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ROUTING    GAMES



How to split the demand of i=1,…,I classes 
into K parallel links

• 𝑥𝑘
𝑖 flow of class i on link k

• Demand constraint:  σ𝑘=1
𝐾 𝑥𝑘

𝑖 = φ𝑖 , 𝑥𝑘
𝑖 ≥ 0

•

• Total flow 𝑥𝑘 = σ𝑖=1
𝑁 𝑥𝑘

𝑖 over link k

• Cost 𝑓𝑘(𝑥𝑘) of link k



Class optimisation and global optimisation

• Cost of class i is the sum of link costs averaged over the demand of 
that class  J(i,x)=σ𝑘=1

𝐾 𝑥𝑘
𝑖 𝑓𝑘(𝑥𝑘)

• Minimizing average delay: J(x)=σ𝑘=1
𝐾 𝑥𝑘 𝑓𝑘(𝑥𝑘)=:σ𝑘=1

𝐾 𝐽𝑘(𝑥𝑘)



Demand constraints KKT Theorem:

• Single class, J convex.

• Define the Lagrangian L(x, ϓ) = J(x) + ϓ(σ𝑘=1
𝐾 𝑥𝑘 −φ)

• Then

x* minimizes J(x)   s.t.   σ𝑘=1
𝐾 𝑥𝑘 = φ, 𝑥𝑘≥ 0 If and only if 

there exists some ϓ s.t.   x* minimizes L(x, ϓ) and

ϓ(σ𝑘=1
𝐾 𝑥𝑘 − φ)=0

• Proof:      mi𝑛𝑥≥0 ma𝑥ϓL(x, ϓ) = mi𝑛𝑥≥0 J(x)   s.t.   σ𝑘=1
𝐾 𝑥𝑘 = φ

Now use the maxmin theorem to change order of min and max



KKT conditions on the derivative

• Assume J differentiable. Then

x* minimizes J(x)   s.t.   σ𝑘=1
𝐾 𝑥𝑘 = φ, 𝑥𝑘≥ 0

If and only if 

there exists some ϓ s.t.  at x=x*, 

𝜕L(x, ϓ)
𝜕𝑥𝑘

=
𝜕J(x)
𝜕𝑥𝑘

+ ϓ = 0,        k=1,…,K

ϓ(σ𝑘=1
𝐾 𝑥𝑘 − φ)=0



Non-atomic game: WARDROP equilibrium

WARDROP EQ. is defined as a class configuration x* satisfying the 
demand (and conservation) constraints as well as the following
conditions:

• All Routes that carry strictly positive flow have the same cost ϓ

• The cost of a route that carries zero flow is at least ϓ

A user here is infinitesimally small. A user cannot gain by unilateral
deviation. WE is a NE for a game with a continuum set of players.



Beckmann potential

• By the definition, X* is a Wardrop Eq if 

there exists ϓ s.t. 𝐽𝑘 𝑥𝑘 + ϓ ≥ 0 , 𝑥𝑘(𝐽𝑘 𝑥𝑘 + ϓ)=0 

If 𝐽𝑘 𝑥𝑘 were the derivative of some cost then we recognize here the 
computation of the coresponding global optimal average cost.



Framework
Various frameworks

• F1 Infinite populations of players, each of which has a negligible impact on 
the utility of other players [Wardrop 52] (Non-atomic game)

• F2 Each of finitely many players controls the fraction of its flow over each 
path. Framework of [ORS 93] (Splittable atomic game)

• F3 Finitely many players each sending one unit of flow. [Rosenthal 1972] 
(Atomic, non-splittable) 

• F4 Finitely many players each sending one or more units of flow 

• Cost of a path is the sum of costs of links upon the path

• Related frameworks: mixed equilibria, crowding games, delegation, 
aggregative games…



Wardrop Equilibrium general topology 

• Consider a directed graph (V,L) where V are nodes and L are directed links. 

