
ar
X

iv
:1

40
2.

28
10

v1
 [

cs
.D

C
]

 1
2

Fe
b

20
14

Energy Efficient Scheduling of MapReduce Jobs

Evripidis Bampis1, Vincent Chau2, Dimitrios Letsios1, Giorgio Lucarelli1,
Ioannis Milis3, and Georgios Zois1,3

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France.
{Evripidis.Bampis,Dimitrios.Letsios,Giorgio.Lucarelli,

Georgios.Zois}@lip6.fr
2 IBISC, Université d’Évry, France.
vincent.chau@ibisc.univ-evry.fr

3 Dept. of Informatics, AUEB, Athens, Greece.
milis@aueb.gr

Abstract. MapReduce is emerged as a prominent programming model
for data-intensive computation. In this work, we study power-aware MapRe-
duce scheduling in the speed scaling setting first introduced by Yao et
al. [FOCS 1995]. We focus on the minimization of the total weighted
completion time of a set of MapReduce jobs under a given budget of
energy. Using a linear programming relaxation of our problem, we de-
rive a polynomial time constant-factor approximation algorithm. We also
propose a convex programming formulation that we combine with stan-
dard list scheduling policies, and we evaluate their performance using
simulations.

1 Introduction

MapReduce has been established as a standard programming model for paral-
lel computing in data centers or computational grids and it is currently used
for several applications including search indexing, web analytics or data mining.
However, data centers consume an enormous amount of energy and hence, energy
efficiency has emerged as an important issue in the data-processing framework.
Several empirical works have been carried-out in order to study different mech-
anisms for the reduction of the energy consumption in the MapReduce setting
and especially for the Hadoop framework [6,7,9]. The main mechanisms for en-
ergy saving are the power-down mechanism where in periods of low-utilization
some servers are switched-off, and the speed-scaling mechanism (or DVFS for
Dynamic Voltage Frequency Scaling) where the servers’ speeds may be adjusted
dynamically [21]. Until lately, most work in the MapReduce framework were fo-
cused on the power-down mechanism, but recently, Wirtz and Ge [20] showed
that for some computation intensive MapReduce applications the use of intel-
ligent speed-scaling may lead to significant energy savings. In this paper, we
study power-aware MapReduce scheduling in the speed scaling setting from a
theoretical point of view.

In a typical MapReduce framework, the execution of a MapReduce job creates
a number of Map and Reduce tasks. Each Map task processes a portion of

http://arxiv.org/abs/1402.2810v1

the input data and outputs a number of key-value pairs. All key-value pairs
having the same key are then given to a Reduce task which processes the values
associated with a key to generate the final result. This means that each Reduce
task cannot start before the completion of the last Map task of the same job.
In other words, there is a complete bipartite graph implying the precedences
between Map and Reduce tasks of a job. However, the Map tasks of a job can
be executed in parallel and the same holds for its Reduce tasks.

In what follows we consider a set of MapReduce jobs that have to be exe-
cuted on a set of speed-scalable processors, i.e., on processors that can adjust
dynamically their speed [21]. In the speed scaling setting, each task is associated
with a work volume instead of a processing time and the scheduler has to decide
not only the processor and the time interval where a task is executed, but also its
speed over time, taking into account the energy consumption. High processor’s
speeds are in favor of performance at the price of high energy consumption. Each
job consists of a set of Map tasks and a set of Reduce tasks, with every task
having a positive work volume. Each job is also associated with a positive weight
representing its importance/priority, and a release date (or arrival time). Like
in [4,5], we consider that the Map and the Reduce tasks of each job are preas-
signed to the processors and in this way we take into account data locality, i.e.
the fact that each Map task has to be executed on the server where its data are
located. Given that the preemption of tasks, i.e. the possibility of interrupting a
task and resuming it later, may cause important overheads we do not allow it.
This is also the case often in practice: Hadoop does not offer the possibility of
preemption [14]. Our goal is to schedule all the tasks to the processors, so as to
minimize the total weighted completion time of jobs respecting a given budget
of energy.

Related Work. Chang et al. [4] consider a set of MapReduce jobs with their Map
and Reduce tasks preassigned to processors and their goal is to minimize the to-
tal weighted completion time of jobs. They proposed approximation algorithms
of ratios 3 and 2 for arbitrary and common release dates, respectively. However,
they do not consider neither distinction nor dependencies between Map and Re-
duce tasks of a job. Moreover, their model falls into a well-studied problem known
as concurrent open-shop (or order scheduling) for which the same approximation
results are known (see [12] and the references therein). Extending on the above-
mentioned model, Chen et al. [5], proposed a more realistic one which takes
into account the dependencies among Map and Reduce tasks and derived an
8-approximation algorithm for the same objective. Moreover, they managed to
model also the transfer of the output of Map tasks to Reduce tasks and to derive
a 58-approximation algorithm for this generalization. In a third model proposed
by Moseley et al. [14], the dependencies between Map and Reduce tasks of a job
are also taken into account while the assignment of tasks to processors is not
given in advance. The authors studied the preemptive variant for both the case
of identical and unrelated processors. They proposed constant approximation
ratios of 12 and 6, respectively. For the unrelated processors case, they focused
on the special case where each job has a single Map and a single Reduce task.

2

For the latter case on a single map and a single reduce processor they also pro-
posed a QPTAS which becomes a PTAS for a fixed number of processing times
of tasks. Recently, in [8] the authors proposed a 32+ ǫ-approximation algorithm
for the unrelated processors case with multiple Map and Reduce tasks per job.

In the energy-aware setting, Angel et al. [2] proposed approximation algo-
rithms for the problem of minimizing the total weighted completion time on
unrelated parallel processors, under a model where the processing time and the
energy consumption of the jobs are speed dependent. Other works in this set-
ting, related to our problem, deal with single processor problems. Megow et al.
[13] recently proposed a PTAS for the problem of minimizing the total weighted
completion time on a single speed-scalable processor.

