On Separation Logic, Computational Independence, and Pseudorandomness

Ugo Dal Lago^{1,2} <u>Davide Davoli</u>^{2,3} Bruce Kapron⁴

¹Università di Bologna ²INRIA

³Université Côte d'Azur ⁴University of Victoria

PLAS Workshop October 14th, 2024 – Salt Lake City, USA

Outline

- Introduction on separation logic.
- Barthe et al.'s separation logic for *probabilistic programs*.
- Our contribution: a separation logic for *computational cryptography*.

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about *heap* manipulating programs.

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about *heap* manipulating programs.

Separating conjunction:

$$h \models \phi * \psi$$
 : \Leftrightarrow $\exists h_1, h_2 \text{ s.t. } h_1 \models \phi, h_2 \models \psi$, and $h_1 \sqcup h_2 \sqsubseteq h$,

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about *heap* manipulating programs.

Separating conjunction:

$$h \models \phi * \psi \qquad :\Leftrightarrow \qquad \exists h_1, h_2 \text{ s.t. } h_1 \models \phi, h_2 \models \psi, \text{ and } h_1 \sqcup h_2 \sqsubseteq h,$$

$$\begin{array}{cccc} h_1 & h_2 & h_1 \sqcup h_2 & h \\ \hline x: 3 & & \\ \hline z: 1 & & \\ \hline z: 1 & & \\ \hline y: 4 & \\ \hline \end{array}$$

$$h_1 \models x = 3 \qquad h_2 \models z = 1 \qquad \qquad h \models x = 3 * z = 1$$

	Heap model (O'Hearn et. al)	Probabilistic model (Barthe et al.'s PSL)
Ц	Store union	
	Sub-store	
*	Locality	

	Heap model (O'Hearn et. al)	Probabilistic model (Barthe et al.'s PSL)
Ц	Store union	Tensor Product
⊑	Sub-store	Marginal Distribution
*	Locality	

	Heap model (O'Hearn et. al)	Probabilistic model (Barthe et al.'s PSL)
Ц	Store union	Tensor Product
⊑	Sub-store	Marginal Distribution
*	Locality	Statistical Independence

The interpretation of \sqcup and \sqsubseteq determines the semantics of *.

	Heap model (O'Hearn et. al)	Probabilistic model (Barthe et al.'s PSL)
Ц	Store union	Tensor Product
⊑	Sub-store	Marginal Distribution
*	Locality	Statistical Independence

Example

$$\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow \mathsf{unif}(n) \rrbracket \models \underbrace{\mathsf{U}(x) * \mathsf{U}(y)}_{x \text{ and } y \text{ are uniform and independent}}$$

The interpretation of \sqcup and \sqsubseteq determines the semantics of *.

	Heap model (O'Hearn et. al)	Probabilistic model (Barthe et al.'s PSL)
Ц	Store union	Tensor Product
⊑	Sub-store	Marginal Distribution
*	Locality	Statistical Independence

Example

$$\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow \mathsf{unif}(n) \rrbracket \models \underbrace{\mathbf{U}(x) * \mathbf{U}(y)}_{x \text{ and } y \text{ are uniform and independent}}$$
$$\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow x \rrbracket \not\models \mathbf{U}(x) * \mathbf{U}(y)$$

The interpretation of \sqcup and \sqsubseteq determines the semantics of *.

	Heap model (O'Hearn et. al)	Probabilistic model (Barthe et al.'s PSL)
Ц	Store union	Tensor Product
⊑	Sub-store	Marginal Distribution
*	Locality	Statistical Independence

Example

$$\llbracket x \leftarrow \operatorname{unif}(n); y \leftarrow \operatorname{unif}(n) \rrbracket \models \underbrace{\mathbf{U}(x) * \mathbf{U}(y)}_{x \text{ and } y \text{ are uniform and independent}}$$
$$\llbracket x \leftarrow \operatorname{unif}(n); y \leftarrow x \rrbracket \not\models \mathbf{U}(x) * \mathbf{U}(y)$$
$$\llbracket x \leftarrow \operatorname{unif}(n); y \leftarrow x \rrbracket \models \mathbf{U}(x) \land \mathbf{U}(y)$$

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Example (One Time Pad)

PSL can prove perfect secrecy.