• There are K classes of flows. A class is characterized by a source, destination, 
and demand 

• Link costs 𝑓𝑙 (𝑥𝑙) depend on the sum of the link flows 𝑥𝑙= σ𝑖 x𝑙
𝑖

• For each node v and each player, there are flow conservation constraints 
involving the inflow and outflow to the node. Thus there is a Lagrange 
multiplier per node and player

• Each node can be on an input link to a node v and  on an output link of a 
node u. Thus each link (u,v) appears in two node constraints per player



Conservation constraints: Link Routing

= s(i)
= d(i)



Paths and Links

• Path cost: sum of link costs along the path

• Thus for each node u and player i there is a constant λ𝑢
𝑖 𝑠. 𝑡. for any 

link  (uv),

𝑓𝑢𝑣 x𝑢𝑣 ≥ λ𝑢
𝑖 -λ𝑣

𝑖 with equality if x𝑢𝑣
𝑖 > 0.  (*) 

Then x is called an equilibrium

• Choose i and let 𝑝 = (𝑢1,…, 𝑢𝑛) be any path between s(i) and d(i). 
There is 𝑎𝑖 such that the  path cost is at least 𝑎𝑖 with strict equality if 
all links in p carry positive flows.

• 𝑎𝑖 = λ𝑢 - λ𝑣 where u=d(i) and v=s(i)



Beckmann’s potential
• The characterization  of the equilibrium  

𝑓𝑢𝑣 x𝑢𝑣 ≥ λ𝑢
𝑖 - λ𝑣

𝑖 with equality if x𝑢𝑣
𝑖 > 0

can be interpreted as the derivative form of KKT

conditions related to the global optimization of 

J 𝑥 = σ𝑙 0׬
𝑥𝑙 𝑓𝑙 𝑠 𝑑𝑠

Subject to conservation constraints + nonnegativity of flows.

Ex: minimize average link cost:  J(x)= σ𝑙 𝑥𝑙 𝑓𝑙(𝑥𝑙)

Equivalent to Wardrop with link costs of 

𝑥𝑙 𝑓𝑙′(𝑥𝑙) + 𝑓𝑙(𝑥𝑙)



Cournot Nash equilibrium

Class = player





Potential in Cournot Nash equilibrium

• Player i minimizes    σ𝑙[ 𝑥𝑙
𝑖 𝑡𝑙 ( 𝑥𝑙)]

• The B.R. faced by player i is equivalent to the existence of 
Lagrange multipliers such that for every (uv),

𝑡𝑢𝑣 ( 𝑥𝑢𝑣) +[ 𝑥𝑢𝑣
𝑖 𝑡𝑢𝑣′ ( 𝑥𝑢𝑣)] ≥    λ(i,u) - λ(i,v) 

with strict equality if 𝑥𝑢𝑣
𝑖 > 0

Summing over I gives 

𝐼 𝑡𝑢𝑣 ( 𝑥𝑢𝑣) +𝑥𝑢𝑣𝑡𝑢𝑣′ ( 𝑥𝑢𝑣) ≥    λ(u) - λ(v)



Equivalently

(𝐼 − 1) 𝑡𝑢𝑣 ( 𝑥𝑢𝑣) + 𝑡𝑢𝑣 ( 𝑥𝑢𝑣) + 𝑥𝑢𝑣 𝑡𝑢𝑣′ ( 𝑥𝑢𝑣) ≥    λ(u) - λ(v)

Or 

𝑡𝑢𝑣 ( 𝑥𝑢𝑣) + (𝐼 − 1)−1[𝑥𝑢𝑣 + 𝑡𝑢𝑣 ( 𝑥𝑢𝑣)]’ ≥    λ(u) - λ(v)

This looks like the KKT conditions associated with the global 
minimization of

σ𝑙 0׬
𝑥𝑙 𝑡𝑙 𝑠 𝑑𝑠 +  (𝐼 − 1)−1[𝑥𝑢𝑣 + 𝑡𝑢𝑣 ( 𝑥𝑢𝑣)]’



• Problem: this was obtained by summing

• 𝑡𝑢𝑣 ( 𝑥𝑢𝑣) +𝑥𝑢𝑣
𝑖 𝑡𝑢𝑣′ ( 𝑥𝑢𝑣) ≥    λ(i,u) - λ(i,v)

• But sum of complementarity conditions does not give the 
complementarity for the sum

• For example, if player 1 sends flow to a link and player 2 
does not, the inequality can be strict (due to player 2) and 
yet the sum of flows is positive.

All positive flow [ORS]: if one player sends flow on a link k 
then all players send flow on k. Under APF we have a 
potential (in the sense of Beckman).



Convergence to Wardrop

1.  Strict Diagonal Concavity (SDC) framework

• Rosen (1965): Consider an n-player game.

Let Gij be the 2nd order derivative of the utility of player i with 
respect to the actions of players I and j. If G+G^T is strictly positive 
definite then the equilibrium is unique

Haurie, Marcott [1986] applied to the case of finitely many players to 
show convergence of Cournot Nash to Wardrop

For what type of network topology do we have SDC ?