Our Results and Organization of the Paper We adopt the MapReduce model
of [4] where the tasks are preassigned to processors but extended with dependen-
cies between Map and Reduce tasks as in Chen et al. [5,14] in the speed scaling
setting [21]. After a formal statement of our problem and notation, we present,
in Section 3, a polynomial time LP-based O(1)-energy O(1)-approximation al-
gorithm which allows energy augmentation, i.e., it may use more energy than
an optimal solution which always respects the energy budget, while using dis-
cretization of the possible speed values and list scheduling in the order of tasks’
α-points (see e.g. [16,11,19]). As we show, there is a tradeoff between the approx-
imation ratio and energy augmentation as a function of α, where the schedule
is converted to a constant-factor approximation for our problem. In Section 4,
we are interested in natural list scheduling policies such as First Come First

Serve (FCFS) and Smith Rule (SR). However, in our context we need to
determine the speeds of every task in order to respect the energy budget. For
that, we propose a convex programming relaxation of our problem when an order
of the jobs is prespecified. This relaxation can be solved in polynomial time to
arbitrary precision by the Ellipsoid algorithm [15]. Then we combine the solu-
tion of this relaxation with FCFS and SR and we compare experimentally their
effectiveness. Finally, we conclude in Section 5.

2 Problem Definition and Notation

In the sequel we consider a set J = {1, 2, . . . , n} of n MapReduce jobs to be
executed on a set P = {1, 2, . . . ,m} of m speed-scalable processors. Each job
is associated with a positive weight wj and a release date rj and consists of
a set of Map tasks and a set of Reduce tasks that are preassigned to the m
processors. We denote by T the set of all tasks of all jobs, and by M and R the
sets of all Map and Reduce tasks, respectively. Each task Ti,j ∈ T is associated
a non-negative work volume vi,j .

We consider each job having at least one Map and one Reduce task and that
each job has at most one task, either Map or Reduce, assigned to each processor.
Map or Reduce tasks can run simultaneously on different processors, while the
following precedence constraints hold for each job: every Reduce task can start
its execution after the completion of all Map tasks of the same job.

3

For a given schedule we denote by Cj and Ci,j the completion times of
each job j ∈ J and each task Ti,j ∈ T , respectively. Note that, due to the
precedence constraints of Map and Reduce tasks, Cj = maxTi,j∈R{Ci,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the schedule, i.e., the com-
pletion time of the job which finishes last. Let also, wmin = minj∈J {wj},
vmin = minTi,j∈T {vi,j : vi,j > 0}, wmax = maxj∈J {wj}, rmax = maxj∈J {rj}
and vmax = maxTi,j∈T {vi,j}.

In this paper, we combine this abstract model for MapReduce scheduling
with the speed scaling mechanism for energy saving [21] (see also [1] for a recent
review). In this setting the power required by a processor running at time t with
speed s(t) is equal to P ((s(t)) = s(t)β , for a constant β > 1 (typical values of β
are between 2 and 3) and its energy consumption is power integrated over time,
i.e., E =

∫

P (s(t))dt.

Due to the convexity of the speed-to-power function, a key property of our
problem is that each task runs at a constant speed during its whole execution.
So, if a task Ti,j is executed at a speed si,j , the time needed for its execution
(processing time) is equal to pi,j =

vi,j
si,j

and its energy consumption is Ei,j =
vi,j
si,j

sβi,j = vi,js
β−1
i,j .

Moreover, we are given an energy budget E and the goal is to schedule
non-preemptively all the tasks to the m processors, so as to minimize the total
weighted completion time of the schedule, i.e.,

∑

j∈J wjCj , without exceeding
the energy budget E. We refer to this problem as MapReduce problem.

As already mentioned above, the special case of the MapReduce problem
where there are not dependencies between Map and Reduce tasks of each job
and each processor runs at a constant speed, reduces to the concurrent open-
shop problem which is known to be strongly NP-complete [17]. It is also easy
to adapt NP-completeness reductions like the one for the concurrent open-shop
problem in the speed scaling setting, and therefore, the MapReduce problem
is also strongly NP-hard.

3 A Linear Programming Approach

In this section we present a constant-factor approximation algorithm for the
MapReduce problem. Our algorithm allows energy augmentation and derives
a O(1)-energyO(1)-approximation schedule for the problem. As we show, there is
a tradeoff where the schedule can be converted to a constant-factor approximate
schedule for the MapReduce problem.

Our algorithm is based on a formulation of the problem as a linear program-
ming relaxation. Then, we transform the solution obtained by the linear program
to a feasible schedule for the MapReduce problem using the technique of α-
points.

4

3.1 Discretization of Speeds

Before presenting the linear programming formulation, our first step is to dis-
cretize the possible speed values by loosing a factor of (1 + ǫ) with respect to
an optimal solution. In order to do this, we need the following propositions that
bound the length of an optimal schedule and the possible speed values.

Proposition 1. The makespan of any optimal schedule for the MapReduce

problem is at most

tmax =
wmax

wmin

(

nrmax + n(n+ 1)

(

|T | · vβmax

E

)

1

β−1

)

Proof. Consider an optimal schedule for the MapReduce problem. By defi-
nition, we have that Cmax = maxj∈J {Cj}. Hence, it holds that wminCmax ≤
∑

j∈J wjCj .
In order to give an upper bound to

∑

j∈J wjCj , consider an instance of
our problem where the weight wj and the release date rj of each job j ∈ J
are rounded up to wmax and rmax, respectively. Moreover, assume that in this
instance all tasks have work equal to vmax.

Consider now an arbitrary order {1, 2, . . . , n} of the jobs. We create a feasible
schedule S for the modified instance as follows. All tasks run with the same

speed s =
(

E
|T |·vmax

)1/(β−1)

, hence each task has a processing time p = vmax

s .

Note that this speed allows us to execute all tasks without exceeding the energy
budget. As all tasks have the same processing time, we can consider the time
horizon partitioned into time slots of length p starting from rmax. For each job
j, 1 ≤ j ≤ n, we execute its Map tasks at time rmax + (2j − 2)p and its Reduce
tasks at time rmax + (2j − 1)p. Then, for the objective value

∑

j∈J wmaxC
S
j of

this schedule it holds that

∑

j∈J
wmaxC

S
j = wmax

n
∑

j=1

(rmax + 2jp)

= wmax

(

nrmax + n(n+ 1)
vmax

s

)

The objective value of schedule S is clearly an upper bound on the objective value
∑

j∈J wjCj of an optimal schedule for the initial instance and the proposition
follows. ⊓⊔

Proposition 2. For the speed si,j of any task Ti,j ∈ T in the optimal schedule
it holds that

vi,j
tmax

≤ si,j ≤

(

E

vi,j

)
1

β−1

Proof. The processing time pi,j of a task Ti,j ∈ T in an optimal schedule cannot
exceed the maximum completion time, that is pi,j =

vi,j
si,j

≤ Cmax and, since by

Proposition 1 it holds that Cmax ≤ tmax, the lower bound follows.

