On Separation Logic, Computational Independence, and
Pseudorandomness

Ugo Dal Lago!?  Davide Davoli®®  Bruce Kapron*

LUniversita di Bologna 2INRIA

3Université Céte d'Azur 4University of Victoria

PLAS Workshop
October 14t 2024 — Salt Lake City, USA

- ECOLE UNIVERSITAIRE DE RECHERCHE
UN|VERS|TE ‘ SYSTEMES NUMERIQUES
COTED'AZUR | POUR L'HUMAIN




Outline

P Introduction on separation logic.
> Barthe et al's separation logic for probabilistic programs.

» Qur contribution: a separation logic for computational cryptography.



Separation Logic [Reynolds and O’'Hearn, 2002]

Introduced to reason about heap manipulating programs.



Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.
Separating conjunction:

h ): ¢ *x P & dhy, hy st. |: o, hy |: 1, and hy U hy C h,



Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h ):gf)*’(/) & dhy, hy st. |: o, hy |: 1, and hy U hy C h,
h1 h2 h1|—]h2 h
x: 3 x: 3
’z 1 ‘ z: 1 C |z: 1
y: 4

hlEx=3 hEz=1 hEx=3xz=1



Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

Store union

Sub-store

*» N C

Locality




Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

L Store union Tensor Product
C Sub-store Marginal Distribution
* Locality




Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality Statistical Independence




Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality Statistical Independence

Example

[x < unif(n); y < unif(n)] = U(x) * U(y)

x and y are uniform and independent



Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality Statistical Independence

Example

[x < unif(n); y < unif(n)] = U(x) * U(y)
x and y are uniform and independent

[x <= unif(n); y < x] = U(x) = U(y)



Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality Statistical Independence

Example

[x <= unif(n); y <= unif(n)] = U(x) * U(y)
x and y are uniform and independent

[x <= unif(n); y < x] = U(x) * U(y)

[x <= unif(n); y < x] = U(x) AU(y)



Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style reasoning on
cryptographic primitives.



Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on

cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key < unif(n);
cyph <+ msg @ key.



Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on

cryptographic primitives.

Example (One Time Pad)

PSL can prove perfect secrecy.

OTP := key < unif(n);
cyph <+ msg @ key.

In PSL, the following judgment is derivable:

~pst. {D(msg)} OTP {D(msg) * U(cyph)}

msg is defined



Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on

cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key < unif(n);
cyph <+ msg @ key.

In PSL, the following judgment is derivable:

~ps. {D(msg)} OTP {D(msg) * U(cyph)}

msg is defined perfect secrecy




Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]



Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence ?

[Fay, 2015] (pslysize circuits)
?



Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence ?

[Fay, 2015] (pslysize circuits)
this work (polytime programs)



Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence CSL

[Fay, 2015] (pslysize circuits)
this work (polytime programs)



Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL




Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

u Tensor Product Tensor Product




Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

U Tensor Product Tensor Product
di C dy dr is a marginal of d,




Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

U Tensor Product Tensor Product
dlgdz dleX.Zydz(X,y)




Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

U Tensor Product Tensor Product
diCd di = Mx. Zy da(x,y) di =~ Ax. Zy da(x,y)




Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL
u Tensor Product Tensor Product
di C dp di = Ax.> 0, do(x, y) dl/z Ax. >, da(x, y)
=

Every polytime distingusher has negligible
advantage on di and Ax.3>, da(x, y).




Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL
U Tensor Product Tensor Product
diCd di = Mx. Zy da(x,y) di =~ Ax. Zy da(x,y)
-~

=

Every polytime distingusher has negligible
advantage on di and Ax.3>, da(x, y).

Theorem (Main Result)

The semantics of the separating conjunction (x) in CSL is equivalent to Fay's
computational independence.



Polytime Programs

Syntax:
P,R:= skip | r ¢ e|P;P | if r thenP else P

e,g i = ...



Polytime Programs

Syntax:
P,R = skip |r <« e|P;P|if r thenP else P

&8 1= ... polynomial in the security parameter

Type system:

» Assumption: A+ e : p(n) when e has size p(n) and is polytime-computable.