• Orda Rom and Shimkin (1993) write a pioneering paper on routing 
games. They apply Rosen to a network of 2 players and 2 parallel links 
with convex costs. It satisfies SDC only when demand is very light 
demand. Yet equilibrium is always unique.

• Conclusion: SDC is restrictive.



The Idea of alternative proof of uniqueness

• 1. Replace each player i by m identical subplayers i(1) …. i(m) with 
total demand fix

• There exists a NE where i(k) have same policy.

• 2. Write the KKT condition for each subplayer i(k)

• Take the the sum of conditions for subplayers of i

• Thus the complementarity condition holds and we can replace 
i(k)’s by a single player with a “partial” or “local” potential.

• The equilibrium of the game with mI players equals to that of the 
game of I players where each player maximizes the local potential 

• The local potential converges to Beckman’s potential uniformly 
over the policies of all other players



Framework F3: Congestion games

• A directed graph (G,L,V)  with a set of  links L and verteces V. 

• Each of a finite set of players has to ship a single packets from its
source to the destination. 

• The cost of a path is the sum of the costs of the links over the path.

• A link cost is an incrneasing function of the number of users that use 
the link.

• Rosenthal showed that this is a potential game
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DESCRIPTION OF TASKS
Each group of students will be asked to study networks with one of the 
topologies that I propose 

In each project there is a specific optimisation criterion related to the loss
probabilities of packets. The students are asked to 

1  Model the problem as a game

2   Compute the Nash and Wardrop equilibrium as well as global optimum

3   Compute bounds on the price of anarchy and price of stability

4   To provide numerical study of convergence of best response algorithm

5 Establish existence of a unique equilibrium or present counter example

6 Is the policy where only direct path are used, an equilibrium?



How to derive the costs

Consider packets that arrive at a source according to a  Poisson process with
rate φ. Each packet requires an  exponentially distributed service time with
parameter µ. Service times are i.i.d. Two type of losses:

• Independent losses: I.I.D. Random losses with probability q
• A Poisson process with rate φ subject to iid losses with probability q results

in a Poisson process with rate q φ

• Collisions: A loss occurs if there is an arrival during the service of another
packet. In that case a packet is lost. The probability of this event is φ /(φ 
+µ)

The superposition of K Poisson processes with rates    r(1),…,r(K)  is a Poisson 
process with rate r=r(1)+…+r(K)



Routing on parallel links over collision channels

• N players. Player i splits its demand φ𝑖 to K links. 
• Service time at link k is exponentially distributed with

rate µ𝑘. 

• Arrival to link k from player i is Poisson with rate λ𝑘
𝑖 . 

• Total arrival process to link k is Poisson with rate 

λ𝑘 = σ𝑖=1
𝐾 λ𝑘

𝑖

• Loss occurs if a packet arrives during the service time 
of another one, and then the arrival is lost.

• Loss probability of packets at link k is
P(k)=λ𝑘/(λ𝑘+ µ𝑘)

• Loss probability of packets at link k corresponding to 
player i is

Loss rate for player i is R(i)= σ𝑖=1
𝐾 λ𝑘

𝑖 𝑃(𝑖, 𝑘)



Routing on a triangle with relay and overflow cost

• 2N players: N ship their demand from node 1 to 3 and N ship from 2 to 3. A 
player can split its traffic between a direct path 13 and 23 or an indirect 
one 123 and 213. 

• There is a fixed cost of using link d.

• The other two links m=1,2 are modeled as MM1K queus

• The probability that an arrival is lost at link m is

𝑃𝑚 =
(ρ𝑚)𝐾

𝐺 𝑚,𝐾
𝑤ℎ𝑒𝑟𝑒 𝐺(𝑚,𝐾) = σ𝑘=0

𝐾 (ρ𝑚)
𝑘 and

ρ𝑚 = 
λ𝑚

µ𝑚
. Loss rate of player i on link m is λ𝑚

𝑖 𝑃𝑚

Cost for player i is σ𝑚=1
2 λ𝑚

𝑖 (𝑃𝑚+d1 (i,m)) where 1(i,m)  is the indicator that
equals 1 if m is on the indirect path for player i 



Triangular topology - losses at the relay
• Ref1: Eitan Altman, Joy Kuri, Rachid El-Azouzi. A routing game in networks 

with lossy links. 7th International Conference on NETwork Games COntrol
and OPtimization (NETGCOOP 2014), Oct 2014, Trento, Italy. hal-
01066453

• Ref2: Eitan Altman, Corinne Touati. Load Balancing Congestion Games 
and their Asymptotic Behavior. [Research Report] Inria. 2015. hal-
01249199

• PROJ 1:

Study the game with triangle topology where the cost of a player is a 
weighted sum of her loss probability and relay cost,

Then study the problem with the relay cost d replaced by a collision 
channel where losses of packets are iid with probability q. This models a 
noisy wireless channel.