5

The energy consumption of any task cannot exceed the energy budget, that
is Ei,j = vi,js

β−1
i,j ≤ E and the upper bound follows. ⊓⊔

Let sL = vmin

tmax

and sU =
(

E
vmin

)1/(β−1)

be an upper and a lower bound,

respectively, on the speed of any task. Given these bounds, we discretize the
interval [sL, sU] geometrically. In other words, we assume that the processors
can only run according to one of the following speeds: sL, sL(1 + ǫ), sL(1 +
ǫ)2, . . . , sL(1+ǫ)k, where k is the smallest integer such that sL(1+ǫ)k ≥ sU . Note
that k = ⌈log1+ǫ

sU
sL

⌉ and hence the number of possible speeds is polynomial to

the size of the instance and to 1/ǫ. We denote by V = {sL(1+ǫ)ℓ|ǫ > 0, 0 ≤ ℓ ≤ k}
the set of all possible discrete speed values. Let also smax = sL(1 + ǫ)k.

Lemma 1. There is a feasible (1+ǫ)-approximate schedule for the MapReduce

problem in which each task Ti,j ∈ T runs at a speed s ∈ V.

Proof. Let an optimal schedule for our problem and consider the speed of each
task Ti,j ∈ T rounded down to the closest sL(1 + ǫ)ℓ value. As the speeds
are decreased, the energy consumption of S does not exceed E. Moreover, the
execution time of all tasks, and hence the completion time of every job and the
optimal objective value increase by a factor at most (1 + ǫ). ⊓⊔

Henceforth we will consider the MapReduce problem in which each task
Ti,j ∈ T runs at a single speed s ∈ V . We call this version of the problem
DS-MapReduce.

3.2 Linear Programming Relaxation

In what follows we give an interval-indexed linear programming relaxation of the
DS-MapReduce problem. In order to do this, we discretize the time horizon
of an optimal schedule as follows. By Proposition 1, in any optimal schedule,
all jobs are executed during the interval (0, tmax]. We partition (0, tmax] into the
intervals (0, λ], (λ, λ(1 + δ)], (λ(1 + δ), λ(1 + δ)2], . . . , (λ(1 + δ)u−1, λ(1 + δ)u],
where δ > 0 is a small constant, λ > 0 is a constant that we will define later,
and u is the smallest integer such that λ(1 + δ)u−1 ≥ tmax. Let τ0 = 0 and
τt = λ(1 + δ)t−1, for 1 ≤ t ≤ u + 1. Moreover, let It = (τt, τt+1], for 0 ≤ t ≤ u,
and |It| be the length of the interval It, i.e., |I0| = λ and |It| = λδ(1 + δ)t−1,
1 ≤ t ≤ u. Note that, the number of intervals is polynomial to the size of the
instance and to 1/δ, as u = ⌈log1+δ

tmax

λ ⌉+ 1.
Let pi,j,s =

vi,j
s be the potential processing time for each task Ti,j ∈ T if

it is executed entirely with speed s ∈ V . For each Ti,j ∈ T , t ∈ {0, 1, . . . , u}
and s ∈ V , we introduce a variable yi,j,s,t that corresponds to the portion of the
interval It during which the task Ti,j is executed with speed s. In other words,
yi,j,s,t|It| is the time that task Ti,j is executed within the interval It at speed s, or

equivalently,
yi,j,s,t|It|

pi,j,s
is the fraction of the task Ti,j that is executed within It at

speed s. Note that the number of yi,j,s,t variables is polynomial to the size of the
instance, to 1/ǫ and to 1/δ. Furthermore, for each task Ti,j ∈ T , we introduce a

6

variable Ci,j , which corresponds to the completion time of Ti,j. Finally, let Cj ,
j ∈ J , be the variable that corresponds to the completion time of job j. (LP) is
a linear programming relaxation of the DS-MapReduce problem.

(LP) : minimize
∑

j∈J

wjCj

subject to :

∑

s∈V

u
∑

t=0

yi,j,s,t|It|

pi,j,s
= 1, ∀Ti,j ∈ T (1)

∑

j:Ti,j∈T

∑

s∈V

yi,j,s,t ≤ 1, ∀i ∈ P , 0 ≤ t ≤ u (2)

Ci,j ≥
1

2

∑

s∈V

yi,j,s,0|I0|

(

1

pi,j,s
+ 1

)

+

u
∑

t=1

∑

s∈V

(

yi,j,s,t|It|

pi,j,s
τt +

1

2
yi,j,s,t|It|

)

, ∀Ti,j ∈ T (3)

Cj ≥ Ci,j , ∀Ti,j ∈ T (4)

∑

Ti,j∈T

∑

s∈V

u
∑

t=0

yi,j,s,t|It|s
β ≤ E (5)

ℓ
∑

t=0

∑

s∈V

yi,j,s,t|It|

pi,j,s
≥

ℓ
∑

t=0

∑

s∈V

yi′,j,s,t|It|

pi′,j,s
,

∀Ti,j ∈ M, Ti′,j ∈ R, 0 ≤ ℓ ≤ u (6)

yi,j,s,t = 0, ∀Ti,j ∈ T , s ∈ V, t : τt < rj (7)

yi,j,s,t, Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , s ∈ V, 0 ≤ t ≤ u (8)

Our objective is to minimize the sum of weighted completion times of all
jobs. For each task Ti,j ∈ T , the corresponding constraint (1) ensures that Ti,j

is entirely executed. Constraints (2) enforce that the total amount of processing
time that is executed within an interval It cannot exceed its length. In [18], the
authors proposed a lower bound for the completion time of a job. This lower
bound can be adapted to our problem and for the completion time of a task
Ti,j ∈ T leads to a corresponding constraint (3). Constraints (4) ensure that the
completion time of each job is the maximum over the completion times of all its
tasks. Constraint (5) ensures that the given energy budget is not exceeded. Note
that the value sβ for each s ∈ V is a fixed number. Constraints (6) imply the
precedence constraints between the Map and the Reduce tasks of the same job,
as they enforce that the fraction of a Map task that is executed up to each time
point should be at least the fraction of a Reduce task of the same job executed
up to the same time point; hence, each Map task completes before all Reduce

7

tasks of the same job. Constraints (7) do not allow tasks of a job to be executed
before their release date.

In what follows, we denote an optimal solution to (LP) by (ȳi,j,s,t, C̄i,j , C̄j).

3.3 The Algorithm

In this section we use (LP) to derive a feasible schedule for the DS-MapReduce

problem. Depending on the choice of some parameters, this schedule may exceed
the energy budget. As we show, there is a tradeoff where a constant factor
approximation ratio can be derived.

