player 2 minimizes it.

f1=0

C1=5

f2(x2)=x2

C2=10

If player 1 plays �rst then its dominating strategy - ship all his demand to link 1: x1
1 = 3, x1

2 = 0
and player, J(x) = 0, so that minx1 supx2 J(x) = 0.

The same holds for player 2, who has a dominating strategy of sending all her �ow to link 1.
Hence

sup
x2

min
x1

J(x) = 1.

We thus get again the surprising inequality: minx1 supx2 J(x) < supx2 minx1 J(x)..

13.3 Properties of zero-sum games with Rosen's constraints

Consider a zero-sum game with a set S = S1 × S2 of multi-strategies.
Si(z):= non-empty set of strategies available to user i when the other player j 6= i plays z.
A multi-strategy (x, y) is feasible if x ∈ S(y) and y ∈ S(x).
Let the unrestricted game be the game with no constraints
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Theorem 19. Assume that in the unrestricted game a value exists, i.e.

sup
x∈S1

inf
y∈S2

U(x, y) = inf
y∈S2

sup
x∈S1

U(x, y) (13.2)

Then the original constrained game satis�es

sup
x∈S1

inf
y∈S2(x)

U(x, y) ≥ inf
y∈S2

sup
x∈S1(y)

U(x, y) (13.3)

13.3.1 Remarks

In constrained zero-sum games, the maximization and minimization by players 1 and 2 are re-
stricted to feasible multi-strategies.
We can relax this: in the left hand side or (13.3), the maximization of player 1 is over all S1;
player 2 takes care that the constraints of player 1 are saatis�ed.
A symmetric argument holds for the right hand side.

(13.3) shows that the behavior observed for Rosen's constraints, where the "upper-value" is
smaller than the "lower-value", is typical for constrained games of Rosen's type.

(13.3) holds also in constrained games without Rosen's structure of common constraints. But
it does not have any more a useful interpretation since

1. the "lower-value" (in the left hand side) is not restricted any more to multi-strategies that
are feasible for player 1, and

2. the "upper-value" (in the right hand side) is not restricted any more to multi-strategies that
are feasible for player 2.

13.4 Zero-sum games with general constraints

We now raise the question of whether a value exists when the constraints do not satisfy the
frameworok of Rosen

We begin considerinig the case where only player 1 has constraints. These depend on the
stgrategies of both players.

13.4.1 Formulation of the problem

Let S1 be the set of strategies available to player 1. Player 2's strategies when player 1 uses
strategy x are given by the set S2(x) = {y : D(x, y) ≤ ρ}.

If player 2 knows x then it can play any strategy in S2(x). If it does not know x it is obliged
to play a strategy y that will guarantee that supx∈S1 D(x, y) ≤ ρ.

Let G2 = {y : ∀x, D(x, y) ≤ ρ}. The general problem we consider is of determining the relation
between the left and the right hand side of the following:

sup
x∈S1

inf
y∈S2(x)

U(x, y)

?
>
=
<

inf
y∈G2

sup
x∈S1

U(x, y)

The following holds for any x∗ ∈ S1, and y
∗ ∈ G2:

inf
y∈S2(x∗)

U(x∗, y) ≤ sup
x∈S1

inf
y∈S2(x)

U(x, y) ≤ inf
y∈G2

sup
x∈S1

U(x, y) ≤ sup
x∈S1

U(x, y∗)

(x∗, y∗) is said to be a value of the game where x∗ ∈ S1, y
∗ ∈ G2, if

inf
y∈S2(x∗)

U(x∗, y) = sup
x∈S1

U(x, y∗)
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If it holds, then we conclude that

inf
y∈S2(x∗)

U(x∗, y) = sup
x∈S1

inf
y∈S2(x)

U(x, y) = inf
y∈G2

sup
x∈S1

U(x, y) = sup
x∈S1

U(x, y∗)

Note that the Rosen's joint coupled constraints are not special cases of this framework, so our
previous Counterexamples do not allow us to conclude that a value does not exist here.

Symetric de�nitions hold when player 1 has constraints. Then if a value exists, i.e.

inf
y∈S2

U(x∗, y) = sup
x∈S1(y∗)

U(x, y∗)

for some x∗ ∈ G1 and y∗ ∈ S2, then

inf
y∈S2

U(x∗, y) = sup
x∈G1

inf
y∈S2

U(x, y) = inf
y∈S2

sup
x∈S1(y)

U(x, y) = inf
y∈S1(x∗)

U(x, y∗).

13.4.2 Constrained Matrix games

Example 4. Zero-sum matrix game with constraints on player 1's strategies

the constraint restricts only
player 1 and not player 2.
Set ρ = 1/2.

Player 2
L R

Player 1
T 1 (1) 0 (0)
B 0 (0) 2 (1)

G1 is the singleton (1/2, 1/2). Hence supx∈G1
infy∈S2 U(x, y) = 1/2, obtained when player 2

uses action R w.p.1.
Thus Player 1 can guarantee to receive a payo� of at least 1/2 if he plays �rst.
If Player 2 plays �rst, he can guarantee that the payo� of Player 1 would not exceeed 2/3.
We conclude that the following inequality holds:

sup
x∈G1

inf
y∈S2

U(x, y) < inf
y∈S2

sup
x∈S1(y)

U(x, y).

The inequality is the opposit than the one we had in Rosen's setting

13.4.3 Power control: general constraints

N mobile terminals. Each minimizes its transmission power Pi.

The transmissions of all mobiles are received at a base station (BS).
The received power of mobile i is hiPi. ξ is the power of the thermal noise at BS.
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The quality of the call of mobile i is determined by the SINR (Signal to Initerference and Noise
Ratio):

SINRi(P) =
hiPi∑

j 6=i hjPj + ξ
, P = (P1, ..., PN ).

Each mobile i seeks to Minimize Pi subject to SINRi(P) ≥ ρi.
The consstraint of a user depends on strategies of other users.
The contstrainsts are non-orthogonal and non common.

13.5 Lagrangian Multipliers and Duality Theory



Chapter 14

Stochastic games: applications -

Where to queue?

14.1 The gas station game

The example we present here illustrates the dynamic routing choices between two paths. When a
routing decision is made, the decision maker knows the congestion state of only one of the routes;
the congestion state in the second route is unknown to the decision maker. The problem originates
from the context of two gas stations on a highway [69]. A driver arriving at the �rst station sees
the amount of other cars already queued there and has to decide whether to join that queue, or to
proceed to the next gas station. The state of the next gas station (i.e. the number of cars there)
is not available when making the decision. The situation is illustrated in Fig. 14.1. The exact
mathematical solution of the model was obtained in [70] and we describe it below.

Figure 14.1: The gas station problem

This problem has natural applications in telecommunication networks: when making routing
decisions for packets in a network, the state in a down stream node may become available after a
considerable delay, which makes that information irrelevant when taking the routing decisions.

Although the precise congestion state of the second route is unknown, its probability distribu-
tion, which depends on the routing policy, can be computed by the router.

We assume that the times that corresponds to the arrivals instants of individuals is a Poisson
process with rate λ. Each arrival is a player, so there is a countable number of players, each of
whom takes one routing decision, of whether to join the �rst or the second service station. A
player eventually leaves the system and does not a�ect it anymore, once it receives service.
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To obtain an equilibrium, we need to compute the joint distribution of the congestion state in
both routes as a function of the routing policy.

We restrict to random threshold policies (n, r):

• if the the number of packets in the �rst path is less than or equal to n − 1 at the instance
of an arrival, the arriving packet is sent to path 1.

• If the number is n then it is routed to path 1 with probability r.

• If the number of packets is greater than n then it is routed to path 2.

The delay in each path is modeled by a state dependent queue:

• Service time at queue i is exponentially distributed with parameter µi

• Global inter-arrival times are exponential i.i.d. with parameter λ.

When all arrivals use policy (n, r), the steady state distribution is obtained by solving the
steady state probabilities of the continuous time Markov chain [70].

If an arrival �nds i customers at queue 1, it computes

Ei[X2] = E [X2|X1 = i]

and takes a routing decision according to whether

Tn,r(i, 1) :=
i+ 1
µ1
≤?

Ei[X2] + 1
µ2

=: Tn,r(i, 2).

To compute it, the arrival should know the policy (n, r) used by all previous arrivals.
If the decisions of the arrival as a function of i coincide with (n, r) then (n, r) is a Nash

equilibrium.
The optimal response against [g] = (n, r) is monotone decreasing in g. This is the Avoid The

Crowd behavior.
Computing the conditional distributions, one can show [70] that there are parameters (µ1, µ2, λ, n, r)

for which the optimal response to (n, r) is indeed a threshold policy.
Denote

ρ :=
λ

µ1
, s :=

µ2

µ1

There are other parameters for which the optimal response to (n, r) is a two-threshold policy
characterized by t−(n, ρ, s) and t+(n, ρ, s) as follows.

It is optimal to route a packet to queue 2 if t−(n, ρ, s) ≤ X1 ≤ t+(n, ρ, s) and to queue
1 otherwise.

At the boundaries t− and t+ routing to queue 1 or randomizing is also optimal if Tn,r(i, 1) =
Tn,r(i, 2). For parameters in which the best response does not have a single threshold, we cannot
conclude anymore what is the structure of a Nash equilibrium.
Example [70]. Consider n = 3, r = 1, ρ = λ/µ1 = 1 and s = µ2/µ1 = 0.56. We plot in Fig. 14.2
Tn,r(i, 1) and Tn,r(i, 2) for i = 0, 1, . . . , 4.

Conclusions: As opposed to the example of the choice of players between a PC and a MF in
Sec. ??, we saw in this section an example where for some parameters there may be no threshold
type (n, r) equilibria. The form of the Nash equilibrium in these cases remains an open problem.
Moreover, even the question of existence of a Nash equilibrium is then an open question.

Yet, in the case of equal service rates in both stations, a threshold equilibrium does exist, and
it turns out to have the same type of behavior as in the PC-MF game, i.e. it is unique, and the
best response has a tendency of "Avoiding the Crowd" [69].

By actually analyzing (numerically) the equilibrium for equal service rates, it was noted in
[69] that when players use the equilibrium strategy, then the revenue of the �rst station is higher
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Figure 14.2: Tn,r(i, 1) and Tn,r(i, 2)

than the second one. Thus the additional information that the users have on the state of the
�rst station produces an extra pro�t to that station. An interesting open problem is whether the
second station can increase its pro�ts by using a di�erent pricing than the �rst station, so that
users will have an extra incentive to go to that station. Determining an optimal pricing is also an
interesting problem.

14.2 Queues with priority

We present a second queueing problem modeled as a stochastic game with in�nitely many indi-
vidual players due to [71, 72]. We assume again that players arrive at the system according to a
Poisson process with intensity λ, and have to take a decision of whether to join a low priority (sec-
ond class) or a high priority (�rst class) queue, as illustrated in Fig. 14.2. There is a single server
that serves both queues but gives strict priority to �rst class customers. Thus a customer in the
second class queue gets served only when the �rst class queue is empty. We assume exponentially
distributed service time with parameter µ and de�ne ρ := λ/µ.

Figure 14.3: Choice between �rst and second class priorities

The game model is then as follows:
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The actions Upon arrival, a customer (player) observes the two queues and may purchase the
high priority for a payment of an amount θ, or join the low priority queue.

The state: The state is a pair of integers (i, j) corresponding to the number of customers in
each queue; i is the number of high priority customers and j, the number of low priority ones.

The analysis of this problem can be considerably simpli�ed by using the followingmonotonic-
ity property, identi�ed in [71]: If for some strategy adopted by everybody, it is optimal for an
individual to purchase priority at (i, j), then he must purchase priority at (r, j) for r > i.

This implies that the problem has an e�ective lower dimensional state space: It follows
that starting at (0, 0) and playing optimally, there is some n such that the only reachable states
are

(0, j), j ≤ n, and (i, n), i ≥ 1.

Indeed, due to monotonicity, if at some state (0,m) it is optimal not to purchase priority, it is also
optimal at states (0, i), for i ≤ m. Let n − 1 be the largest such state. Then starting from (0, 0)
we go through states (0, i), i < n, until (0, n − 1) is reached. At (0, n) it is optimal to purchase
priority. We then move to state (1, n).

The low priority queue does not decrease as long as there are high-priority customers. Due to
monotonicity, it also does not increase as long as there are high-priority customers since at (i, n),
i ≥ 1 arrivals purchase priority! Therefore we remain at (i, n), as long as i ≥ 1.

The Equilibrium. Suppose that the customers in the population, except for a given indi-
vidual, adopt a common threshold policy [g]. Then the optimal threshold for the individual
is non-decreasing in g.

This property is called "Follow The Crowd" Behavior
This property clearly implies Existence of an equilibrium, that can be obtained by a monotone

best response argument.
However, it turns out that there is no uniqueness of the equilibrium! Indeed, Hassin and Haviv

have shown in [72] that there may be up to ⌊
1

1− ρ

⌋
pure threshold Nash equilibria, as well as other mixed equilibria! They further present numerical
examples of multiple equilibria.

We conclude that in this problem we have de�nitely a di�erent behavior of the equilibria than
in the previous stochastic games in which we had threshold equilibria (the PC-MF game and the
gas station game).



Chapter 15

Fairness concepts

This Chaptper is based on [?]
For over two decades, the Nash bargaining solution (NBS) concept from cooperative game

theory has been used in networks to share resources fairly. Due to its many appealing properties, it
has recently been used for assigning bandwidth in a general topology network between applications
that have linear utility functions. In this paper, we use this concept for allocating the bandwidth
between applications with general concave utilities. Our framework includes in fact several other
fairness criteria, such as the max-min criteria. We study the impact of concavity on the allocation
and present computational methods for obtaining fair allocations in a general topology, based on
a dual Lagrangian approach and on Semi-De�nite Programming.

15.1 Introduction

Fair bandwidth assignment has been one of the important challenging areas of research and devel-
opment in networks supporting elastic tra�c. Indeed, Max-min fairness has been adopted by the
ATM forum for the Available Bit Rate (ABR) service of ATM [?]. Although the max-min fairness
has some optimality properties (Pareto optimality), it has been argued that it favors too much
long1connections and does not make e�cient use of available bandwidth. In contrast, the concept
of proportional fairness (of the throughput assignment) has been proposed by Kelly [42, ?]. It
gives rise to a more e�cient solution in terms of network resources by providing more resources
to shorter1 connections.

Although the object that is shared fairly seems to be a very speci�c one (the throughput), it
is shown in [42, ?] that in fact, the starting point for obtaining (weighted) proportional fairness of
the throughput can be any general (concave) utility function per connection.

As opposed to this approach, we wish to use a fairness concept that is directly de�ned in terms
of the users' utilities rather than of the throughputs they are assigned to. Yet, as in weighted
proportional fairness, it would be desirable to express this concept as the solution of a utility
maximization problem, since it makes it possible to use recent algorithms for utility maximization
in networks, along with decentralized implementations [?, ?, ?].

The Nash Bargaining Solution (NBS) is a natural framework that allows us to de�ne and
design fair assignment of bandwidth between applications with di�erent concave utilities and has
already been used in networking problems [?, ?]. It is characterized by a set of axioms that are
appealing in de�ning fairness. As already recognized in [?] and later in [?], proportional fairness
agrees with the NBS if the object that is shared fairly is the throughput and if the user's minimum
required rate is zero. We are interested in the NBS since it can been seen as a natural extension of
the proportional fairness criterion which is probably the most popular fairness notion in network
design today: it appears widely in the Internet world (indeed, it is shown in [?] that some versions

1The terms long and short refer here to the distance, counted in the number of hops or of saturated links for
instance, as we will explain later.
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the TCP congestion control protocol achieves proportional fair bandwidth sharing) as well as in
wireless communications ([?]).

We use the NBS to study the fairness of an assignment where connection n has a concave utility
over an interval [MRn, PRn]. It thus has a minimum rate requirement MRn and does not need
more than PRn. Utility functions with such features have been identi�ed in [?] for representing
some real time applications such as voice and video, and in the case that MRn = 0, for elastic
tra�c.

We brie�y mention some other useful concepts for fairness or for allocating resources. One
of the properties de�ning the Nash bargaining solution has had some criticism (an axiom stating
that the solution is not a�ected by reducing the domain) since it implies that a player does not
care how much other players have given up. Two alternative notions of fair sharing have thus been
introduced with the same other properties of the Nash bargaining solution, but with a variation of
the above property: the modi�ed Thomson solution and the Rai�a-Kalai-Smorodinsky solution.
A uni�ed treatment of the Nash solution as well as of these two has been introduced in [?] for
two players and extended in [?] for the multiperson case. These concepts have been applied to
Internet pricing in [?]. Yet another "fair" concept for sharing resources is the Aumann-Shapley
solution for cooperative game, which has desirable properties such as Pareto optimality. Haviv
[?] proposes this approach to allocating congestion costs in a single node under various queueing
disciplines.