 $\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n);\\ cyph \leftarrow msg \oplus key. \end{aligned}$

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Example (One Time Pad)

PSL can prove perfect secrecy.

 $\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n);\\ cyph \leftarrow msg \oplus key. \end{aligned}$

In **PSL**, the following judgment is derivable:

$$\vdash_{\mathsf{PSL}} \{\underbrace{\mathsf{D}(msg)}_{msg \text{ is defined}}\} \mathsf{OTP} \{\mathsf{D}(msg) * \mathsf{U}(cyph)\}$$

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Example (One Time Pad)

PSL can prove perfect secrecy.

 $\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n);\\ cyph \leftarrow msg \oplus key. \end{aligned}$

In **PSL**, the following judgment is derivable:

Property		Characterization	Logic
Perfect Secrecy	\Leftrightarrow	Statistical Independence	PSL
	[Shanno	n, 1940]	

	Property		Characterization	Logic
	Perfect Secrecy	\Leftrightarrow	Statistical Independence	PSL
_	[{	Shanı	non, 1940]	
Con	nputational Secrecy	\Leftrightarrow	Computational independence	?
	[Fay, 201	L5] (p	polysize circuits)	
			?	

Property	Characterization	Logic
$\begin{array}{c} Perfect \ Secrecy \Leftrightarrow \\ \end{array}$	Statistical Independence	PSL
[Shan	non, 1940]	
Computational Secrecy \Leftrightarrow	Computational independence	?
[Fay, 2015] (F this work (pol	oolysize circuits) ytime programs)	

	Property		Characterization	Logic
	Perfect Secrecy	\Leftrightarrow	Statistical Independence	PSL
		[Shanr	non, 1940]	
Сс	mputational Secre	cy ⇔	Computational independence	CSL
	[Fay, 2	2015] (p	olysize circuits)	
	this wo	rk (poly	ytime programs)	

PSL	CSL

	PSL	CSL
Ц	Tensor Product	Tensor Product

	PSL	CSL
Ц	Tensor Product	Tensor Product
$d_1 \sqsubseteq d_2$	d_1 is a marginal of d_2	

	PSL	CSL
Ц	Tensor Product	Tensor Product
$d_1 \sqsubseteq d_2$	$d_1 = \lambda x. \sum_y d_2(x, y)$	

	PSL	CSL
Ц	Tensor Product	Tensor Product
$d_1 \sqsubseteq d_2$	$d_1 = \lambda x. \sum_y d_2(x, y)$	$d_1 \approx \lambda x. \sum_y d_2(x, y)$

	PSL	CSL
Ц	Tensor Product	Tensor Product
$d_1 \sqsubseteq d_2$	$d_1 = \lambda x. \sum_y d_2(x, y)$	$d_1 \approx \lambda x. \sum_y d_2(x, y)$
Every <i>polytime</i> distingusher has <i>negligible</i> advantage on d_1 and $\lambda x . \sum_y d_2(x, y)$.		

The interpretation of \sqcup and \sqsubseteq determines the semantics of *.

	PSL	CSL
Ц	Tensor Product	Tensor Product
$d_1 \sqsubseteq d_2$	$d_1 = \lambda x. \sum_y d_2(x, y)$	$d_1 \approx \lambda x. \sum_y d_2(x, y)$
Every <i>polytime</i> distingusher has <i>negligible</i> advantage on d_1 and $\lambda x . \sum_y d_2(x, y)$.		

Theorem (Main Result)

The semantics of the separating conjunction (*) in **CSL** is equivalent to Fay's computational independence.