Our algorithm is based on the idea of list scheduling in order of α-points [10].
In general, an α-point of a job is the first point in time where an α-fraction of
the job has been completed, where α ∈ (0, 1) is a constant that depends on the
analysis. In this paper, we will define the α-point tαi,j of a task Ti,j ∈ T as the
minimum ℓ, 0 ≤ ℓ ≤ u, such that at least an α-fraction of vi,j is accomplished
up to the interval Iℓ to (LP), i.e.,

tαi,j = min

{

ℓ :

ℓ
∑

t=0

∑

s∈S

ȳi,j,s,t|It|

pi,j,s
≥ α

}

Thus, once our algorithm has computed an optimal solution (ȳi,j,s,t, C̄i,j , C̄j) to
(LP), it calculates the corresponding α-point, tαi,j , for each task Ti,j ∈ T . Then,
combining the ideas of [5] with the notion of α-points [10], we create a feasible
schedule as follows: For each processor i ∈ P , we consider a priority list σi of its
tasks such that tasks with smaller α-point have higher priority. A crucial point
in our analysis is that we consider that a task Ti,j ∈ T becomes available for the
algorithm after the time τtαi,j+1 > rj . Moreover, if Ti,j ∈ R then we need also all
tasks Ti′,j ∈ M to be completed in order Ti,j to be considered as available. For
each task Ti,j ∈ T , we use a constant speed si,j =

vi,j
pi,j

, where

pi,j = γ

tαi,j
∑

t=0

∑

s∈V
ȳi,j,s,t|It|

is the processing time of Ti,j used by our algorithm, and γ > 0 is a constant
that we define later and describes the tradeoff between the energy consumption
and the weighted completion time of jobs. At each time point where a processor
i ∈ P is available, our algorithm selects the highest priority available task in σi

which has not been yet executed. Note that our algorithm always create a feasible
solution as we do not insist on selecting the highest priority task if this is not
available. Algorithm MR(α, γ) gives a formal description of our algorithm.

Note that the processing time of a task Ti,j ∈ T to an optimal solution to
(LP) is

p̄i,j =

u
∑

t=0

∑

s∈V
ȳi,j,s,t|It|

8

Algorithm MR(α, γ)

1: Compute an optimal solution (ȳi,j,s,t, C̄i,j , C̄j) to (LP).
2: for each task Ti,j ∈ T do

3: Compute the α-point tαi,j , the processing time pi,j and the speed si,j .
4: for each processor i ∈ P do

5: Compute the priority list σi.
6: for each time where a processor i ∈ P becomes available do

7: Select the first available task, let Ti,j , in σi which has not been yet executed.
8: Schedule Ti,j , non-preemptively, with processing time pi,j .

Let Ci,j be the completion time of task Ti,j .
9: for each job j ∈ J do

10: Compute its completion time Cj = maxi∈P Ci,j .

Hence, the energy consumption Ēi,j =
∑

s∈V
∑u

t=0 ȳi,j,s,t|It|s
β for the execution

of Ti,j to an optimal solution to (LP) may be smaller or bigger than the energy
consumption Ei,j for the execution of Ti,j by the algorithm. In order to give the
relation between these two quantities, we need the following technical lemma.

Lemma 2. Let s1, s2, . . . , sk and a1, a2, . . . , ak be positive values and β > 2.
Then, it holds that

(

1
∑k

i=1 ai
1
si

)β−1

≤

∑k
i=1 ais

β−1
i

(

∑k
i=1 ai

)β

Proof. The expression of the statement can be written equivalently as follows.

(

∑k
i=1 ai

∑k
i=1 ai

1
si

)β−1

≤

∑k
i=1 ais

β−1
i

∑k
i=1 ai

(9)

Note that the function f(x) = xβ−1 is convex for β > 2. Thus, by the Jensen’s
inequality we have that

f

(

∑k
i=1 aisi
∑k

i=1 ai

)

≤

∑k
i=1 aif(si)
∑k

i=1 ai

which is translated as

(

∑k
i=1 aisi
∑k

i=1 ai

)β−1

≤

∑k
i=1 ais

β−1
i

∑k
i=1 ai

Therefore, in order to show inequality (9), it suffices to show that

(

∑k
i=1 ai

∑k
i=1 ai

1
si

)β−1

≤

(

∑k
i=1 aisi
∑k

i=1 ai

)β−1

9

Thus, it suffices to prove that

∑k
i=1 ai

∑k
i=1 ai

1
si

≤

∑k
i=1 aisi
∑k

i=1 ai

An equivalent representation of the above expression is

(

k
∑

i=1

ai

)2

≤

(

k
∑

i=1

aisi

)(

k
∑

i=1

ai
1

si

)

⇔

k
∑

i=1

a2i +

k
∑

i,j=1, i6=j

2aiaj ≤
k
∑

i=1

a2i

k
∑

i,j=1, i6=j

aiaj

(

si
sj

+
sj
si

)

The last inequality is always true, as

2 ≤
si
sj

+
sj
si

⇔ 2 ≤
s2i + s2j
sisj

⇔ 0 ≤ (si − sj)
2

and hence the lemma follows. ⊓⊔

Lemma 3. Let Ēi,j and Ei,j be the energy consumption of the task Ti,j ∈ T
to the optimal solution to (LP) and to the solution of Algorithm MR(α, γ),
respectively. It holds that

Ei,j ≤
1

γβ−1αβ
Ēi,j

Proof. By the definition of Ei,j we have that

Ei,j = vi,js
β−1
i,j = vi,j

(

vi,j
pi,j

)β−1

= vi,j

(

vi,j

γ
∑

s∈V
∑tαi,j

t=0 ȳi,j,s,t|It|

)β−1

Since for each speed s ∈ V , pi,j,s =
vi,j
s , the above equality can be written as

Ei,j =
vi,j
γβ−1

1
∑

s∈V
1
s

∑tαi,j
t=0

ȳi,j,s,t|It|
pi,j,s

β−1

Hence, by using Lemma 2 we get

Ei,j ≤
vi,j
γβ−1

·

∑

s∈V sβ−1
∑tαi,j

t=0
ȳi,j,s,t|It|

pi,j,s

(

∑

s∈V
∑tαi,j

t=0
ȳi,j,s,t|It|

pi,j,s

)β

10

By the definition of α-points we have that
∑tαi,j

t=0

∑

s∈V
ȳi,j,s,t|It|

pi,j,s
≥ α, and thus

Ei,j ≤
1

γβ−1αβ

∑

s∈V
sβ−1

tαi,j
∑

t=0

vi,j
ȳi,j,s,t|It|

pi,j,s

=
1

γβ−1αβ

∑

s∈V
sβ−1

tαi,j
∑

t=0

vi,j
ȳi,j,s,t|It|

vi,j/s

=
1

γβ−1αβ

∑

s∈V

tαi,j
∑

t=0

ȳi,j,s,t|It|s
β

≤
1

γβ−1αβ

∑

s∈V

u
∑

t=0

ȳi,j,s,t|It|s
β =

1

γβ−1αβ
Ēi,j

and the lemma follows. ⊓⊔

The following lemma provides a lower bound to the completion time C̄i,j of
the task Ti,j ∈ T given by the (LP).

