
1/ 15

On Separation Logic, Computational Independence, and
Pseudorandomness

Ugo Dal Lago1,2 Davide Davoli2,3 Bruce Kapron4

1Università di Bologna 2INRIA

3Université Côte d’Azur 4University of Victoria

PLAS Workshop
October 14th, 2024 – Salt Lake City, USA

2/ 15

Outline

▶ Introduction on separation logic.
▶ Barthe et al.’s separation logic for probabilistic programs.
▶ Our contribution: a separation logic for computational cryptography.

3/ 15

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t. h1 |= ϕ, h2 |= ψ, and h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3
z: 1

h1 ⊔⊔⊔ h2

x: 3
z: 1
y: 4

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

3/ 15

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t. h1 |= ϕ, h2 |= ψ, and h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3
z: 1

h1 ⊔⊔⊔ h2

x: 3
z: 1
y: 4

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

3/ 15

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t. h1 |= ϕ, h2 |= ψ, and h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3
z: 1

h1 ⊔⊔⊔ h2

x: 3
z: 1
y: 4

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

4/ 15

Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union
⊑⊑⊑ Sub-store
∗∗∗ Locality

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

4/ 15

Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

4/ 15

Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistical Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

4/ 15

Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistical Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

4/ 15

Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistical Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)

Jx ← unif(n); y ← xK |= U(x) ∧U(y)

4/ 15

Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistical Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

5/ 15

Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on
cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
cyph← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {}

5/ 15

Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on
cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
cyph← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {}

5/ 15

Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on
cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
cyph← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(cyph)}

5/ 15

Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on
cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
cyph← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(cyph)︸ ︷︷ ︸
perfect secrecy

}

6/ 15

Towards a Computational Version of PSL

Property Characterization Logic
Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔

[Shannon, 1940]

[Fay, 2015] (polysize circuits)
?

6/ 15

Towards a Computational Version of PSL

Property Characterization Logic
Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔ ?

[Shannon, 1940]

[Fay, 2015] (polysize circuits)
?

6/ 15

Towards a Computational Version of PSL

Property Characterization Logic
Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔ ?

[Shannon, 1940]

[Fay, 2015] (polysize circuits)
this work (polytime programs)

6/ 15

Towards a Computational Version of PSL

Property Characterization Logic
Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔ CSL

[Shannon, 1940]

[Fay, 2015] (polysize circuits)
this work (polytime programs)

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product

d1 ⊑⊑⊑ d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 is a marginal of d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y)

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y) d1 ≈≈≈ λx .

∑
y d2(x , y)

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y) d1 ≈≈≈ λx .

∑
y d2(x , y)

Every polytime distingusher has negligible
advantage on d1 and λx .

∑
y d2(x , y).

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

7/ 15

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y) d1 ≈≈≈ λx .

∑
y d2(x , y)

Every polytime distingusher has negligible
advantage on d1 and λx .

∑
y d2(x , y).

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.

8/ 15

Polytime Programs
Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

e, g ::= . . .

Type system:

▶ Assumption: ∆ ⊢ e : p(n) when e has size p(n) and is polytime-computable.

Consequence: ∆ ⊢ P when P is polytime in its input.

▶ We only want those inputs that are polysize in the security parameter, so:

J∆K = {distributions of polysize stores}.

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Our semantics is polytime in the security parameter by definition.

8/ 15

Polytime Programs
Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

e, g ::= . . .

Type system:

▶ Assumption: ∆ ⊢ e : p(n) when e has size p(n) and is polytime-computable.

Consequence: ∆ ⊢ P when P is polytime in its input.
▶ We only want those inputs that are polysize in the security parameter, so:

J∆K = {distributions of polysize stores}.

polynomial in the security parameter

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Our semantics is polytime in the security parameter by definition.

8/ 15

Polytime Programs
Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

e, g ::= . . .

Type system:

▶ Assumption: ∆ ⊢ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: ∆ ⊢ P when P is polytime in its input.

▶ We only want those inputs that are polysize in the security parameter, so:

J∆K = {distributions of polysize stores}.

polynomial in the security parameter

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Our semantics is polytime in the security parameter by definition.

8/ 15

Polytime Programs
Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

e, g ::= . . .

Type system:

▶ Assumption: ∆ ⊢ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: ∆ ⊢ P when P is polytime in its input.

▶ We only want those inputs that are polysize in the security parameter, so:

J∆K = {distributions of polysize stores}.

polynomial in the security parameter

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Our semantics is polytime in the security parameter by definition.

8/ 15

Polytime Programs
Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

e, g ::= . . .

Type system:

▶ Assumption: ∆ ⊢ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: ∆ ⊢ P when P is polytime in its input.

▶ We only want those inputs that are polysize in the security parameter, so:

J∆K = {distributions of polysize stores}.

polynomial in the security parameter

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Our semantics is polytime in the security parameter by definition.

9/ 15

CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .
▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.
▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.

9/ 15

CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .
▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.
▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.

9/ 15

CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .
▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.
▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.

9/ 15

CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .

▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.
▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.

9/ 15

CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .
▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.

▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.

9/ 15

CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .
▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.
▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.

10/ 15

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

h |= ϕ ∗∗∗ ψ :⇔ ∃ h1, h2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.
▶ In CSL, independent variables are explicit in formulas.

d |= ((ϕ)Γ ∗∗∗ (ψ)Θ)∆ ⇒ variables of Γ and Θ are independent in d .