We study in this paper the way the concavity of the utilities a�ect the bandwidth assignment
according to the NBS, as well as according to a generalized version of the proportional fairness (in
which the utilities that correspond to the di�erent connections are fairly allocated).
Contribution of the paper : In previous work on Nash bargaining in networks, only linear util-
ities have been studied. We introduce in this paper quadratic utility functions. It is a su�ciently
large class in order to represent utilities with various degrees of concavity. At the same time they
are su�ciently simple for computation purposes. We indeed propose in the paper a Lagrangian
(see [?]) approach as well as a reduction to Semi De�nite Programming (SDP) which allows to
use a large variety of open source (and other) libraries to compute e�ciently the fair solution
in realistic networks. We indicate the complexity of the solution by analyzing matrices that are
used in the SDP formulation. We demonstrate how various fairness concepts can be handled by
the proposed SDP method. We study the way the concavity of the utilities a�ect the bandwidth
assignment according to the NBS, as well as according to a generalized version of the proportional
fairness (in which the utilities that correspond to the di�erent connections are fairly allocated).
We illustrate numerically the bandwidth allocation for the Cost network [?].
Structure of the paper : After brie�y introducing the notations used in the article (Sec. 15.2),
we present the fair allocations in Sec.15.3 and focus on the NBS in Sec. 15.4 and its properties. We
then propose a new fair family that covers for special cases the previously de�ned fairness crite-
ria, including in particular the Nash, the Thomson and the Kalai-Smorondinsky solutions in Sec.
15.5 and propose a quadratic approximation for the utility of each connection, which allows us to
parameterize the degree of concavity of the utility function using a single parameter. We use this
approximation to further analyze the impact of concavity of utilities on the resulting assignment.
Quadratic utilities can be viewed as a second order approximation (in terms of a Taylor series)
of any su�ciently smooth concave utility function. We then present in Sec. 15.7 a Lagrangian
approach which allows us to implement a decentralized protocol for the bandwidth allocation. We
�nally present in Sec. 15.8 a novel alternative approach using Semi De�nite Programming (SDP)
and some numerical results in Sec. 15.9

15.2 De�nitions and notations

In the following, we denote by connection a "source-destination" pair. For a given network and
set of connections, there exists a in�nite set of feasible allocations. We are interested in those
that are optimal (as we will de�ne in Subsection 15.2.2) and satisfying the system's constraints
(Subsection 15.2.3). The fair allocation we will present all belong to this set. Let us �rst summarize
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in Subsection 15.2.1 the notations used in this article.

15.2.1 Notations

We summarize in Table 15.1 the di�erent notations used in the article. We suppose that to each
connection n is associated a utility function f (on which we will give more insight in Section 15.4.1)
and has a minimum and a maximum requirement in terms of bandwidth, that we denote MRn
and PRn respectively.

|ens| number of elements of set ens, X set of feasible allocations,
n a connection, N set of connections,
xn bandwidth allocated to connection n, ~x vector of allocations (of size |N |),
MRn minimal bandwidth requirementsof connection n, PRn maximal bandwidth requiredfor connection n,
l a directed link, L set of links in the network,

Cl capacity of link l, ~C vector of links capacities.

Table 15.1: Notations

We also de�ne some orders among feasible allocations (that is to say satisfying the system's
constraints, as de�ned in Section 15.2.3). We write:

• ~x ≤ ~y if ∀i ∈ 1, . . . , N, xi ≤ yi

• ~x ≤lg ~y if either ~x = ~y or ∃i, i > 0,∀j ∈ 1, . . . , i−1, xj = yj and xi < yi (lexicographic order)

• ~x 4 ~y if σ(~x) ≤lg σ(~y) with σ(~x) and σ(~y) the ordered versions of ~x and ~y2.

15.2.2 E�ciency

An allocation is said to be Pareto optimal or Pareto e�cient if it is impossible to increase the
allocation of a connection without strictly decreasing another one. In other words, an allocation
Pareto e�cient is maximal in the sense of ≤. In the networking context, this amounts in saying
that each connection goes through at least one saturated link. In general, if |N | is the number of
connections, the set of Pareto optimal points is a subset of size |N | − 1. The fair allocations we
will present are all Pareto optimal.

15.2.3 Allocations constraints.

We brie�y introduce here the constraints in the allocations vectors. They are of two types: the
ones associated to the users and those due to the routing policy.

User constraints As previously mentioned, we suppose that each connection is associated to a
minimum and a maximum requirement, in term of bandwidth. We therefore have a system of |N |
independent linear inequalities ∀n ∈ N ,MRn ≤ xn ≤ PRn.

Routing policy We consider the case of both �xed-routing and fractional-routing. In �xed
routing, we de�ne a matrix A of size |L| × |N | that speci�es the links that the packets of each
connection will go through:

An,l =
{

1 if connection n goes through link l,
0 otherwise.

In some cases, we do not want to �ll the links but keep some empty space, call left-over capacity.
For instance, an operator may wish to use only up to 90% of the link in order to let some other

2that is to say that ∀i, σ(~x)i is the i
th smaller element of x.
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tra�c join the system. Therefore we suppose that we can only use the quantity (1−κl)Cl on each
link l. Let κ be the vector of size |L| of leftover capacities. The capacity constraints can then be
written:

A~x ≤ (1− ~κ)~C. (15.1)

In the case of fractional routing, each packet transmitted by a source can follow its own path.

We denote by φ
(u,v)
n the �ow of connection n in the link from u to v. Note that φ

(v,u)
n exists and

is a distinct variable. V is the set of nodes and for u ∈ V , N(u) is the set of nodes connected to
u. Finally, s(n) (respectively d(n)) is the source (destination) of connection n. We have 4 types
of constraints for each connection n:

xn =
∑

v∈N(s(n))

φ(s(n),v)
n −

∑
u∈N(d(n))

φ(u,s(n))
n balance of �ows from source s(n),

xn =
∑

u∈N(d(n))

φ(u,d(n))
n −

∑
v∈N(s(n))

φ(d(n),v)
n balance of �ows to destination d(n),

∀u 6={s(n), d(n)},
∑

v∈N(u)

φ(v,u)
n =

∑
v∈N(u)

φ(u,v)
n Kirchho� or conservation law,

∀u, v, φ(u,v)
n ≥ 0. positive or null �ows.

Let us introduce r
s(n)
n = −rd(n)

n = 1, and run = 0 for u di�erent from s(n) and d(n). If we can
use the fraction (1− κl)Cl on each link l = {u, v} then the capacity constraints are:

∀l = {u, v} ∈ L,
∑
n∈N

φ(u,v)
n ≤ (1− κl)Cl

Note that in fact this equation applies both to (u, v) and (v, u), which means that the capacity
constraints will be veri�ed on each orientation of {u, v}.

Finally, ∀n ∈ N ,


∀u ∈ V, xnr

u
n =

∑
w∈N(u)

φ(u,w)
n −

∑
w∈N(u)

φ(w,u)
n ,

∀{u, v} ∈ L, φ
(u,v)
n ≥ 0,

∀l = {u, v} ∈ L,
∑
n∈N

φ(u,v)
n ≤ (1− κl)Cl.

We can notice that in both cases, the constraints are linear.

15.3 Fair allocations

In this section, we review the criteria commonly used for fairly sharing resources in networks.
Each of them can be found in both a simple and a weighted version. The latter was introduced in
order to let users express the relative value of their tra�c. Then, a connection with weight k may
be equivalent to k connections of weight 1.

We illustrate the following de�nitions on the classical linear network represented in Figure 15.1.
It consists of |L| links shared by |L|+ 1 connections (numbered from 0 to |L|) such that :

• each connection n, n 6= 0 goes only through link n,

• connection 0 uses all links.

Note that, for any Pareto optimal allocation, the global revenue can be written:

Rglob =
∑

0≤n≤|L|

xn = (1− |L|)x0 +
∑
l∈L

Cl. (15.2)
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newfig1.fig

Figure 15.1: Linear network

15.3.1 Maximization of global throughput

This criterion consists of the maximization of the total allocated bandwidthRglob = max
∑
n∈N xn.

A major drawback of this criterion is that it can lead to situations in which the allocation is
null for one or more connections, as we can see in the linear example (indeed, from Equation 15.2
the criterion imposes that x0 = 0). This is why it is not considered as fair.

A variant, in which we assign to each user a utility function (we will see in Section 15.4.1 how
this can be justi�ed in the case of networks) has been developed. Roughly speaking, the utility
function represents the satisfaction of a user from its allocation. This can actually be the perceived
quality of an audio or video signal. Some algorithms ([?], [?]) were then developed to maximize
the sum of the users' utilities, which is called social-welfare optimization.

An opposite approach is the max-min criterion that seeks to allocate the resources in the most
homogeneous way, while being Pareto optimal.

15.3.2 Max-Min fairness

Several equivalent (as proved in [?]) de�nitions can be found. Let us �rst de�ne the bottleneck of
a connection.

De�nition 15. A link l is a bottleneck of connection n if:

• It is fully used,

• The allocation of connection n is the greatest among all connections using link l.

We then have the following de�nitions:

De�nition 16. An allocation is max-min fair if and only if each source has a bottleneck.
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De�nition 17. The max-min allocation is maximal for the order 4.

De�nition 18. The max-min fair allocation is such that any increase of the allocation for one
connection would be at the expense of another connection whose allocation was already smaller.
In other words, if ~x is the max-min allocation then ∀~y, ~y 6= ~x, yn > xn ⇒ ∃s, xs ≤ xn, ys < xs.

In the linear example, the allocation of connection 0 will be half of the smaller link capacity:

x0 = Clmin/2. The total revenue is then: Rmax−min = (1− |L|2 )Clmin +
∑
l∈L Cn.

The max-min fairness has been adopted by the ATM forum for the Available Bit Rate (ABR)
service of ATM ([?]). It has been argued that max-min fairness gives to much allocation to long
connections (in our case the connection 0) and does not e�ciently utilize bandwidth. Therefore,
a new concept has been introduced to Kelly: the proportional fairness.

15.3.3 Proportional fairness

It has been de�ned by two equivalent ways (as proved in [?]).

De�nition 19. The proportional fair assignment maximizes max
~x∈X

∑
n∈N

ln(xn).

De�nition 20. Proportional fairness is the unique allocation ~x such that for any other allocation

~x′, we have
∑
n∈N

x′n − xn
xn

≤ 0.

In the linear network, x0 = 1/
∑
n∈N

1
Cn−x0

. Furthermore, if the links are identical with

capacity C, then x0 =
C

|L|+ 1
. We note that, as expected: x0global opt < x0prop fair

< x0max-min
.

Moreover Rglobal opt ≥ Rprop fair ≥ Rmax-min. The compromise between fairness and e�ciently
was the primary reason for the success of proportional fairness.

Its weighted version can be written. An allocation ~x ∈ Xwpf is weighted proportional fair if
for any other allocation ~x∗ ∈ X we have ([42, ?]):∑
n∈N wn

x∗n−xn
xn

≤ 0. Equivalently: xwpf = max
~x∈X

∑
x∈N

wn ln(xn) = max
~x∈X

∏
n∈N

xwnn .

The congestion control mechanism based on linear increased-multiplicative decreased window
�ow control can lead to proportionally fair allocations under certain conditions ([?]). Unfortunately
this result does not hold for all versions of TCP, and in particular to TCP Reno. But it has been
proved that TCP Vegas actually achieve proportional fairness [?].

15.3.4 Potential delay minimization

This criterion, introduced in [?], is de�ned by: min
~x∈X

∑
n∈N

1
xn

. It is a minimization problem of an

inverse function of the bandwidth allocated, that is to say the transfer time.

15.3.5 Relation between the di�erent fairness criteria

Mo and Walrand ([?]) recently showed that these criteria can be written as a single optimization
function. Let ~xα be the allocation solution of:

~xα = max
~x∈X

∑
n∈N

xn
α

1− α
(15.3)

With α ≥ 0, α 6= 1. Then, for speci�c values of α, ~xα corresponds to the di�erent fairness
criteria previously mentioned : the global maximization of the throughput (α = 0), proportional
fairness (α→ 1), potential delay minimization (α = 2) or max-min fairness (α→∞)
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Figure 15.3.5 represents the allocation to connection 0 when α grows from zero to in�nity
in the case of the linear network with equal link capacities. We clearly see the in�uence of the
parameter α. As α increases, the di�erences between the allocation of the connections vanish,
thus continuously deriving from a global optimization equilibrium to a max-min allocation.

-
x0

α

0
C

|N|+1
C√
|N|+1

0

C/2

1 2 ∞

Figure 15.2: Allocation to connection 0 with α

15.4 Nash criterium

The Nash Bargaining Solution (NBS) [?] concept for fair allocation is frequently used in cooperative
game theory. It is de�ned by a set of axioms that game theorists �nd natural to require in seeking
fair allocations. These axioms deal with utilities associated to users, which is the natural interest
of this approach compared to the previously seen fairness criteria.

The NBS has already been used (under a simpli�ed version) in networks of general topologies
to propose a fair share of resources ([?, ?]). But in both cases, the utility functions were linear.
It has been shown that in fact, the utility functions can be any concave function.

Several fairness criteria were de�ned in cooperative game theory (see [?] and references herein).
We consider here the Nash concept, since it can be seen, as previously mentioned, as a generaliza-
tion of the widely studied proportional fairness.

Let us suppose that a �nite number of perfectly rational individuals can collaborate in order
to get mutual bene�t. We further suppose that they can compare their satisfaction from the
possession of the objects of the bargaining. We can then associate the users to a utility function,
which is, obviously, not unique: if u is such a function, then au + b is an equivalent one (for
a, b ∈ R, a > 0). In the case where the players cannot �nd an agreement, the game ends at the
"disagreement point", characterized by a certain utility, u0.

Let X ⊂ Rn denote the set of possible strategies. It is a convex closed and non empty set.
The utility functions, fi : X → R, i = 1, . . . , k, are supposed to be upper bounded functions. The
set of achievable utilities, U , U ⊂ Rk such that U = {u ∈ Rk|x ∈ X,u = (f1(x), ..., fk(x))} is non
empty, convex and closed and u0 ∈ Rk is the utility from which the players accept to bargain.
Finally, we denote by U0 the set U0 = {u ∈ U |u0 ≤ u}, the subset of U in which the players
achieve more than their minimum requirements. Similarly, we de�ne X0 = {x ∈ X|∀i, fi(x) ≥ u0

i }.

De�nition 21. A mapping S : (U, u0)→ R
n is said to be an NBP (Nash bargaining point) if:

1. it guarantees the minimum required performances: S(U, u0) ∈ U0.

2. S(U, u0) is Pareto optimal.

3. It is linearly invariant, i.e. the bargaining point is unchanged if the performance objectives
are a�nely scaled. More precisely, if φ : Rn → R

n is a linear map such that ∀i, φi(v) =
aivi + bi, then S(φ(u), φ(u0)) = φ(S(U, u0)).

4. S is symmetric, i.e. does not depend on the speci�c labels. Hence, connections with the
same minimum performance u0

i and the same utilities will have the same performances.

5. S is not a�ected by reducing the domain if a solution to the problem with the larger
domain can be found on the restricted one. More precisely, if V ⊂ U , and S(U, u0) ∈ V then
S(U, u0) = S(V, u0).

De�nition 22. The point u∗ = S(U, u0) is called the Nash Bargaining Point and f−1(u∗) is the
set of Nash Bargaining Solutions.
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We have the equivalent optimization problem:

Theorem 20. [?, Thm. 2.1, Thm 2.2] and [?]. Let the utility functions fi be concave, upper-
bounded, de�ned on X which is a convex and compact subset of Rn. Let J be the set of users able to
achieve a performance strictly superior to their initial performance, i.e. J = {j ∈ {1, ..., N}|∃x ∈
X0, s.t. fj(x) > u0

j}. Assume that {fj}j∈J are injective. Then there exists a unique NBP as well
as a unique NBS x that veri�es fj(x) > uj(x), j ∈ J , and is the unique solution of the problem:

max
∏
j∈J

(fj(x)− u0
j ), x ∈ X0. (15.4)

Equivalently, it is the unique solution of max
∑
j∈J ln(fj(x)− u0

j ), x ∈ X0.

In 1991, [?] adapted the Nash bargaining solution to Jackson networks. Some years after,
Yaïche et al. [?] adapted it for bandwidth allocation in networks. In their works however, they
restricted themselves to linear utility functions.

We can note that the NBS corresponds to proportional fairness in the case where the utility
functions are linear and where the MRi are null.

Remark 10 (Other fairness criteria de�ned through a set of axioms). The last axiom (5) of the
Nash Bargaining Point has su�ered some criticisms, as it does not take into account how much
the other players have given up. Two other interesting fairness criteria were then de�ned when
modifying this last axiom, namely the Rai�a-Kalai-Smorondinsky and the Thomson (or "utilitarian
choice rule") solution [?]. We do not treat here in more detail these two criteria as they correspond
respectively of special cases of max-min fairness (Section 15.3.2) and the maximization of the global
throughput (Section 15.3.1) when considering the utility of the applications.

15.4.1 Utility functions in networking

The interest of the Nash bargaining concept, as opposed to the previous ones used so far in the
telecommunication context is to take into account the di�erent interests the users have for the
shared resource3. In networks context, the bandwidth does not have the same value for di�erent
users. For instance, a user consulting his or her emails does not have the same needs that another
one using phone over IP. The utility functions represent the impact of the bandwidth allocation
on the perceived quality. We show in the following the shapes of the utility functions for di�erent
types of application. Our discussion is qualitative and inspired from the work of Shenker [?].
For numerical results, for instance on audio communications, the reader may refer to [?, ?]. We
illustrate the di�erent shapes of the utility functions on Figure 15.3.

Elastic applications have no real-time requirements and no rate constraints. Typical examples
are �le transfer or email. Their utility function is concave increasing without a minimum
required rate.