Lemma 4. If λ < α vmin

smax

, then for each task Ti,j ∈ T it holds that C̄i,j ≥
(1− α) · τtαi,j .

Proof. Recall that tαi,j corresponds to the interval Itαi,j = (τtαi,j , τtαi,j+1]. If we
select λ < α vmin

smax

, then there is no task with α-point to the interval I0. Hence,
we can consider that the α-point of each task Ti,j ∈ T corresponds to an interval

of the form (λ(1 + δ)t
α
i,j−1, λ(1 + δ)t

α
i,j].

Starting from constraint (3) we have that

C̄i,j ≥
1

2

∑

s∈V
ȳi,j,s,0|I0|

(

1

pi,j,s
+ 1

)

+

u
∑

t=1

∑

s∈V

(

ȳi,j,s,t|It|

pi,j,s
τt +

1

2
ȳi,j,s,t|It|

)

≥
u
∑

t=tαi,j

∑

s∈V

(

ȳi,j,s,t|It|

pi,j,s
τt +

1

2
ȳi,j,s,t|It|

)

≥
u
∑

t=tαi,j

∑

s∈V

ȳi,j,s,t|It|

pi,j,s
τt

≥ τtαi,j

u
∑

t=tαi,j

∑

s∈V

ȳi,j,s,t|It|

pi,j,s
≥ (1 − α) · τtαi,j

where the last inequality holds by constraint (1) and as by the definition of α-

point we know that
∑tαi,j−1

t=0

∑

s∈V
ȳi,j,s,t|It|

pi,j,s
< α. ⊓⊔

11

The following theorem gives the approximation ratio of AlgorithmMR(α, γ).

Theorem 1. Algorithm MR(α, γ) is a 1
γβ−1αβ -energy

γ2+3γ+1
1−α (1+δ)-approximation

algorithm for the DS-MapReduce problem, where α ∈ (0, 1), γ > 0 and δ > 0.

Proof. Consider the schedule S produced by Algorithm MR(α, γ) and let
Ti,j ∈ M be any Map task. Recall that σi is the priority list of processor i. Let
σi(j) ⊆ σi be the list of tasks with priority higher than the priority of Ti,j in σi,
including Ti,j . Then, for Ci,j it holds that

Ci,j ≤ τtαi,j+1 +
∑

k∈σi(j)

pi,k (10)

as Ti,j is always available after τtαi,j+1, as a Map task. For the total processing

time of jobs in σi(j) we have that

∑

k∈σi(j)

pi,k =
∑

k∈σi(j)

γ

tαi,k
∑

t=0

∑

s∈V
ȳi,k,s,t|It|

≤ γ
∑

k∈σi(j)

tαi,j
∑

t=0

∑

s∈V
ȳi,k,s,t|It|

≤ γ
∑

k∈σi

tαi,j
∑

t=0

∑

s∈V
ȳi,k,s,t|It|

= γ

tαi,j
∑

t=0

|It|
∑

k∈σi

∑

s∈V
ȳi,k,s,t ≤ γ

tαi,j
∑

t=0

|It| = γτtαi,j+1

where the last inequality holds by applying constraint (2) of the (LP). Thus,
from inequality (10) we have

Ci,j ≤ (γ + 1)τtαi,j+1 (11)

for each Map task Ti,j ∈ T .

Consider now a job j ∈ J and let Ti,j ∈ R be a Reduce task of j. More-
over, let Ti′,j ∈ M be the Map task of j that completes last in S, i.e., Ci′,j =
max{Ci,j : Ti,j ∈ M, i ∈ P}. By definition, Ti,j becomes available at time
t = max{τtαi,j+1, Ci′,j}. Note that

t ≤ max{τtαi,j+1, (γ + 1)τtα
i′,j

+1} ≤ max{τtαi,j+1, (γ + 1)τtαi,j+1} = (γ + 1)τtαi,j+1

where the first inequality holds by inequality (11) and the second by the con-
straint (6) of (LP).

12

Let again σi(j) be the list of tasks with higher priority than Ti,j in σi, includ-
ing Ti,j . If in the schedule S the processor i at time t executes a task Ti,j′ 6∈ σi(j),
then for the completion time of Ti,j it holds that

Ci,j ≤ t+ pi,j′ +
∑

k∈σi(j)

pi,k (12)

because Ti,j is available after time t and it has higher priority than any task
Ti,j′′ 6∈ σi(j). As before, we have that

∑

k∈σi(j)

pi,k ≤ γτtαi,j+1

Moreover, for the processing time of Ti,j′ it holds that

pi,j′ = γ

tα
i,j′
∑

t=0

∑

s∈V
ȳi,j′,s,t|It| ≤ γτtα

i,j′
+1 < γt

as Ti,j′ is executed at time t and hence it is available. Then, by equation (12)
we have

Ci,j ≤ t+ γt+ γτtαi,j+1 ≤ ((γ + 1)2 + γ)τtαi,j+1 = (γ2 + 3γ + 1)τtαi,j+1

As τtαi,j+1 = (1 + δ)τtαi,j , using Lemma 4 we get

Ci,j ≤
γ2 + 3γ + 1

1− α
(1 + δ)C̄i,j ,

and by using constraint (4) of (LP)

Ci,j ≤
γ2 + 3γ + 1

1− α
(1 + δ)C̄j

Since the above inequality holds for each processor i ∈ P , it must also hold for
Cj = maxi∈P{Ci,j} and thus

Cj ≤
γ2 + 3γ + 1

1− α
(1 + δ)C̄j

If we sum up all weighted completion times in S we yield

∑

j∈J
wjCj ≤

γ2 + 3γ + 1

1− α
(1 + δ)

∑

j∈J
wjC̄j

and as
∑

j∈J wjC̄j is a lower bound to the objective value of an optimal solution
for the DS-MapReduce problem, the theorem follows. ⊓⊔

13

Note that in the absence of precedence constraints between the tasks, the
above analysis can be improved. Indeed, we can consider that all tasks are Map
tasks, and hence an upper bound to their completion time into the schedule cre-
ated by Algorithm MR(α, γ) is given by Inequality (11). Then, the following
corollary holds.