Routing on the line

PROJ 2. Traffic on a line goes from left to right. At each node i there are n players
connected. Each has the choice of splitting its demand between
(1) going directly to the destination (vertical  arrow) 
(2) relaying the traffic to node i+1 at some cost d and then go to the destination.
Each of the vertical links is an MMKK queue and has buffer overflow according to the 
MMKK loss formula. Player i minimises the loss probability plus relay cost averaged
over the amount it sends to each path. Objective: obtain a difference equation for 
the node i as a function of decisions of nodes i-1 and i+1. Check if not using the relay
is an equilibrium; Find other equilibria. Study splitable routing game on the line 
topology with loss probability criteria and where relay costs is replaced by iid losses



References on Line topologies
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Manjesh Kumar Hanawal, Eitan Altman, Rachid El-Azouzi and Balakrishna
Prabu, " Spatio-temporal control for Dynamic Routing Games, GameNets 2011
(Sanghai, China, April 2011)

Abdelillah Karouit, Majed Haddad, Eitan Altman, Abdellatif Matar. Routing
game on the line: The case of multi-players. UNet’2017 - Third International 
Symposium on Ubiquitous Networking, May 2017, Casablanca, Morocco. hal-
01536349

http://www-sop.inria.fr/members/Manjesh_Kumar.Hanawal/
http://www-sop.inria.fr/members/Eitan.Altman/
http://www-sop.inria.fr/members/Manjesh_Kumar.Hanawal/GameNets2011.pdf
http://www.gamenets.org/2011/


Routing on the circle

PROJ 3. I groups of n players each decide what fraction of their flow to 
send clockwize and what shoul go anti-clockwize. Each node i is a source 
for the traffic originating from n players. The destination is the node i+1 
(modulo the number of nodes I). Objective: obtain a difference equation
for the node i as a function of decisions of nodes i-1 and i+1.  Is not using
the relay is an equilibrium? Are there other equilibria? 

PROJ 4. The same description of players and nodes also holds in the 
second model, but now the destination is a common central node c. A 
player i has to decide what fraction of its traffic it sends directly to C and 
what fraction uses an indirect path: first it relays the traffic to node i+1 and 
then it it goes to C;

In boh projects, study splitable routing on the ring topologies with loss
probability criteria. Relays will induce fixed cost d, and the direct links will 
create collision losses. Then study instead the overflow losses of MM1K 
queue.



Routing on a ring/circle
Ref1: Ramya Burra, Chandramani Singh, Joy Kuri, Eitan Altman. Routing on a 
Ring Network. Song, Ju Bin; Li, Husheng; Coupechoux, Marceau. Game Theory 
for Networking Applications, Springer International Publishing, pp.25-36, 2019, 
978-3-319-93057-2. 10.1007/978-3-319-93058-9_3. hal02417278

Ref2: Eitan Altman, Alejadra Estanislao, Manoj Panda. Routing Games on a 
Circle. NetGCOOP 2011 : International conference on NETwork Games, COntrol
and OPtimization, Telecom SudParis et Université Paris Descartes, Oct 2011, 
Paris, France. hal-00644364

PROJ 3 corresponds to the topology of Ref1, 

PROJ 4 choose one of the topologies ifrom Ref2



Experimental project: Path Recommendation

• Platforms such as googlemap or waze recommend routes from source 
to destination.

• Plan and perform experiments to check coherence between

• Time prediction to the destination

• The proposed path

• Identify on a map where network paradoxes are likely to occur

• Compute mixed equilibrium with some atomic splitable sources that
model the platforms, and some classzs tht are atomless



4 Other models of losses

We saw a loss related to access and to buffer overflow. Here are other loss models

• 1 Service has been assumed to continue even if the served packet was corrupted. Assume next that it is aborted if 
there is an arrival

• 2 Upon collision , both arrival and served packekts are lost. But the service stops

Computing the loss rate due to multiple access at a link k: In both models above, we define renewal cycle C = I+B 
where I is the idle period and  B is the busy period. The idle period is exponentially dist with parameter λ𝑘 for both
models.