10/ 15

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

d |= ϕ ∗∗∗ ψ :⇔ ∃ d1, d2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.

▶ In CSL, independent variables are explicit in formulas.

d |= ((ϕ)Γ ∗∗∗ (ψ)Θ)∆ ⇒ variables of Γ and Θ are independent in d .

10/ 15

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

d |= ϕ ∗∗∗ ψ :⇔ ∃ d1, d2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.
▶ In CSL, independent variables are explicit in formulas.

d |= ((ϕ)Γ ∗∗∗ (ψ)Θ)∆ ⇒ variables of Γ and Θ are independent in d .

11/ 15

Deduction rules
Judgments:

{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules:
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

11/ 15

Deduction rules
Judgments:

{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules:
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

11/ 15

Deduction rules
Judgments:

{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules:
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

11/ 15

Deduction rules
Judgments:

{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules:
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

In PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

11/ 15

Deduction rules
Judgments:

{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules:
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

In PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

12/ 15

Difficulty with loops

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Soundness in classical Hoare logic:

12/ 15

Difficulty with loops

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Soundness in classical Hoare logic:

ϕ(0)

•

Property:

State:

ϕ(1)

•

JPK

⇒

assumption

ϕ(2)

•

JPK

. . .

. . .

JPK

ϕ(n)

•
JPK

⇒ ⇒ ⇒

assumption assumption assumption

12/ 15

Difficulty with loops

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Soundness in classical Hoare logic:

ϕ(0)

•

Property:

State:

ϕ(1)

•

JPK

⇒

assumption

ϕ(2)

•

JPK

. . .

. . .

JPK

ϕ(n)

•
JPK

⇒ ⇒ ⇒

assumption assumption assumption

12/ 15

Difficulty with loops

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Soundness in classical Hoare logic:

ϕ(0)

•

Property:

State:

ϕ(1)

•

JPK

⇒

assumption

ϕ(2)

•

JPK

. . .

. . .

JPK

ϕ(n)

•
JPK

⇒ ⇒ ⇒

assumption assumption assumption

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

Pre-condition:
unif d0ν0

unif d1 = JPK(d0)ν1
assumption

... . . .
unif dk = JPK(dk−1)νk

... . . .

νi = ni

2n ,

νn = nn

2n

necessary for negligibility: lim
n→∞

ν(n) = 0

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

Pre-condition:
unif d0ν0

unif d1 = JPK(d0)ν1
assumption

... . . .
unif dk = JPK(dk−1)νk

... . . .

νi = ni

2n ,

νn = nn

2n

necessary for negligibility: lim
n→∞

ν(n) = 0

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

Pre-condition:
unif d0ν0

unif d1 = JPK(d0)ν1
assumption

... . . .
unif dk = JPK(dk−1)νk

... . . .

νi = ni

2n ,

νn = nn

2n

necessary for negligibility: lim
n→∞

ν(n) = 0

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

Pre-condition:
unif d0ν0

unif d1 = JPK(d0)ν1
assumption

... . . .
unif dk = JPK(dk−1)νk

... . . .

νi = ni

2n ,

νn = nn

2n

necessary for negligibility: lim
n→∞

ν(n) = 0

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

Pre-condition:
unif d0ν0

unif d1 = JPK(d0)ν1
assumption

... . . .
unif dk = JPK(dk−1)νk

... . . .

νi = ni

2n ,

νn = nn

2n

necessary for negligibility: lim
n→∞

ν(n) = 0

13/ 15

Difficulty with loops
∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}

⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

n is the security parameter

In CSL:

ϕ(i) := a negligible function bounds the probability of distinguishing di from unif

Pre-condition:
unif d0ν0

unif d1 = JPK(d0)ν1
assumption

... . . .
unif dk = JPK(dk−1)νk

... . . .

νi = ni

2n , νn = nn

2n

necessary for negligibility: lim
n→∞

ν(n) = 0

14/ 15

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(cyph)){cyph:...})∆︸ ︷︷ ︸
computational secrecy

}

14/ 15

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

P

OTP := key ← unif(n);
cyph← msg ⊕ key .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(cyph)){cyph:...})∆︸ ︷︷ ︸
computational secrecy

}

14/ 15

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

POTP := key ← unif(n);
r ← g(key);
cyph← msg ⊕ r .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(cyph)){cyph:...})∆︸ ︷︷ ︸
computational secrecy

}

14/ 15

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

POTP := key ← unif(n);
r ← g(key);
cyph← msg ⊕ r .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(cyph)){cyph:...})∆︸ ︷︷ ︸
computational secrecy

}

15/ 15

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.

▶ The inference rules of CSL are similar to those of PSL.
▶ CSL can be used to prove computational secrecy, thanks to our Fay-style

characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

15/ 15

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.
▶ The inference rules of CSL are similar to those of PSL.

▶ CSL can be used to prove computational secrecy, thanks to our Fay-style
characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

15/ 15

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.
▶ The inference rules of CSL are similar to those of PSL.
▶ CSL can be used to prove computational secrecy, thanks to our Fay-style

characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

15/ 15

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.
▶ The inference rules of CSL are similar to those of PSL.
▶ CSL can be used to prove computational secrecy, thanks to our Fay-style

characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