Syntax:

$$P, R ::= skip | r \leftarrow e | P; P | if r then P else P$$

 $e, g ::= \ldots$

Syntax:

P,R ::= skip $| r \leftarrow e | P; P |$ if r then P else P $e,g ::= \dots$ polynomial in the security parameter Type system: Assumption: $\Delta \vdash e : p(n)$ when e has size p(n) and is polytime-computable.

Syntax:

Type system:

• Assumption: $\Delta \vdash e : p(n)$ when e has size p(n) and is polytime-computable. Consequence: $\Delta \vdash P$ when P is polytime in its input.

Syntax:

$$P,R ::=$$
skip $| r \leftarrow e | P;P |$ if r then P else P

 $e,g ::= \dots$ polynomial in the security parameter

Type system:

- Assumption: $\Delta \vdash e : p(n)$ when e has size p(n) and is polytime-computable. Consequence: $\Delta \vdash P$ when P is polytime in its input.
- ▶ We only want those inputs that are polysize in the security parameter, so:

 $\llbracket \Delta \rrbracket = \{ \text{distributions of } polysize \text{ stores} \}.$

Syntax:

$$P,R ::=$$
skip $| r \leftarrow e | P;P |$ if r then P else P

 $e,g ::= \dots$ polynomial in the security parameter

Type system:

- Assumption: $\Delta \vdash e : p(n)$ when e has size p(n) and is polytime-computable. Consequence: $\Delta \vdash P$ when P is polytime in its input.
- ▶ We only want those inputs that are polysize in the security parameter, so:

 $\llbracket \Delta \rrbracket = \{ \text{distributions of } polysize \text{ stores} \}.$

Semantics:

$$\llbracket \Delta \vdash \mathtt{P} \rrbracket : \llbracket \Delta \rrbracket \to \llbracket \Delta \rrbracket$$

Our semantics is polytime in the security parameter by definition.

 $A ::= \mathsf{EQ}(e,g)$ $| \mathsf{CI}(e,g)$ $\llbracket e \rrbracket$ and $\llbracket g \rrbracket$ are the same distribution $\llbracket e \rrbracket$ and $\llbracket g \rrbracket$ are indistinguishable ($\llbracket e \rrbracket \approx \llbracket g \rrbracket$)

 $egin{aligned} A & ::= \mathbf{EQ}(e,g) \ & \mid \mathbf{CI}(e,g) \end{aligned} \ \phi & ::= (A)^{\Delta} \mid (\phi \wedge \psi)^{\Delta} \mid (\phi * \psi)^{\Delta} \end{aligned}$

 $\label{eq:states} \begin{array}{l} \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable } (\llbracket e \rrbracket \approx \llbracket g \rrbracket) \end{array}$

 $\begin{array}{ll} A ::= \mathbf{EQ}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are the same distribution} \\ & | \mathbf{CI}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are indistinguishable } ([\![e]\!] \approx [\![g]\!]) \\ \phi ::= (A)^{\Delta} \mid (\phi \wedge \psi)^{\Delta} \mid (\phi * \psi)^{\Delta} \end{array}$

Environments constraint the interpretation of formulas to some specific distributions...

$$oldsymbol{d} \models (\phi)^{\Delta}$$
 whenever $oldsymbol{d} \in \llbracket \Delta
rbracket$ and $oldsymbol{d} \models \phi$

 $\begin{array}{ll} A ::= \mathbf{EQ}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are the same distribution} \\ & | \mathbf{CI}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are indistinguishable } ([\![e]\!] \approx [\![g]\!]) \\ \phi ::= (A)^{\Delta} \mid (\phi \wedge \psi)^{\Delta} \mid (\phi * \psi)^{\Delta} \end{array}$

Environments constraint the interpretation of formulas to some specific distributions...

$$d\models (\phi)^\Delta$$
 whenever $d\in \llbracket \Delta
rbracket$ and $d\models \phi$

...that define all the variables of the formula, thanks to the following conditions:

For
$$(A(e,g))^{\Delta}$$
, we impose $\Delta \vdash e : \tau, \Delta \vdash g : \tau$.