In model 1, the  busy period is exponentially distributed with parameter µ𝑘. Indeed, B is unchanged if we replace the 
loss of served packet by a loss of an arrival packet.

Thus the loss probability is B/(I+B)  by Pasta.  where E[I]= 1/λ𝑘 , E[B] = 1/ µ𝑘. Thus by PASTA, the loss probability
equals

1/µ𝑘

1/λ𝑘+1/µ𝑘
= 

ρ𝑘

1+ρ𝑘
(*)

More generally, the loss probabiity of a packet in an MM1K queue is

(𝜌𝑘)
𝐾(1 − 𝜌𝑘)

1 − (ρ𝑘)
𝐾+1

which reduces to (*) for K=1



All packets lost

Next assume that upon collision , both arrival and served packets are 
lost and service is aborted. Then

E[I]= 
1
λ𝑘

,   E[B]=
1

λ𝑘+ µ𝑘
and the probability of finding a packet in 

service is

p= E[B]/(E[B]+E[I])=
1/(λ𝑘+µ𝑘)

1/λ𝑘 + 1/(λ𝑘+µ𝑘)
=

λ𝑘

2 λ𝑘 +µ𝑘

The probability of a loss is

p+(1-p)
λ𝑘

λ𝑘+ µ𝑘



Other loss models

• Redundancy :  Send packets at higher rate. The  additional packets are for 
coding. Assume that any N well received packets out of N+k packets allow
one to retrieve all N+k packets. For example use XoR for k=1. Then we can
still retrieve a packet even if it is lost provided that all other are well
received.

• Use outage probability formulae to determine loss probabilities.
In practice when there is a collision then there is some probability of losing

both packets involve, some probability of losing just the one or the other, 
and there is some small probability that both packets will be transfered
successfully. There are many formulae for these outage probabilities since
they strongly depend on the type of modulation used for transmitting the 
packets



Network Engineering Games

Eitan Altman, 

Collaborators Rachid El-Azouzi, Daniel Sadoc Menasche, Corinne Touati, Hisao
Kameda, Alexandre Reiffers, Bruno Gaujal, Arie Hordijk, Majed Haddad, Amina 

Boukoftane



Framework  F1  (W.E.)

• Only direct paths are used in the symmetric case.

• In the asymmetric case, if an indirect path is used in one direction then 
it is not used in the other directions.

• This follows the LOOP FREE PROPERTY

• Unique equilibrium



Example 1: Symmetric Load balancing game F2

• N players send a flow of tasks to A and N 
send to B. 

• Each player has a fixed demand

• The decision of a player is what fraction of 
its flow to process locally and what fraction 
to send over to be processed at the other 
access point.

• After receiving service, the tasks leave the 
system (node C)

f                          f

g 



Load balancing routing game: Delay cost F2

• Processing incurs a load dependent delay: in 
each computer, the delay experienced by a 
task is a function f of the total amount of 
tasks processed in that computer.

• f is increasing convex (not strictly)

• Similarly with the forward delay g() on AB

• Each player minimizes the average delay of 
its packets.

f                          f

g 



Price of collusion

• Defined [E Tardosh] as the ratio between the cost for noncolliding
players before and after collusion

• Kameda’s paradox shows that collosion can be harmful for the 
colliding players as well

• Need another definition



Framework F2
• If AB incurs no delay then we have a routing game to parallel links.

• The equilibrium is unique. Price of anarchy is bounded.

• No Braess paradox

• With nonzero delay on AB, Prof Kameda and coauthors showed

- Uniqueness of equilibrium

- Unbounded price of anarchy

- There is a surprising Braess type paradox

- For given total demand, as N increases the paradox disappears

- This contrasts the standard Braess paradox that holds in that regime



Potential game

• A game has a potential P if for every player i, and any action vectors a and 
b that differ only in the action of player i,

P(a)-P(b)=U(i,a)-U(i,b)

A game with an ordinal potential
the equality is replaced by an inequality

P(a)-P(b) > 0  iff U(i,a)-U(i,b)  > 0

If the potential has a local maximum then it is an equilibrium. 

Limits of best (or of better) responses are equilibria of the game
[Shapely and Monderer]



Potential



# of pure equil F3 Load Balancing, linear costs

• These are  necessary and sufficient conditions. 

• Some Algebra shows that symmetric equilibria exist. 