Corollary 1. AlgorithmMR(α, γ) is a 1
γβ−1αβ -energy

γ+1
1−α (1+δ)-approximation

algorithm for the DS-MapReduce problem without precedence constraints, where
α ∈ (0, 1), γ > 0 and δ > 0.

Moreover, in the absence of both precedence constraints between tasks and
release dates of jobs, our analysis can be further improved. As before, we can
consider that all tasks are Map tasks. In addition, we can drop the demand that
a task Ti,j ∈ T becomes available for the algorithm after the time τtαi,j+1. Hence,

Inequality (10) is simplified to Ci,j ≤
∑

k∈σi(j)
pi,k, as all tasks are released at

time 0 and they are available at any time. Then, the following corollary holds.

Corollary 2. AlgorithmMR(α, γ) is a 1
γβ−1αβ -energy

γ
1−α (1+δ)-approximation

algorithm for the DS-MapReduce problem without precedence constraints and
release dates, where α ∈ (0, 1), γ > 0 and δ > 0.

By combining Lemma 1, Theorem 1 and Corollaries 1 and 2, and as we can
select an ε such that (1 + δ)(1 + ǫ) ≤ (1 + ε), the following theorem holds.

Theorem 2. There is a 1
γβ−1αβ -energy

γ2+3γ+1
1−α (1+ε)-approximation algorithm

for the MapReduce problem, a 1
γβ−1αβ -energy

γ+1
1−α (1 + ε)-approximation al-

gorithm for the MapReduce problem without precedence constraints, and a
1

γβ−1αβ -energy
γ

1−α (1 + ε)-approximation algorithm for the MapReduce prob-

lem without precedence constraints and release dates, where α ∈ (0, 1), γ > 0
and ε > 0.

In Fig.1 we depict a tradeoff between energy augmentation and approxima-
tion ratio for some practical values of β. Note that, by choosing γ = 1

α β−1
√
α
,

energy augmentation is not allowed and the schedule can be converted to a
constant-factor approximate schedule. In this case the following theorem holds.

Theorem 3. There is a (α β−1
√
α)2+3α β−1

√
α+1

(α β−1
√
α)2(1−α)

(1+ε)-approximation algorithm for

the MapReduce problem, a α β−1
√
α+1

α β−1
√
α(1−α)

(1+ε)-approximation algorithm for the

MapReduce problem without precedence constraints, and a 1
α β−1

√
α(1−α)

(1 +

ε)-approximation algorithm for the MapReduce problem without precedence
constraints and release dates, where α ∈ (0, 1) and ε > 0.

The ratios of the above theorem can be optimized by selecting the appropriate
value of α for each β. Table 1 gives the achieved ratios for practical values of β.

14

β general without precedence without precedence & without release dates

2 37.52 9.44 6.75
2.2 34.89 8.84 6.29
2.4 33.01 8.41 5.97
2.6 31.59 8.09 5.72
2.8 30.50 7.84 5.53
3 29.62 7.64 5.38

Table 1. Approximation ratios for the MapReduce problem for different values of β.

4 A Convex Programming Approach

We are interested in natural list scheduling policies such as First Come First

Serve (FCFS) and Smith Rule (SR). However, in our context we need to
determine the speeds of every task in order to respect the energy budget. For
that, we propose a convex programming relaxation of our problem when an order
of the jobs is prespecified.

4.1 The Convex Program

Let σ = 〈1, 2, . . . , n〉 be a given order of the jobs. Consider now the restricted
version of the MapReduce problem where for each processor i ∈ P the tasks are
forced to be executed according to this order. We shall refer to this problem as
the MapReduce(σ) problem. Note that, the order is the same for all processors.
We write j ≺ j′ if job j ∈ J precedes job j′ ∈ J in σ. We propose a convex
program that considers the order σ as input and returns a solution that is a
lower bound to the optimal solution for the MapReduce(σ) problem.

In order to formulate our problem as a convex program, let pi,j be a variable
that corresponds to the processing time of task Ti,j ∈ T . Moreover, for each task
Ti,j ∈ T , we introduce a variable Ci,j that determines the completion time of
Ti,j . Finally, let Cj , j ∈ J , be the variable that corresponds to the completion
time of job j. Consider the following convex programming formulation of the

15

MapReduce(σ) problem.

(CP) : minimize
∑

j∈J
wjCj

subject to :

∑

Ti,j∈T

vβi,j

pβ−1
i,j

≤ E (13)

rj′ +

j
∑

k=j′

pi,k ≤ Ci,j , ∀Ti,j, Ti,j′ ∈ T , j′ ≺ j (14)

Ci′,j + pi,j ≤ Ci,j , ∀Ti,j ∈ R, Ti′,j ∈ M (15)

Ci,j ≤ Cj , ∀Ti,j ∈ T (16)

si,j , Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , j ∈ J

The objective function of (CP) is to minimize the weighted completion time
of all jobs. Constraint (13) guarantees that the energy budget is not exceeded.
Constraints (14) and (15) give lower bounds on the completion time of each task
Ti,j ∈ T , based on the release dates and the precedence constraints, respectively.
Note that, if we do not consider precedences between the tasks, then (CP) will
return the optimal value of the objective function, instead of a lower bound of
it, as constraints (14) describe in a complete way the completion times of the
tasks. However, this is not true for constraints (15) which are responsible for the
precedence constraints. Finally, constraints (16) ensure that the completion time
of each job is the maximum over the completion times among all of its tasks.

As the optimal solution to (CP) does not necessarily describe a feasible sched-
ule, we need to apply an algorithm that uses the processing times found by (CP)
and the order σ so as to create a feasible schedule for the MapReduce(σ) prob-
lem, and hence for the MapReduce problem. In fact, it suffices to apply, for
example, the Lines 6-8 of Algorithm MR(α, γ), by considering the same order
for all processors.

4.2 Scheduling Policies

In this section we propose different orders of jobs and we discuss how far is
an optimal solution for the MapReduce(σ) problem using these orders with
respect to the optimal solution for the MapReduce problem. Two standard
orders of jobs are the following.

First Come First Serve (FCFS): for each pair of jobs j, j′ ∈ J , if rj < rj′

then j ≺ j′ in σ.