�Delay adaptive� or �rate adaptive� applications have soft real-time requirements. Typical
examples are voice or video over IP. In such applications, the compression rate of data is
computed as a function of the quantity of available resource. The utility functions that
we use to represent these applications are slightly di�erent than those in [?]. In [?], the
utility is strictly positive for any non zero bandwidth and tends to zero when the bandwidth
does. We consider in contrast that the utility equals zero below a certain value, as in
[?]. Indeed, in many voice applications, one can select the transmission rate by choosing
an appropriate compression mechanism and existing compression software have an upper
bound on the compression, which implies a lower bound on the transmission rate for which a
communication can be initiated, which we denoteMR. Thus, a maximum compression rate is
associated with the lower acceptable quality for the user. If there is no su�cient bandwidth,

3Note, however, that in some cases are implemented service classes. They are so far limited to pricing purposes
and the underlying idea is usually to give priority to some packets at the bu�ers.
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the connection is not initiated. This kind of behavior generates utility functions that are null
for bandwidth below MR and which are not di�erentiable at the point (MR, 0). Similarly, it
is useless to allocate a bandwidth greater than a certain threshold PR because the perceived
gain for a human being will not be noticeable. As an example, for voice transmission, we
usually consider throughputs in the range [16, 40] kb/s. A user to whom we would allocate
a throughput of 200 kb/s would not have a better quality feeling than that if its throughput
was halved.

mfunctions3.fig

Figure 15.3: Utility function in networking

15.4.2 Proposed approximation scheme: quadratic utility functions

The utility functions of both �elastic tra�c� and �delay adaptive� applications have a minimum
valueMRn below which they equals zero (in the former case,MRn = 0). As explained by Nash, the
equilibrium point should not depend on the chosen representation of utility function. Therefore,
we assume that fn(MRn) = 0. Beyond MRn the function is concave and increasing with the
bandwidth. We propose to approximate such a utility function with a parabola with parameters
that depend on the applications (see Fig. 15.4). The general equation has the form:

fn(xn) = cn − an(xn − bn)2. (15.5)

Note that the utility function is de�ned only until the point (PRn, fPRn), so we may ignore the
whole right part of the parabola (and in particular, the part in which the function decreases).

We introduce:

• Tn the tangent of the utility function at the point (MRn, 0),

• fPRn the utility value at point PRn.
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parabola.fig

Figure 15.4: Quadratic utility functions

fn can be equally be de�ned by an, bn, cn or through the equations fn(MRn) = 0, fn(PRn) =
fPRn and f

′
n(MRn) = Tn. We should note that, since PRn is in the increasing part of the function,

we have 1
2Ti(PRi −MRi) ≤ fPRi ≤ Ti(PRi −MRi). We thus de�ne the concavity of the utility,

βn, through
fPRn = Tn · βn · (PRn −MRn).

Note that 1/2 ≤ βn ≤ 1 and the smaller βn is, the more concave is the utility. The limit βn = 1
is the linear case (studied in [?]).

We can therefore equivalently use in the following the parameters an, bn cn or MRi, Ti and βi
linked by the equations:

an = Tn
1− βn

PRn −MRn
, bn =

PRn − (2βn − 1)MRn
2(1− βn)

and cn =
Tn
4
PRn −MRn

1− βn
.

15.5 Proposed fairness scheme

As previously mentioned, we propose to apply the classic fairness criteria used in networks to
the utility functions of applications rather than to the throughput. We saw that, by applying
this philosophy to the proportional fairness criterium, we obtain the Nash bargaining solution,
historically de�ned by a set of axioms rather than an optimization problem.

We have presented a family of fairness criteria, parameterized by a real α (α > 0, a 6= 1) that
allows an network operator to choose an equilibrium between fairness and resource utilization.

When applied to the utilities of the connections, the optimization problem becomes:

max
n∈N

[fn(xn)]1−α

1− α
, if a > 0, a 6= 1 and

∏
fn(xn) if α = 1 (15.6)

subject to the problem constraints.
We also propose to approximate utility functions by quadratic parameterized functions. Note

that, as in our approximation f(MR) = 0, the proposed criterion coincides with the NBS when
α→ 1. The advantage of using quadratic utilities is that it allows one to approximate the concave
real utilities drawn from experiments with functions that are simple to handle through a small
set of parameters. Also, it allows us to easily analyze the in�uence of these parameters on the
obtained equilibrium. Of particular interest is the in�uence of the concavity.
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15.5.1 Property: in�uence of the concavity

We study the impact of concavity on the NBS. Consider two di�erentiable functions f and g
de�ned on the same interval (MR,PR] where both are strictly positive on ]MR,PR].

De�nition 23. We say that f is more concave than g if for every x ∈ (MR,PR] the relative
derivative of f is smaller than or equal to that of g, i.e. f ′(x)/f(x) ≤ g′(x)/g(x). If f or g are not
di�erentiable at x, one could require instead that the same relation holds for the supergradients: if
f̂(x) is the largest supergradient of f at x and ĝ(x) is the smallest supergradient of g at x, then

we require f̂(x)/f(x) ≤ ĝ(x)/g(x).

Motivated by (15.4), we say that :

De�nition 24. An assignment ~x is more fair in the sense of NBS than an assignment ~y if∏
n∈N (fn(xn)− fn(MRn)) ≥

∏
n∈N (fn(yn)− fn(MRn)).

Consider the case in which fn(MRn) = 0. Consider 2 connections with utilities f and g as
above competing for the bandwidth of a single link of capacity C. If we had ignored the utilities
of the connections, we would have assigned them an equal bandwidth (according to the original
proportional allocation), which we denote by x = C/2.

Proposition 1. If two connections are competing for the bandwidth of a single link, the fair
assignment has the property that more bandwidth is assigned to the less concave function.

Proof:We show that by transferring bandwidth from the connection with the more concave utility
(say f) to the other one, we improve the fairness (assuming this does not violate the MR and PR
constraints) in the sense of the NBS. Indeed, we have

g(x+ ε)f(x− ε) = g(x)f(x)
(

1 + ε

[
g′(x)
g(x)

− f ′(x)
f(x)

]
+ o(ε)

)
.

We conclude that there is some ε0 s.t. ∀ε < ε0, g(x + ε)f(x − ε) > g(x)f(x). Hence we strictly
improve the fairness by transferring an amount of ε0 to the connection with less concave utility. By
further increasing this amount, we shall eventually reach a local maximum (since our function is
continuous over a compact interval). This will be a global maximum since (15.4) is a maximization
problem of a concave function over a convex set.

Example Let two connections of bandwidth x1 and x2 sharing a single link of capacity C. Their
utility functions f and g are represented in Figure 15.5.
For x ≥ 0, f(x) = 3x10≤x≤1 + (2 + x)1x>1, and g(x) = 2x.

Then f ′(x)/f(x) =
{
x−1 for x ∈ [0, 1[,
(2 + x)−1 for x ≥ 1, whereas ∀x, g′(x)/g(x) = x−1.

(At x = 1, f is not di�erentiable but its supergradients at that point constitute the set [1/3, 1]).
Thus f is more concave than g. We assume that PR1 + PR2 > C. The NBS is the argument of

ζ(C) = max f(x)g(C − x) = max
(

max
x∈[0,1]

h(x),max
x>1

k(x)
)

with h(x) = 6x(C − x), and k(x) = 2(x+ 2)(C − x).

Proposition 2. The NBS is depicted in Fig 15.6. We distinguish 3 regions:
(i) C < 2, where ζ(C) = 3c2/2 and the NBS is (x∗1, x

∗
2) = (C/2, C/2),

(ii) 2 ≤ C < 4, where ζ(C) = 6(C − 1) and (x∗1, x
∗
2) = (1, C − 1),

(iii) C ≥ 4, where ζ(C) = 2(c/2 + 1)2 and (x∗1, x
∗
2) = (C/2− 1, C/2 + 1).

We see in this example that the least concave function receives at least as much as the other
one, and the di�erence increases with C. It is impressive to note that there is a region in which
an increase in the capacity bene�ts only to one connection. The example illustrates the power
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ex1-2.fig

Figure 15.5: Utility functions.

GPF3.fig

Figure 15.6: NBS of two connections sharing a link.

of the NBS approach: the original proportional fairness, or even weighted proportional fairness,
would assign a proportion of the capacity to each connection that does not vary as we increase
the capacity, since it is insensitive to the utilities. In contrast, utility sensitive fairness concepts
allocate the bandwidth in a dynamic way: the proportion assigned to each connection is a function
of the capacity.

For the experimental part, we propose to study 2 di�erent fairness scenarios, that we present
in the rest of this section.

15.5.2 Possible optimizations

We propose two types of optimizations, called connection-aware and network-aware. The idea in
the �rst is to optimize the allocation to the connections and in the former to better utilize the
network resources.

Connection-aware optimization We associate to each connection a utility function and, once
the minimal requirements are satis�ed, fairly allocate the extra bandwidth among the users. The ~κ

vector is given and the optimization problem is max
∑
n∈N

fn(xn)1−α

1−α with the system's constraints
previously mentioned.

Network-aware optimization We apply the fairness concepts to the remaining bandwidth
available in the links. Indeed, it can be interesting to maximize the bandwidth available in a link
in order to use it for instance for some other tra�c type (this is of particular interest if the routing
policies for connections cannot be dynamically modi�ed).

Therefore, ~x, the bandwidth allocation to connections, is given. We then consider the fair
allocation of remaining bandwidth, that is to say of vector ~κ. The problem can be written

max
∑
l∈L

fl(κl)
1−α

1−α .We can note that the allocation vector being given, the optimization problem
is of interest only is we consider the fractional-routing. Indeed, if the routing is �xed, then the
quantity available in each link is �xed as well.

We make the following assumption in the rest of the article: The network has su�cient
capacity to satisfy all the minimum requirements.

In the next section we propose an example of explicit rate computation. This analytic study is
possible, however, only in the case of simple network topologies and rely on speci�c assumptions.
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15.6 Explicit computation of rates

In this section, we study the fair allocations in the linear network and its generalization, the grid
network.

15.6.1 The linear network

We again consider the linear network. We use the obvious associated routing and consider in the
following the connection-aware optimization with �xed routing constraints.

We recall that the fairness equilibria is obtained through the optimization of:
1

1− α
∑
n∈N

(fn(xn))1−α

if α 6= 1, and
∏
n∈N

fn(xn)otherwise with the constraints:

{
∀n ∈ N ,MRn ≤ xn ≤ PRn (user's constraint),
∀n ∈ L, x0 + xn ≤ Cn (capacity constraints).

(15.7)

Note that in this network all the links can be saturated: ∀n ∈ L, x0 + xn = Cn.

We make two signi�cant assumptions. First, that each link has the same capacity C. Secondly,
we suppose that each of the connections n, n 6= 0 has the same utility function: ∀n ∈ L, an =
a1, bn = b1, cn = c1. Thus the fair allocation will assign the same bandwidth to each connection
n, n 6= 0.

Therefore, by denoting by x the bandwidth allocated to connection 0, the fair allocation prob-
lem becomes the maximization of (15.8) under the constraints (15.7). g(x) =

1
1− α

[
(f0(x))1−α + |L|(f1(C − x))1−α] if α 6= 1

h(x) = f0(x)(f1(C − x))|L| otherwise.
(15.8)

Remark 11. The problem is of interest only if:{
MR0 +MR1 ≤ C (feasible system, Hypothesis 15.5.2),
PR0 + PR1 > C (not all maximum demands can be satis�ed).

Solution of the linear problem. By di�erentiating (15.8) we obtain:{
a0(x− b0)f1(C − x)α =|L|a1(C − x− b1)f0(x)α if α 6= 1,
a0(x− b0)f1(C − x)|L| =|L|a1(C − x− b1)f1(C − x)|L|−1f0(x) otherwise.

We note that for α = 1, f1(C−x) = 0⇒ h(x) = 0. Therefore f1(C−x) 6= 0 and the bandwidth
x associated to connection 0 satis�es, for all α:

a0(x− b0)(f1(C − x))α = |L|a1(C − x− b1)(f0(x))α. (15.9)

Limits and asymptotic analysis

Proposition 3. When |L| grows to in�nity, the allocation of connection 0 tend to max(MR0, C−
b1).

The proof is given in Appendix. Note that the limit does not depend on the concavity of the
utility of connection 0. We show in Figure 15.6.1 how the system converge to xlim as L grows to
in�nity in the case of the NBS (α = 1) and C − b1 ≥MR0.

We further re�ne the analysis of the limit when |L| becomes large:
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Proposition 4. If C − b1 < MR0 then x is such that

x−MR0 ∼ Z with Zα ∼l∈L
1
|L|

(
1

2(b0 −MR0) · a0

)α−1
f1(C −MR0)α

f ′1(C −MR0)
.

Otherwise, x = C − b1 + Z + o(1/|L|) with Z =
1
|L|

cα1
2a1

f ′0(C − b1)
f0(C − b1)α

.

Proof: If C − b1 < MR0, then, as |L| → ∞, the left hand side of (15.9) tends to a non-null
constant: lim

|L|→∞
a0(x− b0)(f1(C − x))α = a0(MR0 − b0)(f1(C −MR0)α).

We now examine the right hand side of (15.9). It can be written as:

|L|a1(C − x− b1)f0(x)α = |L|a1(C − b1 −MR0 − z)(c0 − a0(MR0 + z − b0)2)α

= |L|a1(C − b1 −MR0 − z)(2a0(b0 −MR0)z − a0z
2)α

∼|L|→∞ |L|aα0 a12α(C − b1 −MR0)(b0 −MR0)αzα.

which yields (4) by substituting the appropriate expressions.
If MR0 ≤ C − b1, as |L| → ∞, the left hand side tends to the constant a0(C − b1 − b0)cα1 . The

right hand side is: −|L|a1z
(
c0 − a0(C − b1 − b0 + z)2

)
. Hence the result.

Remark 12. In (4), we can check the asymptotes for special cases (and for α = 1):

• If β1 → 1 then Z =
C −MR0 −MR1

|L|
(linear case, already obtained in [?]).

• If β1 → 1/2 then Z =
C −MR0 −MR1

2|L|

[
1− PR1 −MR1

C −MR0 − PR1

]
.

We studied the case of a linear network with two kinds of connections. In the case where α = 1
(NBS), we note (from (15.9)) that the problem is a third order polynomial and can therefore be
explicitly solved. If α = 0 (global optimization), the allocation is given by the solution of a �rst
order polynomial. In any other case, only numerical results can be used. Still, we can make the
limits of the allocations explicit for any value of α, and give an equivalent when the number of
links becomes large.

15.6.2 Grid network

This network is the natural generalization of the linear network. It consists of K × L capacity
links with K horizontal routes and L vertical routes as shown in Figure 15.7. We focus here on
the �xed routing policy.

As in the previous example, we also suppose that, for each i ∈ {1, . . . L},j ∈ {1, . . .K},
MRi+PRL+j ≥ Ci,L+j and PRi+MRL+j ≥ Ci,L+j . We further suppose that the links have equal
capacity. We suppose that all the horizontal connections (respectively vertical) have the same
utility function fh (respectively fv). We can then conclude that all the horizontal connections
(vertical) will get the same throughput x (xv = C − x). We then wish to maximize, in the case of
the NBS: ∏

n∈[1:L]
⋃

[L+1,L+K]

fn(xn) = (fh(x))K ∗ (fv(C − x))L. (15.10)

Proposition 5. In the grid network, if C − b1 < MR0, x veri�es: x −MRh ∼ Z with: Z =
K
L

(
1

2(bh−MRh)ah

)α−1
fv(c−MR0)
f ′v(c−MR0) . Otherwise, x = C − b1 + Z + o(K/L) with Z = K

L
cαv
2av

f ′h(c−bv)
f ′h(c−bv) .

Note that if L = K and fh = fv we obtain x = C/2.

Proof: Maximizing Equation 15.10 is similar to maximizing fh(x) ∗ (fv(C − x))L/K . This is
equivalent to the linear problem by substituting |L| to L/K.
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Figure 15.7: A grid network.

15.7 Lagrangian method

The Lagrangian method was proposed by [?] to obtain the NBS for the special case of linear utility
function. It has the advantage of having distributed implementations. We generalize below this
approach to the quadratic utility, for which the linear case can be recovered by taking β → 1.

Unfortunately, the resulting decentralized iterative algorithm of the problem proposed in [?] is
not fully satisfactory for quadratic utilities, as we will see in the following.

15.7.1 Lagrangian multipliers

We now use the Kuhn-Tucker conditions for (15.6) to obtain an alternative characterization of the
NBS in terms of the corresponding Lagrange multipliers under the hypothesis of �xed routing and
the connection aware optimization.

Proposition 6. Under the hypothesis that ∀l ∈ L,
∑
alnMRn < Cl (this amounts in saying that

no link is saturated4), the NBS is characterized by: ∃µl ≥ 0, l ∈ L such that ∀n ∈ N , we have

xn = min
(
PRn,MRn +

(∑
l∈L

µlal,n

)−1

+

1
2 ·

PRn −MRn
1− βn

×

1−

√√√√√√√√√1 +
4
(

1− βn
PRn −MRn

)2

(∑
l∈L

µlal,n

)2


)
.

Proof: Under the assumption
∑
n∈N alnMRn < Cl, the set of possible solutions of (15.6) is non-

empty, convex and compact. The constraints (as de�ned in Subsection 15.2.3) are linear in xn
and f(x) =

∑
n∈N ln fn(xn) is C1. Therefore the �rst order Kuhn-Tucker conditions are necessary

and su�cient for optimality. The Lagrangian associated with (15.6) is

L(x, λ, δ, µ) = f(x)−
∑
n∈N

λn(MRn − xn)−
∑
n∈N

δn(xn − PRn)−
∑
l∈L

µl((Ax)l − Cl).