• For any symmetric policy and in particular at equilibrium, the direct paths carry N packets
each. 

• Thus at equilibrium a packet taking direct path cannot benefit from deviation. 

• The EQ condition – no profit by deviating from an indirect path

• Let Y(N) be a symm. policy that sends 2N packets over indirect paths

• The cost for any of these packet is a(2N) + b(N)  

• This is an EQ if this cost does not exceed the one for a deviation to a direct path given by 
b(N+1)    THUS THE EQ CONDITION IS  1 <= b/(2a) .  

Corollary

The number of pure equilibria equals the to integer part of b/(2a)

Prf: If the EQ condition holds for some N0 then it also hold for all integer in [1,N0)



Discrete setting: why many equilibria?

• In F1 and F2 no such problems. 

• To understand why several equilibria appear in F3 recall that F3 is
equivalent to a congestion game and therefore equilibria are local minima 
of a potential.

• Local minima are avoided if we minimize a convex function f on a convex
compact set S. But what is a convex function on a discrete set?  What is a 
convex subset of a discrete set?

• Suggestion: find a convex function F on an Eucledean set, whose projection 
on S is f. Does there exist such a function?

• Research in this direction could bring together the community of discrete
optimization and that of convex optimization.



F3 with Linear COSTs

• The cost for a user in F2-F4 is the average of path costs weighted by the fraction 
that the player sends over each of the paths. For framework F3 a single packet is 
sent by each player so the cost for the player is the cost for the path that it takes.



Computing Wireless losses

• Assume all players send a fraction x of packets to be processed locally
and 1-x to the indirect path

• Losses due to noisy link: We assume that packets are lost at the noisy
link independently with probability 1-v

• Then at each access point there is a rate of arrival of NL(x+v(1-x))

• Losses due to collisions  several possibilities of losses when arrival
occurs during service
• Packets in service are lost

• New arrivals are lost

• Both are lost

• Outage probability according to formulae for modulation dependent losses



Loss probabilities

• Assume losses if there are arrivals during service time. 

• Assume one player deviates from x to y

• Then the rate of arrivals to his local AP is

R1(x,y)=L(Nv(1-x) + (N-1)x + y)

• The rate of arrival to the other AP is

R2(x,y)=L(Nv + v(N-1)(1-x) + v(1-y))

• The loss probability is

P(x,y) = y s*(R1) + (1-y)(v s*(R2) + 1-v)
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System Model
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Sl	 Sr	

Fig. 1. The competitive routing model.

• Three nodes: two source nodes
Sr and Sl and one common
destination node D. 

• There are 2N sources of flows. 
Each flow consists of an 
independent Poisson distributed
point process with a rate φ. 

• Packets from source i = 1, . . . , N 
arrive at node Sl (left), whereas
packets from source i = N + 1, . . . 
, 2N arrive at node Sr (right). 



The load balancing topology

• Source i = 1, . . . , N can split its flow between its
direct path SlD with probability pi and the indirect one 
SlSrD.

• Source i = N +1,...,2N can split its flow between its
direct path SrD with probability pi and the indirect one 
SrSlD. 

• Links SrSl and SlSr are assumed to be wireless so that
packets sent over SrSl and SlSr suffer independent
losses with some fix probability q. 

• The delay over these links is assumed to be a constant 
denoted by δ. 



The cost function

• The cost for source i is a weighted sum of the average delay of its flow 
and its loss rate: 



Global optimum calculation

The global optimal solution is obtained by solving:

We obtain the unique solution:



Nash equilibrium calculation

where



Price of anarchy



Numerical results (1)

Fig. 2. The optimal solution and the equilibrium as a function of z. 



Numerical results (2)

Fig. 3. The cost function at the optimal solution and the equilibrium as a 

function of z.



Paradoxes 

• The condition for this type of paradox is then that the cost function J 
at equilibrium is decreasing in the network parameter (e.g., in the 
delay δ). 

• The derivative of J at equilibrium should be decreasing where the 
latter is given by 



Kameda-paradox

We obtain the paradox in 
which larger link delay are 
beneficial for all users. 
Investing in faster links 
increases the delay and 
deteriorates the 
performance for all 
players. 



New paradox multiobjective optimisation

• We identify a new type of paradox: the 
cost is seen not to be monotone in the 
quality of the link (the loss probability q).

• This phenomenon is due to the particular
multi-objective structure of our problem. 

• higher q increases the cost related to 
losses, but contributes to decreasing the 
global cost as more losses results in lower
congestion and thus in lower delays. 