Smith Rule (SR): for each pair of jobs j, j′ ∈ J , if
wj∑

Ti,j∈j vi,j
>

wj′∑
T
i,j′

∈j′ vi,j′

then j ≺ j′ in σ.

16

15 20 25 30 35
0

20

40

60

80

100

approximation ratio

en
er
g
y
a
u
g
m
en

ta
ti
o
n
(%

)

β = 2

β = 2.5

β = 3

Fig. 1. Tradeoff between energy aug-
mentation and approximation ratio
when β = {2, 2.5, 3}.

5 10 15 20 25
0

50

100

150

200

number of jobs

∑

w
j
C

j

FCFS

SR

CP(FCFS)

CP(SR)

Fig. 2. Experimental comparison of
the solutions of FCFS and SR (scaled
down by a factor of 103).

The following propositions present negative results concerning the approxi-
mation ratio that we can achieve if we use the FCFS or the SR order.

Proposition 3. Let OPT and OPTFCFS be the optimal solutions for the MapRe-

duce and the MapReduce(FCFS) problems, respectively. There is an instance
for which it holds that OPTFCFS

OPT = Ω(n).

Proof. Consider an instance consisting ofm processors and n jobs, wherem = n.
The release date of each job j ∈ J is (j − 1)ǫ, for a very small ǫ > 0, and its
weight wj = 1. Each job j ∈ J consists of m tasks, one per processor. Moreover,
the task Ti,j ∈ T is a Map task only if i = j; otherwise Ti,j is a Reduce task.
For each task Ti,i ∈ M, let vi,i = 1. For each task Ti,j ∈ R, let vi,j = ǫ. Let also
E = 1 and β = 2.

Note that, if ǫ ≪ 1 then the processing time of each Reduce task can be con-
sidered to be very small in both the optimal schedules for the MapReduce and
the MapReduce(FCFS) problems. So, we can ignore the execution time and
the energy consumption of the Reduce tasks. We only consider the precedence
constraints that they imply.

In an optimal solution for the MapReduce problem, the Map task of job
j starts at time (j − 1)ǫ. Due to the convexity and the fact that wj = 1 for
each j ∈ J , we can assume that all Map tasks will be executed with the same
speed; hence the processing time of each Map task is approximately equal to
β−1

√

m
E = m, as E = 1 and β = 2. Thus, the completion time of each job is

approximately equal to m, and hence OPT = O(m2).

On the other hand, in an optimal solution for the MapReduce(FCFS) prob-
lem the Map tasks are not executed in parallel, as we are forced to respect the
order and the precedence constraints. Ignoring again the processing times of the
Reduce tasks, we can assume that the Map task of job j starts at the completion
time of job j − 1. In order to find the speed sj of each Map task Tj,j ∈ T into
an optimal solution for the MapReduce(FCFS) problem, we have to solve the

17

following convex program.

minimize

n
∑

j=1

n− j + 1

sj
subject to

n
∑

j=1

sj ≤ E

The objective of this convex program corresponds to the objective of theMapReduce(FCFS)
problem for the given instance, while the constraint ensures that the selected
speeds respect the energy budget. By applying the Karush-Kuhn-Tucker condi-

tions to this program we get that sj = E·(n−j+1)1/2∑n
i=1

(n−i+1)1/2
. By replacing this to the

objective we get

OPTFCFS =
n
∑

j=1

n− j + 1
E·(n−j+1)1/2∑n
i=1

(n−i+1)1/2

=
1

E

(

n
∑

i=1

(n− i+ 1)1/2

)2

=
1

E

(

n
∑

i=1

i1/2

)2

= O

(

n3

E

)

As n = m and E = 1, the proposition follows. ⊓⊔

Proposition 4. Let OPT and OPTSR be the optimal solutions for the MapRe-

duce and the MapReduce(SR) problems, respectively. There is an instance for
which it holds that OPTSR

OPT = Ω(n).

Proof. We consider a simplified instance which consists of only one processor and
does not take into account Map and Reduce tasks and hence precedences. In this
instance the critical issue is the release dates. For each job j, 1 ≤ j ≤ n− 1, we
have vj = 1, wj = 1 and rj = 0, while for the job n we have vn = 1− ǫ, wn = 1
and rn = r, where r ∈ R is a big number. Let E = 1 and β = 2.

In an optimal schedule for the MapReduce problem, the jobs 1, 2, . . . , n− 1
are scheduled consecutively starting from time 0, while the job n is scheduled
starting from time r. Let E1 and E2 be parts of the energy budget used for
the execution of the jobs 1, 2, . . . , n − 1 and n, respectively. Clearly, it holds
that E1 + E2 = 1. Hence, following similar analysis as in Proposition 3 for the
MapReduce(FCFS) problem, for the total weighted completion time of the
jobs 1, 2, . . . , n− 1 it holds that

n−1
∑

j=1

wjCj = O

(

n3

E1

)

18

The processing time of job n is E2, and hence its completion time is Cj = r+E2.
Therefore, for the optimal solution for the MapReduce problem we have that

OPT = O

(

n3

E1

)

+ r +
1

E2

= O

(

n3

E1

)

+ r +
1

1− E1
= r +O(n3)

as this function is minimized for E1 ≃ 1/2.
On the other hand, in an optimal schedule for the MapReduce(SR) prob-

lem, the jobs are scheduled starting from r according to the SR order, i.e.,
〈n, 1, 2, . . . , n − 1〉. As we can choose an ǫ such that ǫ ≪ 1, we can assume
that all jobs have the same work to execute. Then, following similar analy-
sis as in Proposition 3 for the MapReduce(FCFS) problem, we have that
OPTSR = nr +O(n3).

As r can be arbitrary large, the proposition follows. ⊓⊔

4.3 Experimental Evaluation of Scheduling Policies

In this section, our goal is to compare the FCFS and SR policies with respect
to the quality of the solution that they produce.

Our simulations have been performed on a machine with a CPU Intel Xeon
X5650 with 8 cores, running at 2.67GHz. The operating system of the machine
is a Linux Debian 6.0. We used Matlab with cvx toolbox. The solver used for
the convex program is SeDuMi.

The instance of the problem consists of a matrix m× n that corresponds to
the work of the tasks, two vectors of size n that correspond to the weights and
the release dates of jobs, a precedence graph for the tasks of the same job, the
energy budget and the value of β.