4This assumption does not constraint our problem. If a link is saturated when considering the minimal demands
of the connections, then we rewrite the system by suppressing this link and the connections that were going through
it. The bandwidth that these connections were using is then a new capacity constraint on the other links of the
network.
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For n ∈ N , λn ≥ 0 and δn ≥ 0 are the Lagrange multipliers associated with the constraints
xn ≥MRn and xn ≤ PRn respectively. µl ≥ 0, l ∈ L are the Lagrange multipliers associated with
the capacity constraints. The �rst order optimality conditions are thus: ∀n ∈ N ,

f ′n(xn)
fn(xn)

= δn +
∑
l∈L

µlAl,n − λn, (xn −MRn)λn = 0, (xn − PRn)δn = 0,

and ∀l, l ∈ L, ((A~x)l − Cl)µl = 0

Moreover,
∑
alnMRn < Cl implies that ∀n, λn = 0 as in [?], and either xn = PRn or δn = 0,

which yields the conclusion.

Remark 13. As β → 1 we obtain the solution of [?] corresponding to linear utility: xn =

min

PRn,MRn +

[∑
l∈L

µlal,n

]−1
 .

µl, l ∈ L represent the implied cost associated with the network link l. They represents the
marginal cost of a rate unit allocated for any connection crossing link l.

15.7.2 Dual problem

Once we have explicitly expressed the NBS in terms of the Lagrange multipliers, we can actually
solve the NBS using the dual problem in which we compute the Lagrange multipliers. The dual
problem is :

max
µ∈RL+

d(µ) with d(µ) = min
~x∈X

L(~x, µ) = L(x, µ)

if we denote by x the optimal allocation. The vector x = x1, x2...xn is the NBS. We now use
the result obtained in the primal, and, for a given vector µ, we note for each connection n:

xn(µ) = gn(
∑
l∈L

µl · al,n).

With gn(p) =


PRn if p ≤ 2βn − 1

βn

1
PRn −MRn

,

MRn+
1
p

+
PRn −MRn

2(1− βn)

[
1−

√
1 +

(
2
p

1−βn
PRn−MRn

)2
]
otherwise.

We obtain for each µ ∈ RL:

d(µ) =
∑
n∈N
− ln(fn(gn(

∑
l∈L

µlal,n))) +
∑
l∈L

µl
∑
n∈N

al,ngn

(∑
l∈L

µlal,n

)
−
∑
l∈L

Clµl.

The idea is then to use a appropriate step γ and choose at each iteration:

µ
(k+1)
l = max

(
0, µ(k)

l + γ
∂d

∂µl

)
. (15.11)

But, if the utilities are not linear, then the partial derivative of d depends on their parameters.
Therefore, the dual cannot be used to obtain a fully distributed algorithm anymore since every
link needs to know the utility functions and allocations of all the connections of the system.

The Lagrangian relaxation let us introduce a optimization problem where each user computers
its allocation xn

xn = gn(
∑

µlal,n)

while the network computes the link prices µl iteratively from Equation 15.11.
In the case of proportional fairness (α = 1) with linear utility functions, the dual formulation

can be used to obtain a decentralized algorithm. Unfortunately, the use of quadratic utilities
require the knowledge in the network of all the connections and parameters of connections, which
makes this method not suitable for large systems.
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15.8 A Semi-De�nite Programming (SDP) solution

In this section, we propose an alternative centralized method for solving the general fairness
problem (15.6). It uses a mathematical program called Semi-De�nite Program, which can be
solved in polynomial time in theory and is tractable in practice. One can then use public domain
programs to solve SDP5. SDP solves the minimization problem of a linear combination of variables
(given by the scalar product of a vector L and the vector of variables) subject to a constraint of
positive semi-de�niteness (psd) of some general symmetric matrix P whose entries are either
variables or constants. More details on SDP can be found in [?]. We study the complexity of our
method and show that the proposed construction of the SDP matrix allows us to analyze large
networks.

In the �rst subsection, we see how SDP was de�ned as an extension from linear programming
and then recall some basic results of linear algebra. We describe the general shape of our SDP
matrices to solve our optimization problem (Subsection 15.8.2), and the details for the di�erent
values of α (Subsection 15.8.3). We �nally present a detailed description for a simple example
(Subsection 15.8.4).

15.8.1 From linear programming to SDP

De�nition 25 (Linear programming). A linear program (LP) has the form:

min{cTx|Ax ≥ b}

where x is the unknown vector, c is a given coe�cient vector, A ∈ Mm,n is a m × n matrix of
constraints and b is the vector of constraints.

We can extend linear to conic programming. In any Euclidian Space E we can de�ne convex
pointed cones ([?], [?]). Then, each cone K induce a partial order in E, that we denote ≥K :
a ≥K b⇔ a− b ≥K 0⇔ a− b ∈ K.

De�nition 26 (Conic programming). Let K be a convex pointed cone of E, c ∈ Rn an objec-

tive vector, b ∈ E and A a linear mapping A :
{
x 7→ Ax
R
n → E. . Then, the optimization problem

minx{cTx|Ax ≥K b} is a conic problem.

Semi De�nite Programming refers to the problems associated to K = S+
m the cone of semi-

de�nite positive matrices in the Euclidian space E = Sm the set of symmetric matrices of size
m×m.

De�nition 27. A symmetric matrix A of size m ×m is said semi-de�nite positive and we note
A < 0 if ∀x ∈ Rm, xTAx ≥ 0. Equivalently, all its eigenvalues6 are positive or null.

De�nition 28 (Semi-De�nite Programming). A semi-de�nite program-
ming problem is an optimization problem of the form

min cT .vec(X) such that

{
A.vec(X) = b
X < 0.

with X ∈ S+
n , c ∈ Rn

2
, b ∈ Rm and A ∈Mm,n2 . (7)

The following are results of linear algebra needed to understand our solving method. The
proofs can be found in [?].

Proposition 7 (Real symmetrical matrices.). All the eigenvalues of a real symmetric matrix are
real.

5see http://www.cs.nyu.edu/cs/faculty/overton/sdppack/sdppack.html
6The eigenvalues are the solutions of the polynomial det(A− λI).
7If X is the matrix X = (xi,j), 1 ≤ i, j ≤ n then vec(X) is the vector (x1,1, . . . , x1,n, x2,n, . . . xn,n).
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Proposition 8 (Symmetric matrices of size 2). Let a, b and c be real po-

sitive numbers. Then, the matrix M =
(
m1,1 m1,2

m2,1 m2,2

)
is positive semi-de�nite (psd) if and only

if m1,1m2,2 ≥M2
1,2.

Proposition 9 (Symmetric matrices of size 1). A matrix of size 1 (a scalar) is positive if and
only if its unique element is positive or null. M = (m1,1) < 0⇔ m1,1 ≥ 0.

Proposition 10. A bloc diagonal matrix8 is psd if and only if all its blocs are psd.

15.8.2 General solving method with SDP

The general idea of SDP is to transform the original maximization of a function into a minimization
problem of some new variable (or more generally of a linear combination of variables) subject to
a constraint of positive semi-de�niteness (psd) of some general matrix P . The positiveness (psd)
of the matrix will:

• insure the system constraints,

• replace the objective function (of (15.6)) by a single variable.

We will see that in our case, we can construct the matrix with blocs of size 1 and 2. Note that
the order of the blocs in the matrix is not relevant. Note further that the number of variables
cannot be known a priori. Indeed, the creation of the matrix and of the blocs induce the creation
of several intermediate variables that we will precise in the following.

Finally, the entries we will give to the SDP solver are the matrix and a vector of variable. In
our case, this vector will be composed of "0" at each but one entry, corresponding to the �nal
variable we want to maximize (this entry will contain the value "−1").

In the following two paragraphs, we explicit the blocs expressing the system constraints and
those that enable us to transform the users utility functions into variables.

System constraints As seen in Subsection 15.2.3 the system constraints are linear. From
Proposition 9 these constraints can be expressed via matrices of size 1 (scalar matrices).

We give in this paragraph the constraints representing the system with �xed routing (the
fractional routing is similar). The capacity constraints are given by the positivity of |L| matrices,
corresponding to the |L| links. Indeed, we recall that these constraints are ∀l ∈ L, (Ax)l ≤ Cl.
Then, it is su�cient to introduce |L| scalar matrices capa l, such that: ∀l ∈ L, capa l1,1 = Cl−(Ax)l.
The users constraints are given by: ∀n ∈ N ,MRn ≤ xn ≤ PRn. We therefore introduce 2 × |N |
scalar matrices util so that util i1,1 = PRi − xi if i ≤ |N | and util = xi −MRi if |N | < i ≤ 2|N |.

Relations between the variables The initial variables are the bandwidth allocated to con-
nections xn, n ∈ N . We introduce the intermediate variables wn, n ∈ N with the following
proposition:

Proposition 11. Let xn be a positive number and fn its utility function, as de�ned in Equa-

tion 15.5. We introduce Fn =

(
−wn − cn

an
xn − bn

xn − bn 1

)
. Then Fn < 0⇔ wn ≤ fn(xn).

By using the blocs Fn, n ∈ N , we replace the initial variables xn, n ∈ N by wn, n ∈ N and instead
of maximizing a function of xn, we maximize a function of wn. Indeed, by distinguishing three
cases depending of the sign of α− 1, we can prove that ∀α ≥ 0, 1

1−α
∑
w1−α
n ≤ 1

1−α
∑
fn(xn)1−α.

8A bloc diagonal matrix has the form A =


A1 0

A2
. . .

0 An

.
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We can note, from this simple example that we replaced the utility functions by a constraint of psd

of a matrix. Let us suppose we have N variables yn such that ∀n ∈ N , yn ≤ w1−α
n

1−α (for a given α).

Then, the psd of scalar matrix END, de�ned by END1,1 = (
∑
k∈N yk − z) insures z ≤

∑ w1−α
n

1−α

and maximizing z leads to the desired optimization since z ≤
∑
n yn ≤

w1−α
n

1−α ≤
fn(xn)1−α

1−α .
We provide, in the following subsection a method to construct matrices whose psd constraint

will insure that (we omit the "n" subscript):

y ≤ w1−α if 1− α > 0, y ≥ w1−α otherwise.

15.8.3 Di�erent values of α

The �rst paragraph deals with the case α 6= 1 whereas second concerns the most complex case of
the NBS (α = 1).

Case α 6= 1

Remark 14 (Case α = 2). The positiveness of matrix H =
(
w 1
1 y

)
ensures that y ≥ 1/w.

We use an idea of Nemirovski to provide a resolution method with a good approximation for any
value of α > 0 with α 6= {1, 2}.

If 0 < α < 1, we have 1 − α > 0. Therefore, it is su�cient to provide one or several matrices
whose psd will ensure that y ≤ w1−α.

Proposition 12 (Case 0 < α < 1). Then 1− α < 1 and

∀ε > 0,∃p ∈ N, k ∈ {0, . . . , 2p − 1}, |(1− α)− k/2p| ≤ ε.

Let w, y ∈ R+. It is possible, using SDP constraints, to bound y and w by the relation y ≤ wk/2p .

Proof: Let c1, . . . , cp a serie of 0/1 integers, such that k =
∑p
i=1 ci2

i−1. We note y0 = 1 and
submit y1, . . . , yp to the following constraints:(

yi−1 yi
yi w

)
if ci = 1 and

(
yi−1 yi
yi 1

)
if ci = 0.

Then obviously y2
i ≤ yi−1w

ci , and yp ≤ wk/2
p

. Hence the result, by setting yp = y.
If α > 1 we aim at �nding matrices those psd constraint will ensure that y ≥ w1−α.

Proposition 13 (Case 1 < α < 2). Since 0 < −(1− α) < 1 we have:

∀ε > 0,∃p ∈ N, k ∈ {0, . . . , 2p − 1}, | − (1− α)− k/2p| ≤ ε.

Let w, y ∈ R+. It is possible, using SDP constraints, to bound w and y by the relation w ≥ y−k/2p .

Proof: Let c be an intermediate variable. Using Proposition 12, one can set c ≤ yβ . Also, one

can write:

(
y 1
1 w

)
< 0 which leads to yw ≥ 1. Then ywβ ≥ 1.

The following proposition covers the cases α ∈ [2; +∞[.

Proposition 14 (Case 2 < α). We have 0 < 1
1−α < 1. Then

∀ε > 0,∃p ∈ N, k ∈ {0, . . . , 2p − 1},
∣∣∣ 1
1− α

− k/2p
∣∣∣ ≤ ε.

Let y, w ∈ R+. It is possible, using SDP constraints to bound w et y by the relation y ≥ w2p/k.

Proof: Similarly to the proof of Proposition 12, we obtain wyβ ≥ 1.
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Computing the NBS (case α = 1)

We propose in this section a method to compute the NBS (case α = 1). The method used is slightly
di�erent than from the other cases since we don't use the intermediate variables yn, n ∈ N . We
directly exhibit a serie of matrices whose psd insure that z ≤

∏
n wn. The result for the NBS relies

on the following:

Proposition 15. Let z and w1, . . . , wn be real positive numbers. Then, using SDP constraints, it
is possible to bound these numbers by the relation:

z2dlog2(N)e
≤

N∏
i=1

wi.

Proof: Let p be the smallest integer such that 2p ≥ N . We construct a family of real positive
variables zi2k+1,(i+1)2k with 1 ≤ k ≤ p and i ∈ {0, . . . , 2p−k−1} satisfying the constraints expressed
by the following 2p − 1 matrices:(

z2i2k−1+1,(2i+1)2k−1 zi2k+1,(i+1)2k

zi2k+1,(i+1)2k z(2i+1)2k−1+1,(2i+2)2k−1

)
< 0,

where we denote zjj = wj for j ∈ {1, . . . , n} and z = z1,2p . Then we obtain constraints of the
forms z2

1,2 ≤ w1w2, z
2
3,4 ≤ y3y4, z

2
1,4 ≤ z1,2z3,4 and �nally z2p

1,2p ≤
∏
i wi.

To solve the NBS problem, we propose to add arti�cial connections so that the total number of
connections is of the form 2p and use the previous proposition. We also create �ctitious links that
these connections will use so that they do not modify the share of the others. It is important to
bound the bandwidth allocated to these connections so that the share obtained by SDP does not
grow without control that would provoke an error. As these �ctitious connections use their own
link, no matter the value of their upper bound PRi, we will obtain xi = PRi.

The following proposition shows that the blocs of the matrix are of size at most 2 and that
their number remains reasonable (of the order of O(N + L)). The SDP approach can hence o�er
simple and fast solutions for dimensioning purposes or for studying existing system, and is suitable
for the study of large networks.

Proposition 16. We stress that the proposed construction will lead to at most 6|N |−7 variables,
4|N | − 5 blocks of size 2, and 4|N |+ |L| − 4 blocks of size 1.

Proof: Let p be the smallest integer such that 2p ≥ |L| and q = 2p. Then, one can check that,
our method will lead to: q +

∑p
i=0 q2

−i = 3.2p − 1 variables, q +
∑p
i=1 q2

−i = 2p+1 − 1 blocks of
size 2 and l + 2.2p = 2p+1 + l blocks of size 1. In the worst case, we have |L| = 2p−1 + 1, hence
the result.

15.8.4 A simple example of NBS computation with �xed routing

We �nally illustrate in this sub-section the previous results with the construction of the matrix
for the computation of the NBS on a simple network. We consider a network with |L| = 4 links
and |N | = 3 connections. The routing matrix is:

A =
(

1 0 1
0 1 0
0 1 1
1 0 0

)
.

Recall that element ai,j equals 1 if and only if connection j uses link i. In our SDP program, we
add an arti�cial connection so that the total number of connections has the form 2p with p ∈ N as
explained in 15.8.3. We suppose that this extra connection uses its own link and therefore does not
modify the NBS of our problem. A possible network associated with this problem is represented
in Figure 15.8.
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Figure 15.8: Simple computation of the NBS.

The �rst four blocs of the matrix link the variables xn with their utility wn:

MAT1,n =
(
−wn−cnan

xn − bn
xn − bn 1

)
The following matrices link the wi variables together to obtain a single variable that SDP will
maximize (from Proposition 15).

MAT2,1 =
(

w1 y1,2

y1,2 w2

)
, MAT2,2 =

(
w3 y3,4

y3,4 w4

)
, MAT2,3 =

(
y1,2 y1,4

y1,4 y3,4

)
.

The positiveness of these matrices implies that (y1,4)4 ≤ (y1,2)2 ·(y3,4)2 ≤ w1 ·w2 ·w3 ·w4. Then,
maximizing the single variable y1,4 will lead to the required optimization of

∏
n(cn−an(xn−bn)2).

We incorporate the (linear) constraints of the problem. The constraints
(Ax)l ≤ Cl lead to the declaration of L matrices that are, in our example:

MAT3,1 = (C1 − (x1 + x3)), MAT3,2 = (C2 − x2), MAT3,3 = (C3 − (x2 + x3))

and MAT3,4 = (C4 − x1).

Finally, the constraints xi ≤ PRi and xi ≥MRi are re�ected by 8 scalar matrices:

MAT3,4+n = (PRn − xn), and MAT3,8+n = (xn −MRn), 1 ≤ n ≤ 4.

We can notice that the values PR4 and MR4 corresponding to the arti�cial connection are not
important since the connection is independent of the others and SDP will give x4 = PR4.