Polytime Programs

Syntax:
P,R = skip |r <« e|P;P|if r thenP else P

&8 1= ... polynomial in the security parameter

Type system:

» Assumption: A+ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: A F P when P is polytime in its input.



Polytime Programs

Syntax:
P,R = skip |r <« e|P;P|if r thenP else P

&8 1= ... polynomial in the security parameter

Type system:

» Assumption: A+ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: A F P when P is polytime in its input.

> We only want those inputs that are polysize in the security parameter, so:

[A] = {distributions of polysize stores}.



Polytime Programs

Syntax:
P,R = skip |r <« e|P;P|if r thenP else P

&8 1= ... polynomial in the security parameter

Type system:

» Assumption: A+ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: A F P when P is polytime in its input.

> We only want those inputs that are polysize in the security parameter, so:
[A] = {distributions of polysize stores}.

Semantics:
[AFP]:[A] — [A]

Our semantics is polytime in the security parameter by definition.



CSL's Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])



CSL's Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])

¢ u= (A2 [ (o AD)A | (¢%9)D



CSL's Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])

¢ = (A2 [ (A | (0% 9)>
Environments constraint the interpretation of formulas to some specific distributions...

d = () whenever d € [A] and d = ¢



CSL’s Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])

¢ = (A2 [ (e AY)2 | (¢ * )2
Environments constraint the interpretation of formulas to some specific distributions...
d = () whenever d € [A] and d = ¢

...that define all the variables of the formula, thanks to the following conditions:

> For (A(e,g))?, we impose AFe:7, Al g:T.



CSL’s Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])

¢ = (A2 [ (e AY)2 | (¢ * )2
Environments constraint the interpretation of formulas to some specific distributions...
d = () whenever d € [A] and d = ¢

...that define all the variables of the formula, thanks to the following conditions:

> For (A(e,g))?, we impose AFe:7, Al g:T.
> For ((¢)" A (1)®)2, T and © must be smaller than A.



CSL’s Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])

¢ = (A2 [ (e AY)2 | (¢ * )2
Environments constraint the interpretation of formulas to some specific distributions...
d = () whenever d € [A] and d = ¢

...that define all the variables of the formula, thanks to the following conditions:

> For (A(e,g))?, we impose AFe:7, Al g:T.
> For ()" A (x)®)2, T and © must be smaller than A.
*

(@)
> For ((#)" * (¢)®)2, T and © must also be disjoint.



Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

hlzqﬁ*l/} = Jh1, hps.t. ...
what is their domain?



Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d):(;ﬁ*qp = ddi,drs.t....
what is their domain?

» In PSL, we do not know which variables are independent.



Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d):(;ﬁ*w = ddi,drs.t....
what is their domain?

» In PSL, we do not know which variables are independent.

» In CSL, independent variables are explicit in formulas.

dE (¢)" * (1)®)A = variables of I and © are independent in d.



Deduction rules

Judgments:

{(#)} AFP{(v)?}



Deduction rules

Judgments:

{(@%} AP {@)%}
For every d € [A], if d = ¢, then [A + P](d) E ¥.



Deduction rules

Judgments:

{(@%} AP {@)%}
For every d € [A], if d = ¢, then [A + P](d) E ¥.

Rules:
r & FV(e)

F{T)2} AF r<+ e {(EQ(r,e))?}

Asgn



Deduction rules

Judgments:

{(@%} AP {@)%}
For every d € [A], if d = ¢, then [A + P](d) E ¥.

Rules:
r & FV(e)

F{T)2} AF r<+ e {(EQ(r,e))?}

Asgn

r & FV(e)

In PSL: F{T} r<« e{EQ(r,e)}

Asgn




Deduction rules

Judgments:

{(@%} AP {@)%}
For every d € [A], if d = ¢, then [A + P](d) E ¥.