Example 2 - Tullock rent-seeking game
• Player m makes a bid x(m) for purchassing some good.

• U(m) =
𝑥 𝑚

σ𝑛=1
𝑀 𝑥(𝑛)

K – x(m)

• Note that U depends on decisions of other players only through the sum of their
bids. Agggregative game. 

• X(m) controlled by player m. Continuity problems at x=0

• Monderer and Shapely: there exist an ordinal potential



Resource allocation game

• I resources. 

• Player m with budget constraint B(m) splits its budget and bids x(m,i) 
on resource i.

• U(m) = σ𝑖=1
𝐼 𝑉𝑖 (

𝑥 𝑚,𝑖

σ𝑛=1
𝑀 𝑥 𝑛,𝑖

) – x(m,i)

• Aggregative game. If resource is time then we get a repeated game

• Can be viewed as a routing game with a parallel link topology



Discrete versions of Tullock game and 
resource allocation games

• Unique equilibrium

• Inherits the ordinal potential property

• If a player cannot split the traffic then there is a potential



Is the equilibrium unique?

• A multi strategy is called local optimum if it cannot be improved by a 
single player

• A strategy is a local optimum of the potential if and only if it is a Nash 
equilibrium of the  original game

• Even if a potential is concave in each direction, the potential may
have local optima. 

• Need a method to establish uniqueness



Application: Blockchain game between miners

The blockchain is a distributed secure database containing validated blocks of transactions. 

• A block is validated by special nodes called miners and the validation of each new block is 
done via the solution of a computationally difficult problem, which is called the proof-of-
work puzzle. 

• The miners compete against each other and the first to solve the problem announces it, 
the block is then verified by the majority of miners in this network, trying to reach 
consensus. 



Blockchain game between miners
• After the propagated block reaches consensus, it is added to the distributed database. 

• The miner who found the solution receives a reward either in the form of cryptocurrencies  
or in the form of a transaction reward.

• Because of the huge energy requirement necessary to be the first to solve the puzzle, 
blockchain mining is typically executed in specialized hardware. 

• An Edge computing Service  Provider (ESP) is introduced to support proof-of-work puzzle 
offloading by using its edge computing nodes



Example of advertisement for mining in cloud



Our work addresses the following two 
questions: 
• given a single blockchain, how should rational users contribute to the 

mining process, possibly counting on third-party ESPs or mining pools 
to offload infrastructure costs? 

• given multiple blockchains, e.g., in a multi-cryptocurrency ecosystem, 
how should rational miners distribute their monetary and/or 
computational budget towards mining? 



Splittable approach for resource allocation game

• We assume next competition over splittable resources at a single ESP and 
single currency

• miner i decides how much to invest
• Its utility from investing x(i)  is the payoff minus cost:

U(i)=x(i)/x   - gx(i)
Where x is the total investment. This is the Tullock rent seeking game. It has 
a unique Nash equilibrium
Related to KELLEY MECHANISM in networking in which the goal of the 
network is to find a pricing g that will guarntee that the equilibrium will be
globally optimal w.r.t. the payoff, and will meet some capacity constraint on 
the sum of x(i). The g is interpreted as lagrange multipliers. But do not 
depend on i



Splittable approach for Crypto Currency game

• We next assume that a miner i has a fixed budget B(i) that it can split 
between various crypto currencies.   Its utility from investing x(i,k) in 
ccurrency k is

U(i,k)=x(i,k)/x(k)   - g(k)x(i,k)      with U(i)=σ𝑘=1
𝐾 𝑈(𝑖, 𝑘)

Where x(k) is the total investment in currency k

This is a variation of Tullock rent seeking game. It has a unique Nash 
equilibrium. 

Related to Kelly mechanism where there are K resources to split



Constraints

• We ask similar question as Kelley but our goal is to find prices which induce
an equilibrium

• Each player may have own budget constraints.
• These are orthogonal constraints
• There may be further non orthogonal constraints on each ccurrency k of 

the form

• σ𝑖=1
𝑁 𝑥(𝑖, 𝑘) ≤ V(k)

• V may represent energy constraint on a currency
• Infinite number of equilibria
• How to select one



Constraints and normalized equilibrium

• σ𝑖=1
𝑁 𝑥(𝑖, 𝑘) ≤ V(k)

• By KKT for each player i and policies x(-i) there exists r(i,k,x(-i)) such
that the best response for player i is the solution of 

max U(i) + σ𝑘 r(i,k) ( V(k) −σ𝑖=1
𝑁 𝑥(𝑖, 𝑘) )

With complementarity constraints. If we set r as pricing then it
guarantees that the argmax is feasible. The fix point is an equilibrium.