The entries we should give to the SDP algorithm are the matrix obtained by concatenation
of the blocs we described and the vector L. As we want to maximize y1,4, the vector should be
of the form: L = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1) (or an equivalent one if we renumber the variable in
a di�erent order). We can notice that we have in this simple example 11 variables: 4 allocation
variables xn, 4 utility variables wn and 3 intermediate variables y1,2, y3,4 and y1,4.

We present in the last section some numerical results obtained with the csdp solver. The
matrices we used were obtained according to the method we previously explained.
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15.9 Numerical experiments

We implemented the SDP approach using a Matlab program on a SUN ULTRA 1 computer to
obtain the fair shares. We �rst tested our program on the same linear network example for which
we had explicit expressions, and the results completely agreed. We then considered two more
complex networks which we describe below. The computation time (including the display part)
in both cases was less than a minute.

The utility functions are chosen identical for each connection (although the program can handle
di�erent parameters without increasing the complexity) and are MR = 10, PR = 80, a = 1/490,
b = 745 and c = 1102.5. The bandwidth parameters and the allocations are given in percentage of
the total capacity of the link. For each network, we present a �gure showing the set of links and a
�gure representing the bandwidth allocated to each connection. Finally, in the connection-aware
case, the links have the same capacity C = 100, while in the case of network-aware optimization
experiments, the link sizes and the connections requirements are di�erent one from another.

15.9.1 NBS for a small network with �xed routing

We consider the network represented in Figure 15.9. It contains |L| = 10 links and |N | = 11
connections. The routing is characterized by matrix A:

A =


0 1 0 0 0 0 0 1 0 0 00 1 0 0 0 0 0 1 1 0 00 1 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 1 0 01 0 0 1 0 0 0 0 0 1 01 0 0 1 1 0 0 0 0 1 01 0 0 0 1 0 0 0 0 1 10 0 1 0 1 0 1 0 0 1 10 0 1 0 0 0 0 0 0 0 10 0 0 0 0 1 1 0 0 1 0


The SDP solution is given in Figure 15.10, in which each connection is represented by a line

whose gray scale represent its allocation. We can note that the SDP formulation required to
introduce 36 variables and the SDP matrix was of size 104 (31 matrices of size 2, and 42 of size
1).

We can note that all the links cannot be saturated simultaneously even although the solution
is Pareto optimal. This is for instance the case of links 1, 3 and 4. Moreover, we can distinguish
2 independent systems:

• The one formed by the links 1 to 4 and used by exclusively by connections 2, 8 and 9,

• The system that consists of links 5 to 11, used by the other connections.

Note that in the �rst system, only one link is saturated. This link being used by the three
connections, each of them received one third of its capacity (since they have the same utility
function).

The second system is more complex and we cannot determine, without the help of computers
the di�erent allocations of the connections. Still, the numerical results agree with our expectations
since connection 6, using only one link, obtain the highest allocation (almost 63% of the link
capacity), whereas connection 10, crossing the maximum number of links, obtain the smaller
allocation (17% of the link capacity). In the case of max-min optimization these di�erences would
have been, of course, smaller.

Finally, let us recall that the critical element in the allocation of a connection is the set of
saturated links and not the total number of links crossed by a connection. Thus, in our example
although connection 3 crosses more links than connection 11, it receives the same allocation.
Indeed, the extra link it goes through is link 7, which is not saturated. The same observation
holds for connections 1 and 4.

15.9.2 The COST network

We then considered the COST network represented in Figure 15.11. It contains 11 nodes repre-
senting major European cities. We present two optimization schemes, corresponding respectively



15.9. NUMERICAL EXPERIMENTS 129

rezosimp2.fig

Figure 15.9: Small network
with �xed routing.

simplenetresults.fig

Figure 15.10: First network: solution

to the connection-aware optimization with �xed routing and to the network-aware optimization
with fractional routing.

NBS in the case of connection-aware optimization with �xed routing. We considered
in the simulation the 30 connections having the higher forecast demands9. The solution obtained
in the case of the NBS is given in Figure 15.12 and the results are summarized in Table 15.2. The
routing was chosen arbitrarily in order to minimize the number of links crossed by each connection.

Pa - Mi 47.34 Mi - Vi 63.00 Pr - Co 80.00 Zu - Pa - Lo 21.87 Zu - Pr - Be 50.00
Pa - Lo 33.93 Pr - Be 50.00 Be - Am 27.11 Pa - Zu - Vi 25.48 Zu - Lu - Br 35.79
Pa - Be 80.00 Lo - Br 80.00 Zu - Vi 55.06 Be - Am - Lu 27.11 Lo - Am - Be 23.73
Pa - Br 43.66 Lo - Am 76.27 Vi - Be 63.00 Mi - Vi - Be 37.00 Pa - Br - Am 28.42
Pa - Zu 33.19 Am - Br 49.54 Mi - Pa - Br 27.93 Be - Am - Br 22.04 Mi - Zu - Lu - Am 28.42
Mi - Zu 71.58 Co - Be 80.00 Mi - Pa - Lo 24.74 Zu - Lu - Am 35.79 Vi - Zu - Pa - Lo 19.46

Legend: Co : Copenhagen, Be: Berlin, Am: Amsterdam, Lo: London, Br: Brussels, Pa: Paris,
Lu: Luxembourg, Pr: Prague, Zu: Zurich, Vi: Vienna, Mi: Milan.

Table 15.2: Bandwidth allocation in COST networks.

The solution involved adding extra 65 intermediate variables, and the size of the psd matrix
was 215 (63 matrices of size 2, and 89 matrices of size 1). As in the previous example, the
connections having the higher allocations are represented with darker colors. We can again note
that the connections using the smaller number of (saturated) links received more bandwidth.
We can even point out that four connections (Copenhagen-Prague, Copenhagen-Berlin, London-
Brussels and Paris-Berlin) are alone in their respective link, and are therefore allocated their

9We withdrew the connections whose demands would be lower than 2.5 Gb/s according to experiments dating
from 1993.
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planvide2.fig

Figure 15.11: COST network: links.

maximum demand, that is to say 80% of the link capacity. Those links are thus not saturated.
The allocations of connections Berlin-Prague and Berlin-Prague-Zurich are equal and are 50% of
the link capacity because they compete for the same bottleneck link (the reason is therefore similar
that for connections 1 and 4 of the previous network).

Network-aware optimization We then considered the case of network-aware optimization
and fractional routing. In this example we added 3 links: London-Copenhagen, Amsterdam-
Copenhagen and Luxembourg-Prague to increase the possible routing strategies. Moreover we got
interested in comparing di�erent values of α. We present here the results obtained for α = 0.5
and α = 5.

The link capacity is given in arbitrary units and we considered the 110 possible demands
(corresponding to all the possible pairs source-destination). The demands are di�erent from one
to another, as illustrated in Table 15.3. Here, although the problem size is much higher than the
previous example (due to the increase of the number of links and connections), the computation
time remained lower than one minute. The link usages (in percentage) for α = 0.5 and α = 5 are
given in the Tables 15.4 and 15.5 respectively and graphically represented in Figures 15.13 and
15.14.

Pa - Mi 5 Pa - Zu 6 Pa - Lu 1 Am - Lu 1 Lo - Pr 1 Pr - Mi 1 Pr - Be 2 Zu - Lo 3
Pa - Lo 10 Pa - Vi 2 Pa - Am 5 Pa - Co 1 Lo - Br 4 Lo - Am 5 Pr - Zu 1 Zu - Br 6
Pa - Pr 1 Pa - Be 11 Mi - Am 2 Mi - Lu 1 Lo - Be 8 Lo - Co 1 Pr - Br 1 Pr - Lu 1
Pa - Br 6 Mi - Be 9 Mi - Co 1 Zu - Lu 1 Am - Br 4 Br - Co 1 Lu - Lo 1 Pr - Am 1
Mi - Vi 3 Mi - Br 2 Am - Co 1 Lu - Br 1 Be - Br 6 Co - Be 3 Vi - Co 1 Vi - Lo 2
Mi - Zu 6 Mi - Lo 3 Zu - Am 3 Zu - Co 1 Vi - Br 1 Be - Lu 2 Pr - Vi 1
Zu - Vi 3 Zu - Be 11 Pr - Co 1 Be - Am 8 Vi - Be 9 Vi - Lu 1 Vi - Am 1

Table 15.3: COST network: demands

Link BP Link BP Link BP Link BP Link BP Link BP Link BP
Pa - Mi 57 Zu - Pr 87 Vi - Be 96 Am - Lo 61 Mi - Zu 61 Pa - Br 68 Mi - Br 73
Pa - Zu 68 Pr - Vi 55 Be - Am 92 Am - Co 29 Mi - Vi 81 Pr - Lu 32 Am - Lu 62
Pa - Be 97 Pr - Be 93 Be - Co 81 Am - Br 90 Zu - Lu 73 Lu - Br 61 Br - Lo 62
Pa - Lo 91 Zu - Vi 41 Pr - Co 61 Lo - Co 87

Table 15.4: Results for α = 0.5

We observe that, when the parameter α grows, we tend to a more homogenous coloration of the
links, which agrees with theoretical results. When α grows, the allocations are more "equaled" and
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Figure 15.12: COST network: NBS allocation.

Link BP Link BP Link BP Link BP Link BP Link BP Link BP
Pa - Mi 52 Mi - Zu 73 Zu - Lu 76 Am - Lo 73 Mi - Br 76 Pa - Lo 78 Pr - Co 74
Pa - Zu 73 Pr - Vi 76 Be - Am 92 Am - Co 47 Vi - Be 92 Am - Br 77 Lo - Co 73
Pa - Be 92 Pr - Be 92 Be - Co 92 Lu - Br 73 Br - Lo 74 Mi - Vi 73 Pa - Br 76
Zu - Pr 76 Pr - Lu 47 Am - Lu 74 Zu - Vi 47

Table 15.5: Results for α = 5

we thus observe a more homogeneous use of the links. Accordingly, the use of the more saturated
link decrease from 97.36% to 92%.

When α grows from 0.5 to 5, the average link usage increases (from 70.38% to 73.83%). This
can seem surprising, since the allocated bandwidth remain constant, as well as the link capacity.
In fact, when α grows, the tra�c becomes more split between the di�erent possible routes in
order make the link usage more homogeneous. Therefore the average number of links used by a
connection increase as well and so does the network usage.

It is also interesting to note that the usage of some links, like the Berlin-Copenhagen, have
increased almost to their maximum usage for the solution α = 5, supposedly more "fair" ! This
shows that the search for fairness in a global scale sometimes lead some users to critical situations
while their remain in their bound in cases that are less fair.

15.10 Conclusion

We have applied in this paper the NBS approach for bandwidth allocation that is sensitive to
the utilities of connections. We have studied some of the characteristics of these concepts, and
showed that they are indeed more suitable for applications that have concave utility. We proposed a
simple parametrization of the concavity of the utility function using quadratic functions. We �nally
proposed some computational approaches that allows us to handle large networks: a Lagrangian
approach and a novel approach based on SDP.
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Figure 15.13: Bandwidth allocation for COST network, α = 0.5.

The SDP approach has the advantage that it is simple to implement using any general SDP
software. Furthermore additional conditions (for instance those linked to integer programming, or
other telecommunication requests) can be introduced without requiring any study on the stability
or the convergence of the algorithm. This is a clear improvement compared to many other speci�c
methods, and in particular to the iterative ones that have been proposed for solving fairness
problems.

Also, we considered a fairness approach that takes into account not just the assigned through-
put of each connection but instead the utility that the assigned throughput represents. This type
of fairness concept agrees with the game theoretic de�nition of fairness given by NBS and is an in-
teresting generalization of the fairness criteria that have been used so far in the telecommunication
context.

.1 Proof of Proposition 3

We �rst prove the following lemma:

Lemma 5. As |L| grows to in�nity, the only possible limits xlim of the bandwidth assigned to
connection 0 are MR0 and C0 − b1.

Proof: Since x is bounded (from MR0 ≤ x ≤ PR0), the left part of (15.8) is bounded too.
Therefore, the limit xlim, if any, is such that a1(C0 − x− b1) · f0(x) = 0.
We want to determine which of the three solutions are possible, that is to say belonging to the set
[MR0, PR0]. From (15.7) we have PR0 +PR1 > C. As b1 > PR1 (from (15.5)), then C−b1 < PR0.
Therefore the solution xlim = C − b1 is acceptable if C − b1 ≥ MR0. The two other solutions
are the zeros of f0. By de�nition the larger one is strictly greater than PR0 and therefore not
acceptable.

The second lemma compares the possible limits.

Lemma 6. Let f and g be de�ned as in (15.8). Then g(C−b1) ≥ g(MR0) and h(C−b1) ≥ h(MR0).

Proof: We have g(MR0) =
|L|

1− α
f1(C −MR0)1−α and
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plan5.fig

Figure 15.14: Bandwidth allocation for COST network, α = 5.

g(C − b1) =
1

1− α
[
f0(C − b1)1−α + |L|(f1(b1))1−α] .

From the de�nition of b1 we have f1(b1) ≥ f1(C − MR0). Moreover, if C − b1 ≥ MR0 then
f0(C − b1) ≥ 0 and therefore g(C − b1) ≥ g(MR0).
If α = 1, then h(MR0) = 0 and h(C − b1) = f0(C − b1)(f1(b1))N > 0.

We can �nally prove Proposition 3. We have seen that for any value of α, MR0 and C − b1
are the only two possible limits. Moreover, if C − b1 ≥ MR0 then g(C − b1) ≥ g(MR0) and
h(C − b1) ≥ h(MR0). Therefore, the limit of the allocation, if any, is max(C − b1,MR0).
We can show that this value is indeed the limit of the allocation. We detail here the case of α = 1.
The case of α 6= 1 being similar. If C − b1 > MR0, then f1(C − Id) is maximal for C − b1 (by
de�nition of b1) and f0(C − b1) > 0 (since C − b1 > MR0), then, lim|L|→∞f0(x)(f1(C − x))|L| =
C − b1.
Suppose now that C − b1 ≤ MR0. f1(C − Id) is a parabola those maximum is for C − b1 ≤ MR0

and that is null in MR0. Therefore the function is decreasing in [b1,+∞], and in particular in
[C −MR0, C − PR0] (since C − b1 > MR0). Therefore its maximum is achieved in C −MR0. As
f0 is positive on the set [MR0, PR0] then xlim = MR0.
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Appendix A

Coalition games and the multicast

problem

A.1 Introduction

This Chapter is based on a joined paper by Chandramani [?] and Altman.

A.1.1 The Multicast Problem

Consider a network with one source or one base station (BS). N users participate in a multicast
session in which each one receives the same content from the source. Users are non-homogeneous:
Transmission of the content is associated with some costly resource (power, bandwidth etc). There
is some amount of resource that a user requests associated with the quality of the content it wishes
to receive as well as to the network conditions of that user. It is assumed that if a given amount
of resource is used for transmission, then all users with a request not exceeding this amount are
satis�ed. In order to satisfy all users, the source needs to allocate the amount that corresponds to
the largest request. Some examples are:

• Power control: consider a cell with N mobiles. A mobile uses a service that needs some given
power level at the reception. As the locations of mobiles di�er, the channel gain di�ers from
one mobile to the other. Thus the BS has to transmit at a power level that ensures that the
mobile with the worst channel conditions receives the signal with the requested power. For
example, if the channel gain between the base station located at Xbs and mobile i, located
at Xi, is determined by the distance and the path loss constant α, i.e. pr = Pd(Xbs, Xi)−α

then the BS has to transmit at a power of P = θmaxi d(Xbs, Xi)α in order to ensure that
all mobiles receive at a power of at least θ.

• Power control with quality of service constraints: We consider again a BS and N mobiles.
The bit error rate (BER) at the reception is known to be a function of the signal to noise
ratio and of the modulation type of the signal. Each user may wish to receive at a di�erent
quality in terms of BER. Therefore the power needed to satisfy all users is not necessarily
the one corresponding to the mobile who is the furthest away.

• Hierarchical multicast. Assume that a hierarchical coding is used. The content is coded and
transmitted over several carriers. A user can decide what level of details he wishes to have;
this translates to the decision of how many carriers the user wishes to receive. The more
carriers one receives, the better is the quality of the received signal after decoding. If mobile
i subscribes to ji carriers, then in order to satisfy all users, the source has to use maxNi=1 ji
carriers.

135
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A.1.2 The structure of the chapter

The �rst question we address in this chapter is how to split the cost for establishing the multicast
session among the users. In the situations described above it seems clear that the global bene�t
increases in the size of the multicast group. Nonetheless, depending on the splitting rule, users
may join the multicast session or may prefer not to join it. Indeed, it is assumed that a user or a
set of users that are not satis�ed with the way the cost is split, can form an alternative multicast
group that would perhaps require together less resources and may thus be more bene�cial for these.
We look for rules for sharing the multicast cost that will make it advantageous for all participants
to form one large multicast group, which is called then the "grand coalition". We use tools from
cooperative game theory where multicast groups are viewed as coalitions. The set of such rules is
called the core.

We next consider explicitly an alternative unicast source that each mobile can connect to at
some constant cost. We loose the property that we had before where we always had splitting rules
that made the grand coalition appealing to everyone. One may view this problem as a hierarchical
non-cooperative association problem: given the leader's rules (the rules for splitting the cost among
the participants of the multicast group), each player has the choice to join the multicast group or
a dedicated unicast one. We study the impact of the cost sharing rule in the multicast group on
the number of participants in it (which we call capacity) and on its geographical size (which we
call coverage). (Note: One can formulate this problem as one with multiple coalition structure, as
de�ned in [73, p. 44, section 3.8].) We study the impact of information on the performance. We
discover a paradoxical behavior in which the performances improves by providing less information
to mobiles.