 $\begin{array}{ll} A ::= \mathbf{EQ}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are the same distribution} \\ & | \mathbf{CI}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are indistinguishable } ([\![e]\!] \approx [\![g]\!]) \\ \phi ::= (A)^{\Delta} \mid (\phi \wedge \psi)^{\Delta} \mid (\phi * \psi)^{\Delta} \end{array}$

Environments constraint the interpretation of formulas to some specific distributions...

$$d\models (\phi)^\Delta$$
 whenever $d\in \llbracket \Delta
rbracket$ and $d\models \phi$

...that define all the variables of the formula, thanks to the following conditions:

 $\begin{array}{ll} A ::= \mathbf{EQ}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are the same distribution} \\ & | \mathbf{CI}(e,g) & [\![e]\!] \text{ and } [\![g]\!] \text{ are indistinguishable } ([\![e]\!] \approx [\![g]\!]) \\ \phi ::= (A)^{\Delta} \mid (\phi \wedge \psi)^{\Delta} \mid (\phi * \psi)^{\Delta} \end{array}$

Environments constraint the interpretation of formulas to some specific distributions...

$$d\models (\phi)^\Delta$$
 whenever $d\in \llbracket \Delta
rbracket$ and $d\models \phi$

...that define all the variables of the formula, thanks to the following conditions:

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

$$h \models \phi * \psi$$
 : \Leftrightarrow $\exists \underbrace{h_1, h_2}_{\text{what is their domain?}}$ s.t...

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

$$d \models \phi * \psi \qquad :\Leftrightarrow \qquad \exists \underbrace{d_1, d_2}_{\text{what is their domain?}} \text{s.t...}$$

▶ In **PSL**, we do not know which variables are independent.

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

$$d \models \phi * \psi \qquad :\Leftrightarrow \qquad \exists \underbrace{d_1, d_2}_{\text{what is their domain?}} \text{s.t...}$$

▶ In **PSL**, we do not know which variables are independent.

▶ In **CSL**, independent variables are *explicit in formulas*.

 $d \models ((\phi)^{\Gamma} * (\psi)^{\Theta})^{\Delta} \Rightarrow$ variables of Γ and Θ are independent in d.

Judgments:

$$\{(\phi)^{\Delta}\} \Delta \vdash \mathsf{P} \{(\psi)^{\Delta}\}$$

Judgments:

 $\{(\phi)^{\Delta}\} \Delta \vdash \mathbb{P} \{(\psi)^{\Delta}\}$ For every $d \in \llbracket \Delta \rrbracket$, if $d \models \phi$, then $\llbracket \Delta \vdash \mathbb{P} \rrbracket(d) \models \psi$.

Judgments:

 $\{(\phi)^{\Delta}\} \Delta \vdash P \{(\psi)^{\Delta}\}$ For every $d \in \llbracket \Delta \rrbracket$, if $d \models \phi$, then $\llbracket \Delta \vdash P \rrbracket(d) \models \psi$. **Rules:**

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{(\top)^{\Delta}\} \Delta \vdash r \leftarrow e \{(\mathsf{EQ}(r, e))^{\Delta}\}} \text{ Asgn}$$

Judgments:

 $\{(\phi)^{\Delta}\} \Delta \vdash P \{(\psi)^{\Delta}\}$ For every $d \in \llbracket \Delta \rrbracket$, if $d \models \phi$, then $\llbracket \Delta \vdash P \rrbracket(d) \models \psi$. Rules:

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{(\top)^{\Delta}\} \Delta \vdash r \leftarrow e \{(\mathsf{EQ}(r, e))^{\Delta}\}} \operatorname{Asgn}$$
In **PSL**:
$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{\top\} r \leftarrow e \{\mathsf{EQ}(r, e)\}} \operatorname{Asgn}$$