Rules:
r & FV(e)

F{T)2} AF r<+ e {(EQ(r,e))?}

Asgn

r & FV(e)

In PSL: F{T} r<« e{EQ(r,e)}

Asgn

F{(®) 3 TEP{(¥)}
F{(0) %(6)°)2F A FP{(()" * (§)°)*}

Frame



Difficulty with loops

Vi.F {o(i)} P {o(i + 1)}

F{#(0)} for i =0 to ndo P {¢(n)}

Soundness in classical Hoare logic:



Difficulty with loops

Vi.F {o(i)} P {o(i + 1)}

F{#(0)} for i =0 to ndo P {¢(n)}

Soundness in classical Hoare logic:

State: )

Property: »(0)



Difficulty with loops

Vi.F {o(i)} P {o(i + 1)}

F{#(0)} for i =0 to ndo P {¢(n)}

Soundness in classical Hoare logic:

[P]

State: ° ™ °

Property: #(0) j_ #(1)

assumption



Difficulty with loops

Vi F {o(1)} P {o(i + 1)}
F{¢(0)} for i =0 to ndo P {¢p(n)}

Soundness in classical Hoare logic:

[P] [P] [F] [P]
State: 0/\0/\0/—\.../—\"0
Property:  ¢(0) = ¢(1) = ¢ = ... = ¢

assumption assumption assumption assumption



Difficulty with loops

n is the security parameter

Vi - {#(i)} P {¢(i + 1)}
- {¢(0)} for i =0 to ndo P {¢(n)}/
In CSL:

¢(i) := a negligible function bounds the probability of distinguishing d; from unif



Difficulty with loops

n is the security parameter

vi. = {(i)} P {o(i + 1)}
- {(0)} for i=0to ndo P {¢(n)}/
In CSL:

¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Vo= dy



Difficulty with loops

n is the security parameter

vi. = {(i)} P {o(i + 1)}
- {(0)} for i=0to ndo P {¢(n)}/
In CSL:

¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Vo= dy

assumption
unif —— 11— dy = [P](do) P



Difficulty with loops

n is the security parameter

vi. = {(i)} P {o(i + 1)}
- {(0)} for i=0to ndo P {¢(n)}/
In CSL:

¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Vo= dy

assumption
unif —— 11— dy = [P](do) P

unif Vi di = [P](dk-1)



Difficulty with loops

n is the security parameter

Vi - {#(i)} P {¢(i + 1)}
- {¢(0)} for i =0 to ndo P {¢(n)}/

In CSL:
¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Y - do )
assumption _n
unif «—v1— di = [P](do) Vi = om

unif Vi di = [P](dk-1)



Difficulty with loops

n is the security parameter

Vi - {#(i)} P {¢(i + 1)}
- {¢(0)} for i =0 to ndo P {¢(n)}/

In CSL:
¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Y - do )
assumption _n
unif «—v1— di = [P](do) Vi = om

unif Vik di = [P](dk-1)
_ _ necessary for negligibility: nIl_)ngo v(n)=0



Difficulty with loops

n is the security parameter

Vi - {#(i)} P {¢(i + 1)}
- {¢(0)} for i =0 to ndo P {¢(n)}/

In CSL:
¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Y - do )
assumption _n _n
unif «— 11— dy = [[P]](d()) Vi = on’ Vn = on

unif Vik di = [P](dk-1)
_ _ necessary for negligibility: nIl_)ngo v(n)=0



Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.



Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

OTP := key < unif(n);
cyph < msg @ key.



Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

POTP := key < unif(n);

r + g(key);
cyph < msg @ r.

g is a pseudorandom generator.



Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

POTP := key < unif(n);

r + g(key);
cyph < msg @ r.

g is a pseudorandom generator.

Fest {(T)2) A+ POTP {((T)Im8} & (CU(cyph))iorh-1)AY

computational secrecy




Conclusion and Future Work

Conclusion

» CSL is a separation logic for computational independence.



Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.



Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.

» CSL can be used to prove computational secrecy, thanks to our Fay-style
characterization.



Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.

» CSL can be used to prove computational secrecy, thanks to our Fay-style
characterization.

Future work
» Extend the language supported by CSL with for-loops.