A.1.3 Related Work

The cost structure in our problem is identical to that proposed by Littlechild and Owen [74, 75]
in the context of Aircraft landing fees. Thomson [76] provides a survey on cost allocation for the
airport problem.

Myerson [77] developed the theory of large Poisson games, and in particular, proved the ex-
istence of equilibria in such games. Under the setup there, utility of a player depends on the
aggregate action pro�le of the whole population, and not on the type-wise action pro�le. In our
setup the cost of a user depends on the type-wise action pro�le of the population, where type of
a user can be identi�ed as its location.

Penna and Ventre [78] and Bilo et al. [79] study the problem of sharing the cost of multicast
transmission in a wireless network. In another paper, Bilo et al. [80] frame the sel�sh nature of
users as a noncooperative game among them, for several given cost allocation methods.

A.2 Coalition Game Preliminaries

We begin by de�ning the coalition game. A cooperative cost game [81] is a pair (N , c) where
N := {1, . . . , N} denotes the set of players and c : 2N → R is the cost function For any nonempty
coalition S, c(SS) is the minimal cost incurred if players in S work together to serve their purposes;
c(∅) = 0. A cooperative game is called concave if the cost function is sub-modular (the precise
de�nition is delayed to Eqs (A.3)).

A cost allocation q ∈ RN charges cost qi to player i. An allocation q is called e�cient if∑
i∈N qi = c(N ). An e�cient allocation q is called an imputation if qi ≤ c({i}) for all i ∈ N .

The core: The core, C, of the game is de�ned as follows

C = {q ∈ RN :
∑
i∈N

qi = c(N ),∑
i∈S

qi ≤ c(S), ∀ S ⊂ N} (A.1)
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The core of a concave cooperative game is nonempty [82].
Next we state a number of appealing rules for cost allocation.

• Shapley value: For any i, and S ⊂ N such that i 6∈ S, let ∆i(S) = c(S ∪ {i})− c(S). The
Shapley value is the cost allocation q for which

qi =
1
n!

∑
U∈U

∆i(Si(U)), (A.2)

where U is the set of all orderings of N , and Si(U) is the set of players preceding i in ordering
U . The Shapley value of a concave cooperative game lies in the core.

• Nucleolus: The excess of a coalition S under an imputation q is eS(q) =
∑
i∈S qi − v(S);

this is a measure of dissatisfaction of S under q. Let E(q) = (eS(q), S ∈ 2N ) be the vector of
excesses arranged in monotonically increasing order. The nucleolus is the set of imputations
q for which the vector E(q) is lexicographically minimal.

Nucleolus is a singleton and belongs to the core whenever the latter is nonempty.

• Egalitarian Allocation: The egalitarian allocation for cooperative games was introduced
by Dutta and Ray [83]. It is unique whenever it exists, and it always exists and lies in the
core for concave cost games. The following characterization applies to such games only.

The egalitarian allocation is the element of core which Lorentz dominates all other core
allocations.

Remark 15. A min-max fair allocation for the cooperative cost game is de�ned as follows.

For q ∈ RN , de�ne q̄ to be the vector obtained by arranging the components of q in decreasing
order. Further de�ne

C̄ = {q̄ : q ∈ C}.

Then q ∈ C is a min-max fair allocation if and only if q̄ is lexicographically minimal in C̄.
A max-min fair allocation is also de�ned similarly. Jain and Vazirani[84] show that for
concave games, there exists a unique cost allocation which is min-max fair as well as max-
min fair, and which coincides with the egalitarian allocation.

A.3 System Model

A.3.1 Network and Communication Model

We consider a wireless network with a base station (BS) and a set N = {1, . . . , N} of users. We
shall assume N to be either a known constant (in the case of perfect information), or a Poisson
random variable of rate λ (in the framework of imperfect information).

Both the radio channel varies from one mobile to another, as well as the required QoS level.
Mobile i requires transmission at power pi in order to meet its QoS needs. We assume pis to be
independently identically distributed (i. i. d.) random variables with distribution G(p) (density
g(p) := G′(p)).

We assume that any subset S of users can subscribe for a multicast session. The BS then
broadcasts information (say, a radio channel) with the minimum power p that guarantees that all
mobiles in S receive a satisfactory level of quality of service. Evidently p = max{pi : i ∈ S}.

Assume that there is a cost f(p) per time unit during which the BS transmits at power p; this
cost has to be shared by all the mobiles in the multicast group. f is assumed to be increasing in
its argument.

We also assume that every user has yet another option, that of using a dedicated connection
using some other technology, at a cost V .
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A.3.2 Cost Sharing Models

Let us assume that the set of mobiles in multicast group is N . We index the mobiles such that
such that pi is increasing in i.

A cost sharing mechanism is a map q : RN → RN with elements qj , j ∈ N ; qj is the cost share
of user j. We study the cost sharing mechanisms that satisfy the following economical constraints.

Budget-balance A cost sharing mechanism is called budget-balanced if users pay exactly the
total cost of the service.

N∑
j=1

qj = f(pN ).

cross-monotonicity A cost sharing mechanism is called cross-monotonic if each user's cost
decreases as the service set expands.

e�ciency An e�cient cost sharing mechanism is one that maximizes net social utility.

Remark 16. A cost sharing mechanism is called strategy-proof if revealing true utilities is a
dominant strategy for each user. However, in the cost sharing problem studied here all the users
are assumed to have equal utility which is known.

The cost sharing problem can be formulated as a cooperative cost game (N , c). Here c : 2N →
R, for a coalition S ⊂ N , gives the cost to support communication to all the users in S, i.e.,
c(S) = max{f(pi) : i ∈ S}.

Now consider two coalitions S1, S2 ⊆ N . Observe that

c(S1 ∪ S2) = max{c(S1), c(S2)} (A.3)

and c(S1 ∩ S2) ≤ min{c(S1), c(S2)}. (A.4)

Hence,
c(S1 ∪ S2) + c(S1 ∩ S2) ≤ c(S1) + c(S2),

i.e., the cost function is submodular. This implies the following.

Theorem 21. (i) The core of the cost allocation game is nonempty.
(ii) The Shapley value lies in the core.
(iii) The egalitarian allocation lies in the core and is min-max (also max-min) fair.

The core of the game can be expressed as{
q ∈ RN :

∑
i∈S

qi ≤ f(pmaxS),S ⊂ N ,
∑
i∈N

qi ≤ f(pN )
}
,

where max (S) := max i : i ∈ (S). We make the following observations

1. All the cost allocation in the core are nonnegative; if qi < 0, q can not satisfy the constraint
corresponding to subset N\{i}.

2. The constraint
∑j
i=1 qi ≤ f(pj) makes the constraints corresponding to the subsets S (

{1, . . . , j} redundant.

In view of these, the core can be rewritten as

{
q ∈ RN+ :

j∑
i=1

qi ≤ f(pj), 1 ≤ j ≤ N,
N∑
i=1

qi = f(pN )
}

A budget-balanced cost sharing mechanism is cross-monotonic only if it belongs to the core of
the associated cooperative cost game. Hence we focus on cost allocations from the core. Following
criteria can be used.
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1. Highest cost allocation (HCA): The user requiring the highest power, N , pays the whole
cost. Of course (0, . . . , f(pN )) is in the core.

2. Incremental cost allocation (ICA): A more fair cost allocation is where user i pays
f(pi)− f(pi−1); f(p0) := 0. We call it incremental cost allocation.

3. Shapley value (SV): Following [74], the cost qi for player i is given by

qi =
i∑

j=1

f(pj)− f(pj−1)
N + 1− j

4. Nucleolus (NS): The following algorithm for calculating the nucleolus is given by Lit-
tlechild [75] in the context of the airport cost game.

De�ne i0 = r0 = 0. For k ≥ 1, iteratively de�ne

rk = min
ik−1+1,...,n−1

{f(pi)− f(pik−1) + rk−1

i− ik−1 + 1

}
,

and ik as the largest value of i for which the minimum is attained in the above expression.
Continue this until k = k′ where ik′ = N − 1. The nucleolus of the game, q, is given by

qi = rk, ik−1 < i ≤ ik, k = 1, . . . , k′

qN = f(pN )− f(pN−1) + rk′

5. Egalitarian allocation (EA): The egalitarian allocation for our cost sharing problem can
be computed by applying the following algorithm [85].

De�ne i0 = r0 = 0. For k ≥ 1, iteratively de�ne

rk = min
ik−1+1,...,n

{f(pi)− f(pik−1)
i− ik−1

}
,

and ik as the largest value of i for which the minimum is attained in the above expression.
Continue this until k = k′ where ik′ = N . The max-min fair allocation, q, is given by

qi = rk, ik−1 < i ≤ ik, k = 1, . . . , k′

Cross-monotonicity of the above cost allocations: Evidently HCA is cross-monotonic.
Shapley values is well known to be cross-monotonic (see Moulin[86]). Dutta [87] showed that
the egalitarian allocation in concave games is also cross-monotonic. Sonmez [88] showed that the
nucleolus of a generic concave cost allocation game need not be cross-monotonic; however he also
proved the cross-monotonicity of nucleolus for the airport game which has identical formulation
as ours.

We observe also the following monotonicity property of cost allocations HCA, SV, NS and EA.
�For any two users i, j such that pj > pi, qj ≥ qi.�

The expression for nucleolus has the similar form as that of max-min fair allocation. Hence,
in the following we analyze max-min fair allocation but do not discuss nucleolus.

A.4 Non-cooperative Coalition Formation game: perfect in-
formation

Each player independently decides whether to join the multicast group or not. Recall that, a
player if it does not use the multicast service, bears a cost V . We formulate the decision problem
as a noncooperative game. Assume that all users know about the resources requested by all other
users in the network.
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De�nition 29. An equilibrium is a multicast subsetM⊂ N of users, such that the cost share of
each one in that set is not greater than V , and the cost of each user not in the set would not be
smaller than V if it joined the set.

Let pi be the amount of resources required by player i. Let pM denote the set pi, i ∈ M and
let qi be the cost share of player i. It is given as some function hi that depends on the set M
and on the resource requests of each player in the setM. With this notation, the equilibrium is
characterized by the following conditions: hi(M, pM) ≤ V for all i ∈M, and hi(M∪i, pM∪i) ≥ V
for all i ∈ N\M.

Remark 17. We shall assume that the amount of resources requested by a mobile is a random
realization of some probability distribution that has no mass at isolated points. For simplicity
we shall focus on the case where the resource is power, and the amount required is a strictly
monotone continuous increasing function of the distance of the mobile from the base station. The
distance between the users and the base station are independent from user to user and are assumed
to be drawn from a probability distribution that has a density. Therefore the probability of two
mobiles having the same distance from the base station is zero. We shall thus assume below that
all distances are di�erent from each other. Similarly, we shall ignore the possibility (which has
probability zero) that f(pi) = V for some i.

We next provide the Nash equilibrium (NE) for the various cost sharing policies.

1. Under the rule that the user requiring highest power pays the whole costM = {i : f(pi) <
V }. This is in fact a strong equilibrium: it is robust not only to any deviation by a single
user but to any deviation by any number of users. No coordination between users is needed
for reaching this equilibrium since the best response of a user (as speci�ed by this strategy)
is independent of what other users do.

2. When users pay incremental costs,

M =
{
∅ if p1 ≥ V,
{1, . . . , j − 1} otherwise,

(A.5)

where j = arg mini{i : f(pi)− f(pi−1) ≥ V }.

3. Shapley value: Let us de�ne

bj =
j∑
i=1

f(pj)− f(pj−1)
j + 1− 1

,

Then the unique NE isM = {1, . . . , j} where j is the largest index such that bj ≤ V .

4. Max-min fair allocation: De�ne i0 = r0 = 0. For k ≥ 1, iteratively de�ne

rk = min
ik−1+1,...,n

{f(pi)− f(pik−1)
i− ik−1

}
,

and ik as the largest value of i for which the minimum is attained in the above expression.
Continue this until rk > V . The unique NE isM = {1, . . . , ik−1}.

A.5 Static problem with incomplete information

Here we assume that any user does not know the number of other users in the network and their
resource (say, power) requirements. However, the users know their own requirements. What is
the equilibrium policy?

We restrict ourselves to symmetric strategies for all the users (see Myerson [77] for a discussion
on this). The number of players is Poisson distributed with mean λ. Environmental equivalence
property of Poisson games [77] ensures that from the perspective of any player, the number of other
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players in the game is also a Poisson random variable with the same mean λ. These arguments
imply that a user's decision is a function of its power requirement, and a pure strategy equilibrium
is characterized by a set such that users with power requirements in that set join the multicast
group and others do not.

LetQ ⊂ R+ be such that users with power requirements inQ join the multicast group. Consider
user i with power requirement pi and let ω−i denote a realization for the rest of the network. The
cost share of user i is given as

qi(pi, Q, ω−i) = hi(MQ(ω) ∪ i, pMQ∪i(ω)),

whereMQ = {i : pi ≤ Q}. The expected cost share of user i is Eqi(pi, Q).

De�nition 30. An NE in this case is characterized by a set Q ⊂ R+ such that users with power
requirements pi ∈ Q join the multicast group. More precisely Eqi(pi, Q) ≤ V if pi ∈ Q, and
Eqi(pi, Q) > V if pi /∈ Q.

Again consider user i, and a �xed realization of the network. We can view the function
hi(M, pM\i, ·) : pi 7→ qi as parametrized by power requirements of other users. We use ĥi : R+ →
R+ to denote it, i.e.,

ĥi(pi) := hi(M, pM).

Following is an important observation.

Lemma 7. Under cost allocation policies HCA, SV and EA, ĥi is a monotone increasing function.

Proof. Clearly the claim is true for HCA.
SV: Let us consider user i with required power pi. Assume that its power requirement is increased
to p′i. If p

′
i ≤ pi+1 then the cost share increases by

ĥ(p′i)− ĥ(pi) =
f(p′i)− f(pi)
N + 1− i

.

Let us consider the case when pi+1 < p′i < pi+2. Other cases can be analyzed with a repeated
application of this procedure. Now the new cost share of player i is

ĥ(p′i) =
i−1∑
j=1

f(pj)− f(pj−1)
N + 1− j

+
f(pi+1)− f(pi−1)

N + 1− i
+
f(p′i)− f(pi+1)

N − i

≥
i∑

j=1

f(pj)− f(pj−1)
N + 1− j

= ĥ(pi)

EA: Let us revisit the algorithm used to obtain EA and assume i = ik for some k. Now user i
increases its power requirement to p′i. As before �rst consider the case when p′i ≤ pi+1. Clearly

ĥ(p′i) ≥ ĥ(pi) in this case. The same holds true if pi+1 < p′i < pi+2. Similar arguments can be
made in the case when i 6= ik for any k.

Recall that we consider symmetric strategies for all the users. The following theorems show
that only candidates for NEs are closed intervals containing 0.

Corollary 3. For the cost sharing mechanisms HCA, SV and EA, under any symmetric policy
Q, there exists a threshold p∗ such that Eqi(pi, Q) ≤ V if and only if pi ≤ p∗.

Corollary 4. Under cost sharing mechanisms HCA, SV and EA, the only candidates for NEs are
sets of the form [0, p∗] and [0,∞).
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Following is another useful property of the above cost sharing mechanisms.

Lemma 8. For the cost sharing mechanisms HCA, SV and EA, Eqi(pi, [0, p]) is monotonically
increasing with pi for pi ≥ p.

Theorem 22. For the cost sharing mechanism ICA, the only candidates for NEs are sets of the
form [0, p∗] and [0,∞).

Proof. We prove the claim via contradiction. Assume that Q = ∪Kk=1[ak, bk] is an NE where
bk−1 < ak for all k (b0 := 0). For 0 ≤ pi ≤ a1, user i's expected cost f(pi) will be increasing in pi.
For b1 ≤ pi ≤ a2, user i's expected cost Eqi(pi, Q) is

f(pi)−
∫ b1

a1

λf(p)g(p) exp
(
− λ

∫ b1

p

g(s) ds
)
dp.

In writing the above expression we have used the decomposition property of Poisson distribution:
The number of users with power requirements in the range [p, b1] is a Poisson random variable

with rate λ
∫ b1
p
g(s) ds. Finally it is seen that the above expression is increasing in pi. Similarly

it can be shown that Eĥi(pi), bk−1 ≤ pi ≤ ak is increasing for all 1 ≤ k ≤ K.
Hence if all other users are using the strategy Q, Q can not be player i's best response. Thus

only candidates for symmetric NEs are the threshold strategies [0, p∗].
On the other hand if Eqi(pi, [0,∞)) ≤ V for all pi then [0,∞) is also an NE.

Expressions for the NEs
We have shown that for each of the cost allocation strategies the NEs are characterized by thresh-
olds p∗. In this section we derive expressions for the thresholds.

Theorem 23. For the cost sharing mechanisms HCA, SV and EA, a symmetric multi-strategy
[0, p∗] is an NE if and only if Eqi(p∗, [0, p∗]) = V . [0,∞) is also an NE provided Eqi(pi, [0,∞)) ≤ V
for all pi.

Proof. Suppose Eqi(p∗, [0, p∗]) = V . Then Eqi(pi, [0, p∗]) ≤ V for all pi ≤ p∗. Also from Lemma 8,
Eqi(pi, [0, p∗]) > V for all pi > p∗. Thus [0, p∗] is indeed an NE.