Similarly with [5], the instance consists of m = 50 processors and up to
n = 25 jobs. Each job has 20 Map and 10 Reduce tasks, which are preassigned at
random to a different processor. The work of each Map task is selected uniformly
at random in [1, 10], while the work of each Reduce task vi,j ∈ R is equal to a

random number in [1, 10] plus
3
∑

T
i′,j

∈M
vi′,j

|{Ti′,j∈M}| , taking into account the fact that

Reduce tasks have more work to execute than Map tasks. The weight of each
job is selected uniformly at random in [1, 10]. For the release date of a job, we
select with probability 1/2 every interval (t, t + 1]. Then, the release date is
equal to a random value in this interval. The energy budget that we used is
E = 1000. We have also set β = 2. We set the desired accuracy of the returned
solution of the convex program to be equal to 10−7. For each number of jobs we
have repeated the experiments with 10 different matrices. The results we present
below, concern the average of these 10 instances.

The benchmark as well as the code we used in our experiments are freely
available at
http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/.

19

http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/

As mentioned before, the (CP) does not lead to a feasible solution for our
problem. In order to get such a solution we apply the following algorithm. At
each time t where a processor becomes available we select to schedule the task
Ti,j of higher priority such that: (i) Ti,j is already released at t, (ii) if Ti,j is a
Reduce task, then all Map tasks of the same job have been already completed
at t, and (iii) Ti,j has not been yet executed.

As shown in Fig. 2 the heuristic based on FCFS outperforms the heuristic
based on SR. In fact, the first heuristic gives up to 16−21% better solutions that
the second one for different values of n. Surprisingly, the situation is completely
inverse if we consider the corresponding solutions of the convex programs. More
precisely, the convex programming relaxation using SR leads to 26% − 43%
smaller values of the objective function with respect to the convex programming
relaxation using FCFS.

Moreover, we can observe that the ratio between the final solution of each
heuristic with respect to the lower bound for the MapReduce(σ) problem given
by the convex program is equal to 1.46 for FCFS and 2.43 for SR; the variance is
less than 0.1 in both cases. However, as we already mentioned, this ratio cannot
be considered as the approximation ratio for the MapReduce problem, as its
optimal solution can be significantly smaller than the optimal solution for the
MapReduce(σ) problem using the FCFS and SR orders.

5 Conclusions

We presented a constant-approximation algorithm for the problem of scheduling
a set of MapReduce jobs in order to minimize their total weighted completion
time under a given budget of energy. Our algorithm uses an optimal solution
to an LP relaxation in interval-indexed variables and converts it to a feasi-
ble non-preemptive schedule of the MapReduce problem using the idea of list
scheduling in order of a-points. Moreover, we proposed a convex programming
relaxation of the problem when a prespecified order of jobs is given. Based on
the solution of this convex programming relaxation, we explored the efficiency
of standard scheduling policies, by presenting counterexamples for them as well
as by experimentally evaluating their performance. It has to be noticed that our
results can be extended also to the case where multiple Map or Reduce tasks
of a job are executed on the same processor. An interesting direction for future
work concerns the online case of the problem. Although, it can be proved that
there is no an O(1)-competitive deterministic algorithm (see Theorem 13 in [3]),
a possible way to overcome this is to consider resource (energy) augmentation,
or to study the closely-related objective of a linear combination of the sum of
weighted completion times of the jobs and of the total consumed energy.

References

1. S. Albers. Algorithms for dynamic speed scaling. In Symposium on Theoretical
Aspects of Computer Science (STACS), pages 1–11, 2011.

20

2. E. Angel, E. Bampis, and F. Kacem. Energy aware scheduling for unrelated parallel
machines. In Green Computing Conference, pages 533–540, 2012.

3. N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. SIAM
Journal on Computing, 39(4):1294–1308, 2009.

4. H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee, and
S. Mukherjee. Scheduling in mapreduce-like systems for fast completion time.
In IEEE Proceedings of the 30th International Conference on Computer Commu-
nications, pages 3074–3082, 2011.

5. F. Chen, M. S. Kodialam, and T. V. Lakshman. Joint scheduling of processing and
shuffle phases in mapreduce systems. In IEEE Proceedings of the 31st International
Conference on Computer Communications, pages 1143–1151, 2012.

6. E. Feller, L. Ramakrishnan, and C. Morin. On the performance and energy ef-
ficiency of Hadoop deployment models. In BigData Conference, pages 131–136,
2013.

7. B. Feng, J. Lu, Y. Zhou, and N. Yang. Energy efficiency for MapReduce workloads:
An in-depth study. In ADC, pages 61–70, 2012.

8. D. Fotakis, I. Milis, E. Zampetakis, and G. Zois. Scheduling mapreduce jobs on
unrelated processors. Technical Report, arxv.org, abs/1312.4203, 2013.

9. I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini. Green-
Hadoop: leveraging green energy in data-processing frameworks. In EuroSys, pages
57–70, 2012.

10. L. A. Hall, A.S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Mathematics of
Operations Research, 22:513–544, 1997.

11. L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average comple-
tion time: Off-line and on-line algorithms. In Proceedings of the 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 142–151, 1996.

12. M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Operations
Research Letters, 38(5):390–395, 2010.

13. N. Megow and J. Verschae. Dual techniques for scheduling on a machine with
varying speed. In Proceedings of the 40th ICALP, pages 745–756, 2013.

14. B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós. On scheduling in map-reduce
and flow-shops. In Proceedings of the 23rd ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 289–298, 2011.

15. A. Nemirovski, I. Nesterov, and Y. Nesterov. Interior Point Polynomial Algorithms
in Convex Programming. Society for Industrial and Applied Mathematics, 1994.

16. C. A. Phillips, C. Stein, and J. Wein. Task scheduling in networks. SIAM Journal
on Discrete Mathematics, 10(4):573–598, 1997.

17. T.A. Roemer. A note on the complexity of the concurrent open shop problem.
Journal of Scheduling, 9:389–396, 2006.

18. A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized round-
ing. SIAM J. Discrete Math., 15(4):450–469, 2002.

19. Martin Skutella. List scheduling in order of -points on a single machine. In Evri-
pidis Bampis, Klaus Jansen, and Claire Kenyon, editors, Efficient Approximation
and Online Algorithms: Recent Progress on Classical Combinatorial Optimization
Problems and New Applications, volume 3484 of Lecture Notes in Computer Sci-
ence, page 250291. Springer, 2006.

20. T. Wirtz and R. Ge. Improving MapReduce energy efficiency for computation
intensive workloads. In IGCC, pages 1–8, 2011.

21

21. F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced cpu
energy. In Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science, pages 374–382. IEEE, 1995.

22

	Energy Efficient Scheduling of MapReduce Jobs