But this pricing is not scalable.

Does there exist an equilibrium x for which the vector r that DOES NOT 
DEPEND  on i nor on x? If yes this is called normalized equilibrium



Main results

• THM1. The blockchain game has a unique normalized equilibrium

• Prf:  Strict Diagonal Concavity holds

THM2. There is a primal dual learning scheme that guarantees that the 
constraints are met during the whole learning process



Stochastic ESP Association Game

• We now investigate a situation in which the number of miners varies in 
time.

• Consider a Poisson disributed arrival process of miners. 
• Upon arrival, say at time t, a miner observes the number N(t) of competing

miners present. 
• The time to compute a puzzle by a miner is exponentially distributed with

mean 1/µ if it is the only one attached to the ESP. When there are n miners
attached then the service rate is n times slower.  We model the service rate 
of a given miner at time t as a processor sharing with rate µ/N(t). 

• Should the miner participate or not in the puzzle
• The utility for participaing in the mining depends on futur arrivals and their

decision



Equilibrium structure [Kushner]

• We model this as a game.

• For each r there is anoher threshold (l,q)_r

• A type r arrival at time t joins the mining if N(t)>l(r). It does not join if 
N(t)<l(r) and it joins with probabiity q(r) id N(t)=l

• (l,q) is an equilibrium if it is the optimal threshold given that every
one else uses that same threshold.

• Learning based on stochastic approximation



Learning

• How can a player learn if only makes one decision?

• There is a statitics list shared among the players. Each time a player
leaves an entry in the table is updated

• The updated entry corresponds to the estimated reward of players
who 1. found n miners when they joined and 2. have already left

• Upon arrival a player decides to join at state n if the estimated reward
is positive

• We assume 1. Call admission: bounded number of players and 2. a 
small rate of uncontrolled arrivals
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Non splittable Model

• There are K crypto-currencies and a single ESP

• There are N miners

• A puzzle related to crypto currency k requires from a miner an 
exponentially distributed time with expectation 1/µ(k); we assume 
that a new puzzle is available at crypto currency k immediately after
the previous puzzle at this crypto-currency was was solved

• Denote by L(k) the number of miners that compete over the k-th 
currency. The fastest solves the puzzle after an exponentially
distributed time with expectation L(k)/µ(k)



Constant number of miners

• L is vued as a strategy. 

• The utility for a miner to solve puzle k is

U( k,L(k) )  =     µ(k)/L(k) – g(k)

• where g(k) is the cost for using the ESP for solving a puzzle related to 
the k-th crypto currency

• L is an eqilibrium if for all k for which L(k)>0 and all k’     

U( k,L(k) ) ≥ U( k’,L(k’)+1)

• In other words no player can gain by deviating from k to k’



Non-splittable elastic ESP association game

• We assume a single currrency and R user classes

• A miner of class r pays g(r) for using the ESP per attempted puzzle

• We assume that a miner participates only if the utility is non-negative

• Let L be an R dimensional vector of loads.

• The utility for a class r user to join the miners is

U(r,L)=1/|L| - g(r) If L(r)>g(r) else 0

• This is a crowding game and has pure equilibria



Application of routing games to Net Neutrality

BLUE – CPs

ORANGE – GLOBAL ISPs

LEAVES – Local ISPs (players)

A local ISP i has a demand, has

to decide how much to fetch from

Each CP

Link cost: delays at CPs, fixed link

cost of Dij on traffic between SPi

and CPj. 

Objective: study collusions Dii=0

These are vertical Cartels



• We consider Users, ISPs and CPs.

• m ISPs and k are independent, n are combined

ISP+CP.

• Subscribers of any ISP i can download content from any 
CP j at a cost of d[ij]

• Cost function: Delay + monetary cost



• X[ij] is the amount 

of demand that user i

requests from ISP j.   



• We are interested in symmetric  equilibria

• X = equilibrium rate x[ii] if the ISP of user i is in collusion 
with the CPi

• Y = the amount it fetches from any other non-
independent CP

• Z = the amount it requests from independent CP

• The amount requested from subscribers of independent 
ISPs from independent CPs is v

• The amount requested from indep ISPs is  



KKT conditions

• I users per ISP

• d[ii]=0

• Lagrangian:

• KKT:  