Now assume Eqi(p∗, [0, p∗]) > V . Consider user i with pi = p∗. Then [0, p∗] can not be
an equilibrium strategy of user i. Finally assume Eqi(p∗, [0, p∗]) < V and denote ε := V −
Eqi(p∗, [0, p∗]). Since Eqi(pi, [0, p∗]) is continuous and increasing in pi for p ≥ p∗, there exists a
δ > 0 such that Eqi(pi, [0, p∗]) ≤ V for pi = p∗+ δ. Thus [0, p∗] can not be an equilibrium strategy
of user i.

If Eqi(pi, [0,∞)) ≤ V , user i's best response is to join the multicast group given that all others
have joined. Hence [0,∞) is also an NE.

HCA:

Corollary 5. [0, f−1(V )] is an NE. [0,∞) is also an NE provided f(pi) ≤ V for all pi.

Proof. For HCA cost sharing Eqi(pi, [0, pi]) = f(pi). Since f(·) in strictly increasing, the unique
solution to Eqi(p∗, [0, p∗]) = V is pi = f−1(V ). Theorem 23 proves the claim.

ICA: Consider user i with power requirement pi. Let us assume that all other users join the
multicast group. Again using the decomposition property of Poisson distribution, the expected
cost of user i, Eqi(pi, [0,∞)) is

f(pi)−
∫ pi

0

λf(p)g(p) exp
(
− λ

∫ pi

p

g(s)ds
)
dp.
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Lemma 9. [0, p∗] is an NE if and only if Eqi(pi, [0,∞)) ≤ V for all pi ≤ p∗ and Eqi(p∗, [0,∞)) =
V . If Eqi(pi, [0,∞)) ≤ V for all pi, [0,∞) is also an NE.

Proof. if part: Recall that, under ICA mechanism, user i's cost share depends on only those users
that have power requirements less than pi. Hence Eĥi(pi, [0, p]) are same for all p ≥ pi. Now,

from the conditions on p∗, Eĥi(pi, [0, p∗]) ≤ V for all 0 ≤ pi ≤ p∗. Also, following the proof of

Proposition 22, Eĥi(pi, [0, p∗]) > V for all pi > p∗. Hence [0, p∗] is indeed an NE.
only if part: Consider a symmetric strategy [0, p′], and assume that there exists a 0 < p ≤

p′ such that Eĥi(p, [0, p′]) > V . Clearly [0, p′] can not be an equilibrium strategy of user i.

Finally consider the case when [0, p′] is a symmetric strategy while Eĥi(p′, [0,∞)) < V . Denote
ε := V − Eqi(p′, [0,∞)). Since f(p) is continuous and increasing, there exists a δ > 0 such that
f(p′ + δ) − f(p′) ≤ ε implying Eqi(pi, [0,∞)) ≤ V for pi = p′ + δ. Thus [0, p′] can not be an
equilibrium strategy of user i.

A.6 Static problem with no information

Next we assume that the requirement of a user is not known even to that own user. Why should
a user not know its own request? The amount of resource requested may depend on the access
channel quality which might not be known.

As an example, assume that receiver nodes are mobile and should decide whether to join a
multicast session an hour in advance. The session is multicast by some BS. A mobile cannot predict
what its distance to the BS will be an hour ahead. It only has the probability distributions of the
number N of users (Poisson with mean λ), and users' distances to the BS that are i.i.d. and yield
distributions G(p) on the power requirements.

Consider a tagged user, say i. Given that there are n other users in contention, the expected
cost share user of user i (for a given cost sharing strategy) is

q̄i(n) = E
[
hi(M(ω), pM(ω))

∣∣∣|M(ω)| = n+ 1
]
.

Using the cross-monotonicity of the cost sharing strategy and a coupling argument it can be shown
that q̄i(n) is decreasing in n.

Now, consider the symmetric multi-strategy where each user joins with probability s. From
user i's perspective, the number of other users in the multicast group will be Poisson distributed
with mean sλ. Hence the unconditional expected cost share of user i will be

qi(s) =
∞∑
n=0

(sλ)n exp(−sλ)q̄i(n)
n!

Since the family of Poisson distributions, Poisson(sλ), is stochastically increasing, qi(s) is decreas-
ing in s.

Lemma 10. 1. If qi(0) > V then 0 is an NE, a pure strategy equilibrium where none of the users
joins the multicast group.
2. If qi(1) ≤ V then 1 is an NE, a pure strategy equilibrium where all the users join the multicast
group.
3. If qi(0) ≥ V ≥ qi(1), the symmetric multi-strategy s∗ such that qi(s∗) = V , is the unique mixed
strategy NE.

A.6.1 Information on the number of users

We restrict to HCA cost sharing in this section. Let U be the random variable for the cost, and
F (·) be its distribution. f(p) being the cost of power p,

F (u) = G(f−1(u)).
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We assume that the base station broadcasts, N , the number of users.
Consider user i. If there are n other users in contention, the expected cost share user i, is

q̄ni =

∫∞
V

(1− Fn+1(u))du
n+ 1

.

Consider the symmetric multi-strategy where each user joins with probability s. Then the
unconditional expected cost share of user i will be

q̄i(s) =
N−1∑
n=0

(
N − 1
n

)
sn(1− s)N−1−nq̄ni .

The equilibrium policy s is the solution of the equation q̄i(s) = V .

A.6.2 Some more information on ones own requirement

We assume a little more information: the base station tells each user i whether f(pi) is below or
above V . It further broadcasts, N , the number of users having power requirements above f−1(V ).
The conditional distribution of cost for such a user

F̃ (u) =
F (u)− F (V )

1− F (V )
.

Note that for users with requirements below f−1(V ), joining the multicast group is the dominant
strategy. They also do not a�ect the costs of other N users. Hence we consider a noncooperative
gave with N players only.

Again consider user i. If there are n other users in contention, the expected cost share user i,
is

q̃ni =

∫∞
V

(1− F̃n+1(u))du
n+ 1

.

Also consider the symmetric multi-strategy where each user joins with probability s. From user
i's perspective, the number of other users in the multicast group will have Binomial (N − 1, s)
distribution. Hence the unconditional expected cost share of user i will be

q̃i(s) =
N−1∑
n=0

(
N − 1
n

)
sn(1− s)N−1−nq̃ni .

Lemma 11. A symmetric multi-strategy s∗ such that q̃i(s∗) = V is a symmetric NE.

Remark 18. 1. As expected s∗ = 0 is an NE.
2. If q̃N−1

i ≤ V , s∗ = 1 is also an NE. Thus providing less information may potentially improve
the user base.

A.6.3 Properties of NEs

Theorem 24. Assume that each user knows at least its own request. Then among all monotone
coalitions achievable by some cost sharing policy, HCA achieves the smallest range.

A.7 On the expected capacity and coverage

Consider a random realization of the network: there is a single BS, a point process that describes
the location of the mobiles. All mobiles are assumed to have full knowledge. Let S be the set
of all mobiles. Let there be an alternative unicast solution for any individual that costs V . Fix
some cost sharing mechanism. Consider a subset S ⊂ S such that there is no mobile in S that can
bene�t from leaving the multicast group S (for the given cost sharing policy) and getting instead
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V . We call such a set a "V -stable set". Assume that S is a maximal set, i.e. if we add to it
another s ∈ S then the new set is not V -stable anymore.

We de�ne the capacity associated with a V -stable set as the number of mobiles in S.
is this well de�ned? could the same problem have several di�erent stable sets?
We de�ne the coverage of S to be the set of locations in which if we placed another mobile,

then the new set will still be V -stable.
Unless otherwize stated, coverage and capacity are de�ned under full information conditions.

A.7.1 Computing Capacity and Coverage

Consider a network with the BS at zero. Assume that the mobiles are located according to a
stationary Poisson process with intensity λ.

HCA policy: network over the line The capacity of the system for a given value of V is
a Poisson random variable with parameter 2λV . In particular, 2λV is also the expected capacity.
The coverage region is the interval [−V, V ].

Incremental Cost Policy: network over the plain. The capacity of the system for a
given value of V is a Poisson random variable with parameter π(λV )2/2. In particular, π(λV )2/2.
is also the expected capacity. The coverage region is the circle of radius V centered at zero.

The incremental cost policy over the line: Recall (A.5). This is a condition in terms of
the di�erence of powers needed by adjacant mobiles. We �nd it useful to express the latter as a
function of the locations of the mobiles and the BS, since coverage is understood as a geometric
property. We shall use the following simple path loss attenuation model for simplicity.

If the BS transmits at power P then we have at distance d a signal of power p = hPd−α. If
we have a given sensitivity threshold p that guarantees reception at reasonable quality, then the
power needed to get p at a distance d is pdα/h. Let v(q) correspond to the price of transmitting
at a power q.

Assume that there is a mobile at b and at a < b. There is a BS at the origin. Assume that the
mobile at a participates in the multicast session. then that at b will participate in the multicast
session if

V > v(pbα/h)− v(paα/h)

or equivalently
v(pbα/h) ≤ V + v(paα/h)

Let v be linear. Then the condition becomes

b ≤
(V h
p

+ aα
)1/α

(A.6)

Let c := h/p.
The number of mobiles in a multicast session: Enumerate the mobiles according to the increas-

ing distance to the BS. De�ne X0 and let Xn be the location of the nth mobile. Then the capacity
N is given by

N = sup{k : (Xn)α − (Xn−1)α < cV, ∀n = 1, ..., k}

where sup ∅ := 0. The coverage is given by

C =
(V h
p

+ (XN )α
)1/α

Let N(0) := N and de�ne

N(m) = sup{k : (Xn)α − (Xn−1)α < cV, ∀n = m+ 1, ..., k}

N(m) is the capacity of the system if the coverage satis�es C > Xm. De�ne C(m) as

C(m) :=
(V h
p

+ (XN(m))α
)1/α
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A.7.2 The linear case: α = 1

Lemma 12. In case α = 1 then
(i) N(m) are identically distributed, m = 0, 1, 2, ...
(ii) C(m) are identically distributed, m = 0, 1, 2, ...

The expected coverage distance C can be computed as follows. De�ne

C0 =
V h

p

(This is also the capacity reached when applying the rule that it is the furthest that pays.) The
location X of the �rst mobile is exponentially distriubted with parameter λ. With probability
exp(−λC0) we have X > C0 and then C = C0. With the complementary probability, X < C0

so that C > X. In that case, C = X + C(1) where C(1) has the same distribution as C (due to
Lemma 12). We conclude that

E[C] = E[C1{X > C0}] + E[(X + C)1{X ≤ C0}]

= C0 exp(−λC0) + E[X + C]− E[(X + C)1{X > C0}]

= C0 exp(−λC0) + C(1− exp(−λC0)) + E[X]− E[(X1{X > C0}]

= C0 exp(−λC0) + E[C](1− exp(−λC0)) +
1
λ
− exp(−λC0)(C0 +

1
λ

)

Thus the expected capacity is given by

E[C] =
C0 exp(−λC0) + 1

λ − exp(−λC0)(C0 + 1
λ )

exp(−λC0))

A.7.3 α > 1

We have:

b ≤
(V h
p

+ aα
)1/α

≤ V h

p
+ a (A.7)

Is it more generally, decreasing in α?
Can this be used to show that the linear case gives an upper bound?



Appendix B

Dynamics of competition: replicator

dynamics

We introduce here the replicator dynamics which describes the evolution in the population of the
various strategies. In the replicator dynamics, the share of a strategy in the population grows
at a rate equal to the di�erence between the payo� of that strategy and the average payo� of
the population. More precisely, consider N strategies. Let x be the N dimensional vector whose
ith element xi is the population share of strategy i (i.e. the fraction of the population that uses
strategy i). Thus we have

∑
i xi = 1 and xi ≥ 0. Below we denote by J(i, k) the expected payo�

(or the �tness) for a player using strategy i when it encounters a player with strategy k. With
some abuse of notation we de�ne J(i,x) =

∑
j J(i, j)xj .

B.1 De�nition and properties

The replicator dynamics is de�ned as

ẋi(t) = xiK
(
J(i,x)−

∑
j

xjJ(j,x)
)

(B.1)

= xiK
(∑

j

xjJ(i, j)−
∑
j

∑
k

xjJ(j, k)xk
)

where K is a positive constant and ẋi(t) := dxi(t)/dt. Note that the right hand side vanishes when
summing over i. This is compatible with the fact that we study here the share of each strategy
rather than the size of the population that uses each one of the strategies.

B.2 Replicator dynamics with delay

In Equation (B.1), the �tness of strategy i at time t has an instantaneous impact on the rate
of growth of the population size that uses it. An alternative more realistic model for replicator
dynamic would have some delay: the �tness acquired at time t will impact the rate of growth τ
time later. We then have

ẋi(t) = xi(t)K× (B.2)∑
j

xj(t− τ)J(i, j)−
∑
j,k

xj(t)J(j, k)xk(t− τ)


where K is some positive constant. (It can be interpreted as a scaling factor of the �tness J(, ., )
or as a gain parameter that controls the speed of adaptation. More details will be given in Section
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??.) The delay τ represents a time scale much slower than the physical (propagation and queueing)
delays, it is related to the time scale of (i) switching from the use of one protocol to another (ii)
upgrading protocols.



Bibliography

[1] J. Love, �Cell phone jammers,� methodshop.com, site createdat 09/01/2005 and updated at
04/24/2009, www.methodshop.com/gadgets/reviews/celljammers.

[2] S. W. Shah, M. I. Babar, and M. N. Arbab, �Cell phone jammer,� in Multitopic Conference,
INMIC 2008. IEEE International Issue available in Xplore, 23-24 Dec 2008.

[3] E. Altman and L. Wynter, �Equilibrium, games, and pricing in transportation and telecom-
munications networks,� Networks and Spatial Economics, vol. 4, no. 1, pp. 7�21, Mar. 2004,
special issue on "Crossovers between Transportation Planning and Telecommunications".

[4] E. Altman, T. Boulogne, R. E. Azouzi, T. Jimenez, and L. Wynter, �A survey on networking
games,� Computers and Operations Research, vol. 33, no. 2, pp. 286�311, 2006.

[5] S. Lasaulce, M. Debbah, and E. Altman, �Methodologies for analyzing equilibria in wireless
games,� IEEE Signal Processing Magazine, vol. 26, no. 5, pp. 51�52, 2009, special issue on
Game Theory.

[6] E. Altman and R. El-Azouzi, �La théorie des jeux non-coopératifs appliquée aux réseaux de
télécommunication,� Annales des Télécommunications, 2007, (in French).

[7] T. Bonald, �Comparison of tcp reno and tcp vegas: E�ciency and fairness,� Perform. Eval.,
pp. 307�332, 1999.

[8] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Springer, Nov. 2008,
iSBN 978-0-387-71759-3.

[9] B. von Stengel, Algorithmic Game Theory. Cambridge: Cambridge Univ. Press, 2007, ch.
Chapter 3: Equilibrium computation for two-player games in strategic and extensive form,
pp. 53�78, thanks to the progressive-minded publisher, the entire book is accessible online by
clicking here (username=agt1user, password=camb2agt).

[10] ��, Handbook of Game Theory. Amsterdam: North-Holland, 2002, vol. 3, ch. Chapter 45:
Computing equilibria for two-person games, pp. 1723�1759.

[11] A. Charnes, �Constrained games and linear programming,� in Proceedings of the National
Academy of Science of the U.S.A, 1953, pp. 639�641.

[12] J. Aubin, Optima and Equilibria, An Introduction to Nonlinear Analysis. Springer-Verlag,
Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest., 1993.

[13] J. G. Proakis, Communication Systems Engineering. Prentice Hall International Editions,
1994.

[14] D. Barman, I. Matta, E. Altman, and R. E. Azouzi, �Tcp optimization through fec, arq and
transmission power tradeo�s,� in 2nd international Conference on Wired/Wireless Internet
Communications WWIC, Frankfurt (Oder), Germany, Feb. 2004.

149



150 BIBLIOGRAPHY

[15] L. Galluccio, G. Morabito, and S. Pallazzo, �An analytical study of tradeo� between trans-
mission power and fec for tcp optimization in wireless networks,� in Proceedings of IEEE
INFOCOM, 2003.

[16] P. Soldati, Cross-Layer Optimization of Wireless Multi-hop Networks. Royal Institute of
Technology (KTH), 2007, (ISBN 978-7178-711-8).

[17] R. Cooper, Coordination Games. Cambridge University Press, 1998, (ISBN 0-521-57896-5).

[18] Y. Tao and Z. Wang, �E�ect of time delay and evolutionarily stable strategy,� J. Theor. Biol.,
no. 187, pp. 111�116, 1997.

[19] H. Singh and S. Singh, �Energy consumption of tcp reno, new reno and sack in multi-hop
wireless networks,� in ACM SIGMERTICS, Jun., 2002.

[20] M. Zorzi and R. Rao, �Energy e�ciency of tcp in a local wireless environment,� Mobile
Networks and Applications, vol. 6, no. 3, 2001.

[21] O. Ait-Hellal, E. Altman, D. Elouadghiri, M. Erramdani, and N. Mikou, �Performance of
tcp/ip: the case of two controlled sources,� in ICCC'97, Cannes, France, November 19-21,
1997.

[22] E. Altman, R. El-Azouzi, Y. Hayel, and H. Tembine, �An evolutionary game approach for
the design of congestion control protocols in wireless networks,� in Physicomnet workshop,
Berlin, April 4, 2008.

[23] �Notice of proposed rulemaking (fcc 09/93),� October 2009 � April 2010.

[24] �Consultation publique sur la neutralité du net, du 9 avril au 17 mai 2010.�

[25] N. Kroes, �vice president of the european commission commissioner for the digital agenda,�
Press release RAPID, April 2010.

[26] R. Hahn and S. Wallsten, �The economics of net neutrality,� Economists' Voice, vol. 3, no. 6,
pp. 1�7, 2006.

[27] K. Cheng, S. Bandyopadhyay, and H. Gon, �The debate on net neutrality: A policy perspec-
tive,� Information Systems Research, June 2008.

[28] R. Ma, D.-M. Chiu, J. Lui, V. Misra, and D. Rubenstein, �Interconnecting eyeballs to con-
tent: A shapley value perspective on isp peering and settlement,� in Proc. Int'l Workshop on
Economics of Networked Systems (NetEcon), 2008, pp. 61�66.

[29] ��, �On cooperative settlement between content, transit and eyeball internet service
providers,� in Proc. ACM Int'l Conference on Emerging Networking EXperiments and Tech-
nologies (CoNEXT), 2008.

[30] P. Hande, M. Chiang, R. Calderbank, and S. Rangan, �Network pricing and rate allocation
with content provider participation,� in Proc. IEEE INFOCOM, 2009.

[31] J. Musacchio, G. Schwartz, and J. Walrand, �A two-sided market analysis of provider in-
vestment incentives with an application to the net-neutrality issue,� Review of Network Eco-
nomics, vol. 8, no. 1, 2009.

[32] H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal Load Balancing in Distributed Computer
Systems. Springer-Verlag, London, Telecommunications Networks and Computer Systems
(TNCS) Series, 1997.

[33] J. G. Wardrop, �Some theoretical aspects of road tra�c research communication networks,�
Proc. Inst. Civ. Eng., Part 2, vol. 1, pp. 325�378, 1952.



BIBLIOGRAPHY 151

[34] A. Haurie and P. Marcotte, �On the relationship between nash-cournot and wardrop equilib-
ria,� Networks, vol. 15, pp. 295�308, 1985.

[35] J. Weibull, Evolutionary Game Theory. M.I.T. Press, 1995.

[36] D. D. Yao, �S-modular games, with queuing applications,� Queuing Systems: Theory and
Applications, vol. 21, pp. 449�475, 1995.

[37] D. Topkis, �Equilibrium points in nonzero-sum n-person submodular games,� SIAM J. Control
and Optimization, vol. 17, pp. 773�787, Nov. 1979.

[38] A. Orda, R. Rom, and N. Shimkin, �Competitive routing in multi-user communication net-
works,� IEEE/ACM Transactions on Networking, vol. 1, no. 5, pp. 510�520, 1993.

[39] P. Marbach, �Priority service and max-min fairness,� IEEE/ACM Transactions on Networking
(TON), vol. 11, pp. 733�746, October 2003.

[40] A. Bovopoulos and A. Lazar, �Optimal routing and �ow control of a network of parallel proce-
sors with individual bu�ers,� Proceedings of the 23rd Allerton Conference on Communication,
Control, and Computing, pp. 564�573, 1985.

[41] M. T. Hsiao and A. A. Lazar, �Optimal decentralized �ow control of Markovian queueing
networks with multiple controllers,� Performance Evaluation, vol. 13, pp. 181�204, 1991.

[42] F. P. Kelly, �Charging and rate control for elastic tra�c,� European Transactions on Telecom-
munications, special issue on Elastic Services over ATM networks, vol. 8, no. 1, 1997.

[43] F. Kelly, A. Maulloo, and D. Tan, �Rate control in communication networks: shadow prices,
proportional fairness and stability,� Journal of the Operational Research Society, vol. 49, pp.
237�252, 1998.

[44] S. H. Low and D. E. Lapsley, �Optimization �ow control�I: basic algorithm and convergence,�
IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861�874, 1999.

[45] K. Park, M. Sitharam, and S. Chen, �Quality of service provision in noncooperative networks
with diverse user requirements,� Decision Support Systems, Special Issue on Information and
Computation Economies, vol. 28, pp. 101�122, 2000.

[46] J. Rosen, �Existence and uniqueness of equilibrium points for concave n-person games,�
Econometrica, vol. 33, pp. 520�534, 1965.

[47] A. Legrand and C. Touati, �Non-cooperative scheduling of multiple bag-of-task appplications,�
in Proceedings of the 25th Conference on Computer Communications (INFOCOM'07), Alaska,
USA, May 2007.

[48] M. Barnsley, Fractals Everywhere. Morgan Kaufmann, 1988.

[49] M. Detyniecki, �Mathematical aggregation operators and their application to video querying,�
Ph.D. dissertation, University of Paris 6, France, 2000.

[50] J. Mo and J. Walrand, �Fair end-to-end window-based congestion control,� IEEE/ACM Trans-
actions on Networking, vol. 8, no. 5, pp. 556�567, 2000.

[51] R. K. Jain, dah Ming W. Chiu, and W. R. Hawe, �A quantitative measure
of fairness and discrimination for resource allocation in shared computer systems,�
DEC Research Report, Tech. Rep. DEC-TR-301, September 1984. [Online]. Available:
http://www.rajjain.com/papers/fairness.htm

[52] C. Stein and J. Wein, �On the existence of schedules that are near-optimal for both makespan
and total weighted completion time,� Operational research letters, vol. 21, no. 3, pp. 115�122,
1997.

http://www.rajjain.com/papers/fairness.htm


152 BIBLIOGRAPHY

[53] E. Koutsoupias and C. Papadimitriou, �Worst-case equilibria,� in STACS, 1998.

[54] C. H. Papadimitriou and M. Yannakakis, �On the approximability of trade-o�s and optimal
access of web sources,� in FOCS '00: Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science. Washington, DC, USA: IEEE Computer Society, 2000, p. 86.

[55] C. Touati, E. Altman, and J. Galtier, �Generalised Nash bargaining solution for banwidth
allocation,� Computer Networks, 2006 (to appear).

[56] H. Kameda, �Bounds on bene�ts and harms of adding connections to noncooperative net-
works,� in NETWORKING 2004, ser. LNCS, N. Mitrou, K. Kontovasilis, G. N. Rouskas,
I. Iliadis, and L. Merakos, Eds., vol. 3042. Springer Verlag, 2006, pp. 405�417.

[57] A. Glazer and R. Hassin, �?/m/1: On the equilibrium distribution of customer arrivals,�
European J. of OR, vol. 13, pp. 146�150, 1983.

[58] A. Elcan, �Optimal customer return rate for an m/m/1 queueing system with retrials,� Prob-
ability in the Engineering and Informational Sciences, vol. 8, pp. 521�539, 1994.

[59] R. Hassin and M. Haviv, �On optimal and equilibrium retrial rates in a busy system,� Prob.
in the Eng. and Informational Sciences, vol. 10, pp. 223�227, 1996.

[60] V. G. Kulkarni, �On queueing systems with retrials,� Journal of Applied Probability, vol. 20,
pp. 280�289, 1983.

[61] Y. Jin and G. Kesidis, �Equilibria of a noncooperative game for heterogeneous users of an
aloha network,� IEEE Comm. Letters, vol. 6, no. 7, pp. 282�284, 2002.

[62] A. B. MacKenzie and S. B. Wicker, �Sel�sh users in aloha: A game theoretic approach,� in
Proceedings of the Fall 2001 IEEE Vehicular Technology Conference, 2001.

[63] D. Braess, �Uber ein paradoxen der werkehrsplannung,� Unternehmenforschung, vol. 12, pp.
256�268, 1968.

[64] B. Calvert, W. Solomon, and I. Ziedins, �Braess's paradox in a queueing network with state-
dependent routing,� J. Appl. Prob., vol. 34, pp. 134�154, 1997.

[65] J. E. Cohen and C. Je�ries, �Congestion resulting from increased capacity in single-server
queueing networks,� IEEE/ACM Trans. on Networking, vol. 5, no. 2, pp. 1220�1225, April
1997.

[66] J. E. Cohen and F. P. Kelly, �A paradox of congestion in a queuing network,� J. Appl. Prob.,
vol. 27, pp. 730�734, 1990.

[67] Y. A. Korilis, A. A. Lazar, and A. Orda, �Avoiding the braess paradox in non-cooperative
networks,� Journal of Applied Probability, vol. 36, pp. 211�222, 1999.

[68] R. J. Aumann, �Subjectivity and correlation in randomized strategies,� Journal of Mathemat-
ical Economics, 1974.

[69] R. Hassin, �On the advantage of being the �rst server,� Management Science, vol. 42, pp.
618�623, 1996.

[70] E. Altman, T. Jiménez, R. Nunez-Queija, and U. Yechiali, �Queueing analysis for optimal
routing with partial information,� manuscript, 2001.

[71] I. Adiri and U. Yechiali, �Optimal priority purchasing and pricing decisions in nonmonopoly
and monopoly queues,� Operations Research, 1974.

[72] R. Hassin and M. Haviv, �Equilibrium threshold strategies: the case of queues with priorities,�
Operations Research, vol. 45, pp. 966�973, 1997.



BIBLIOGRAPHY 153

[73] B. Peleg and P. Sudhoelter, �Introduction to the theory of cooperative games, second edition,
123, theory and decision library,� G. E. W. L. (Vienna), M. P. G. Eberlein (Munich), Series
C: Game Theory, and O. Research, Eds., vol. 34, 2nd Edition. Springer-Verlag Berlin
Heidelberg, 2007.

[74] S. C. Littlechild and G. Owen, �A simple expression for the shapley value in a special case,�
Management Science, vol. 20, no. 3, pp. 370�372, Nov. 1973.

[75] S. C. Littlechild, �A simple expression for the nucleolus in a special case,� International
Journal of Game Theory, vol. 3, no. 1, pp. 21�29, March 1974.

[76] W. Thomson, �Cost allocation and airport problems,� Working paper, No. 538, Rochester-
Center for Economic Research, Dec. 2007.

[77] R. B. Myerson, �Large poisson games.� Journal of Economic Theory, vol. 94, pp. 1�45, 2000.

[78] P. Penna and C. Ventre, �Sharing the cost of multicast transmissions in wireless networks,�
in Proceedings of SIROCCO 2004, LNCSl, 3104, 2004, pp. 255�266.

[79] V. Bilo, M. Flammini, G. Melideo, L. Moscardelli, and A. Navarra, �Sharing the cost of
multicast transmissions in wireless networks,� Theoretical Computer Science, vol. 369, pp.
269�284, 2006.

[80] V. Bilo, M. Flammini, G. Melideo, and L. Moscardelli, �On nash equilibria for multicast
transmissions in ad-hoc wireless networks,� Wireless Networks, vol. 14, pp. 147�157, 2008.

[81] S. H. Tijs and T. S. H. Driessen, �Game theory and cost allocation problems,� Management
Science, vol. 32, no. 8, pp. 1015�1028, August 1986.

[82] L. S. Shapley, �Cores of convex games,� International Journal of Game Theory, vol. 1, pp.
11�26, Dec. 1971.

[83] B. Dutta and D. Ray, �A concept of egalitarianism under participation constraints,� Econo-
metrica, vol. 57, no. 3, pp. 615�635, May 1989.

[84] K. Jain and V. V. Vazirani, �Equitable cost allocations via primal-dual-type algorithms,� in
34th annual ACM symposium on Theory of computing, 2002, pp. 313�321.

[85] C.-H. Yeh, �An alternative characterization of the nucleolus in airport problems, mimeo,
institute of economics, academia sinica, taipei, taiwan.�

[86] H. Moulin, �Incremental cost sharing: Characterization by coalition strategy-proofness,� So-
cial Choice and Welfare, vol. 16, no. 2, pp. 279�320, 1999.

[87] B. Dutta, �The egalitarian solution and reduced game properties in convex games,� Interna-
tional Journal of Game Theory, vol. 19, no. 2, pp. 153�169, 1990.

[88] T. Sonmez, �Population monotonicity of the nucleolus on a class of public good problems,
mimeo, rochester-center for economic research,� 1994.


	Introduction
	Some history
	The Talmud Example
	The conflict between Abram and Lot

	Impact of game theory on publications in networking
	Is game theory an appropriate tool for designing networks
	Business models of jammers
	The Association problem
	Exercise for the end of the course

	Motivating Example: Transport Protocols
	Competition between protocols, the indifference property
	Predicting the protocoles that will dominatne Future Internet
	The TCP Game: General Examples
	The TCP Game: New Reno Vs Scalable TCP
	Predicting the Evolution of protocols
	Background on the evolution of transport protocols

	Equilibria
	Mixed strategies
	Nash Equilibrium
	Nash Equilibrium in Pure Strategies
	Nash Equilibrium in Mixed Strategies

	2 player zero-sum games: Upper and Lower Value
	Definitions
	Saddle-point theorems
	Linear Programming Solution

	Corelated Equilibrium
	Definition and properties
	Applications: ALOHA

	Concave games and Nash equilibrium

	Basic Examples
	Multiple-access game over a collision channel, Transmit or Wait
	At what Power to Transmit? The Capture Phenomenon
	Coordination games over a collision channel
	The congestion Game
	The Hawk and Dove (HD) Game
	TCP over wireless

	Stackelberg Equilibrium and application to network neutrality
	Definition and properties
	Introduction to the network neutrality issue
	Basic model: three collective actors and usage-based pricing
	Collaboration
	Fair competition
	Discussion of side payments
	Revenue generated by advertising
	The case where p2=0
	Best response
	Nash equilibrium
	Stackelberg equilibrium in network neutrality
	Conclusions and on-going work
	Exercise

	Further Notions of Equilia
	The traffic assignment problem and Wardrop Equilibrium
	Evolutionary Stable Strategies

	S-modular games
	Model, definitions and assumptions
	Existence of Equilibria and Round Robin algorithms
	Example of supermodularity: queues in tandem
	Example of submodularity: flow control
	A flow versus service control
	Modeling Network Equilibrium with Price and Quality-of-Service Characteristic
	Model and general properties
	Model setting
	General demand model
	General QoS model
	Utility model
	Properties of the general model

	Case study I: expected delay as QoS
	Case study II: Loss or rejection probability as QoS
	Packet loss probability: a basic M/M/1/K queuing model
	Packet loss probability: incorporating large-deviation scaling
	Session rejection probability: the Erlang loss formula

	Appendix
	Conclusions

	Potential games and Equivalent Games
	Equivalent Games: How to Transform a Game
	Example: transforming a game into a global optimization problem
	Example: transforming a non zero-sum game into a zero-sum game

	Exercises

	Measuring the Quality of an Equilibria
	Pareto Efficiency
	Definition
	Properties
	Conclusion

	Fairness
	Price of Anarchy
	Multi-Objective Related Measures
	Considered Problem
	Different Approaches
	Links and Use with Game Theory

	Selfish Degradation Factor
	Price of Anarchy and Index-Optimizing Based Metrics
	Selfishness Degradation Factor

	Examples: Schedulling
	When to arrive at the bank?
	When to retry to make a phone call?
	Access to a radio channel: when to retransmit


	Computing Equilibria
	Zero-Sum matrix games
	Computing Wardrop Equilibria
	Wardrop equilibrium and Potential games
	Commodity–link-variable models
	General models and variational inequalities
	Additive versus non-additive models


	Routing Games: Applications
	The Braess paradox
	Architecting equilibria and network upgrade
	Analyzing the original Braess paradox

	Improving the Quality of Equilibria
	Setting up Appropriate Prices
	Shadow Prices
	Pigou Prices
	Repercussion Prices

	Coordinating Players: the Role of the Correlator

	General equilibrium: Dealing with Constraints
	Routing games and constraints
	Routing: Common capacity constraints 

	 Rosen coupled constraints: non-uniqueness fo value
	 Example: matrix game
	Networking game Example: parallel links

	 Properties of zero-sum games with Rosen's constraints
	Remarks 

	Zero-sum games with general constraints
	Formulation of the problem
	Constrained Matrix games
	Power control: general constraints 

	Lagrangian Multipliers and Duality Theory

	Stochastic games: applications - Where to queue?
	The gas station game
	Queues with priority

	Fairness concepts
	Introduction
	Definitions and notations
	Notations
	Efficiency
	Allocations constraints.

	Fair allocations
	Maximization of global throughput
	Max-Min fairness
	Proportional fairness
	Potential delay minimization
	Relation between the different fairness criteria

	Nash criterium
	Utility functions in networking
	Proposed approximation scheme: quadratic utility functions

	Proposed fairness scheme
	Property: influence of the concavity
	Possible optimizations

	Explicit computation of rates
	The linear network
	Grid network

	Lagrangian method
	Lagrangian multipliers
	Dual problem

	A Semi-Definite Programming (SDP) solution
	From linear programming to SDP
	General solving method with SDP
	Different values of 
	A simple example of NBS computation with fixed routing

	Numerical experiments
	NBS for a small network with fixed routing
	The COST network

	Conclusion
	Proof of Proposition 3

	Coalition games and the multicast problem
	Introduction
	The Multicast Problem
	The structure of the chapter
	Related Work

	Coalition Game Preliminaries
	System Model
	Network and Communication Model
	Cost Sharing Models

	Non-cooperative Coalition Formation game: perfect information
	Static problem with incomplete information
	Static problem with no information
	Information on the number of users
	Some more information on ones own requirement
	Properties of NEs

	On the expected capacity and coverage
	Computing Capacity and Coverage
	The linear case: =1
	>1


	Dynamics of competition: replicator dynamics
	Definition and properties
	Replicator dynamics with delay