Judgments:

 $\{(\phi)^{\Delta}\} \Delta \vdash P \{(\psi)^{\Delta}\}$ For every $d \in \llbracket \Delta \rrbracket$, if $d \models \phi$, then $\llbracket \Delta \vdash P \rrbracket(d) \models \psi$. Rules:

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{(\top)^{\Delta}\} \ \Delta \vdash r \leftarrow e \ \{(\mathsf{EQ}(r, e))^{\Delta}\}} \ \mathsf{Asgn}$$

$$\boxed{ \ln \mathsf{PSL}: \ \frac{r \notin \mathsf{FV}(e)}{\vdash \{\top\} \ r \leftarrow e \ \{\mathsf{EQ}(r, e)\}} \ \mathsf{Asgn}}$$

$$\frac{\vdash \{(\phi)^{\Gamma}\} \ \Gamma \vdash \mathsf{P} \ \{(\psi)^{\Gamma}\}}{\vdash \{((\phi)^{\Gamma} \ast (\xi)^{\Theta})^{\Delta}\} \ \Delta \vdash \mathsf{P} \ \{(\psi)^{\Gamma} \ast (\xi)^{\Theta})^{\Delta}\}} \ \mathsf{Frame}$$

$$\frac{\forall i \vdash \{\phi(i)\} \mathtt{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \mathtt{ for } i = 0 \mathtt{ to } n \mathtt{ do } \mathtt{P} \{\phi(n)\}}$$

Soundness in classical Hoare logic:

$$\frac{\forall i. \vdash \{\phi(i)\} \mathtt{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \mathtt{ for } i = 0 \mathtt{ to } n \mathtt{ do } \mathtt{P} \{\phi(n)\}}$$

Soundness in classical Hoare logic:

State: • Property: $\phi(0)$

$$\frac{\forall i \vdash \{\phi(i)\} \mathtt{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \mathtt{ for } i = 0 \mathtt{ to } n \mathtt{ do } \mathtt{P} \{\phi(n)\}}$$

Soundness in classical Hoare logic:

$$\frac{\forall i \vdash \{\phi(i)\} \mathtt{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \mathtt{ for } i = 0 \mathtt{ to } n \mathtt{ do } \mathtt{P} \{\phi(n)\}}$$

Soundness in classical Hoare logic:

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \operatorname{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \operatorname{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \operatorname{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \operatorname{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

Pre-condition:

unif $\leftarrow \nu_0 \rightarrow d_0$

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \operatorname{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \operatorname{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

Pre-condition:

 $\left.\begin{array}{l} \textit{unif } \leftarrow \nu_0 \rightarrow \quad d_0 \\ \textit{unif } \leftarrow \nu_1 \longrightarrow d_1 = \llbracket \mathbb{P} \rrbracket(d_0) \end{array}\right\} \text{ assumption}$

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \operatorname{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \operatorname{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

Pre-condition:

 $\left.\begin{array}{l} unif \leftarrow \nu_{0} \rightarrow d_{0} \\ unif \leftarrow \nu_{1} \longrightarrow d_{1} = \llbracket \mathbb{P} \rrbracket(d_{0}) \end{array}\right\} \text{ assumption} \\ \vdots \\ unif \leftarrow \nu_{k} \longrightarrow d_{k} = \llbracket \mathbb{P} \rrbracket(d_{k-1}) \\ \vdots \\ \end{array}$

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \mathbb{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \mathbb{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

Pre-condition:

$$\begin{array}{c} unif \leftarrow \nu_{0} \rightarrow d_{0} \\ unif \leftarrow \nu_{1} \longrightarrow d_{1} = \llbracket \mathbb{P} \rrbracket (d_{0}) \end{array} \right\} \text{ assumption} \qquad \qquad \nu_{i} = \frac{n^{i}}{2^{n}}, \\ \vdots & & \\ unif \leftarrow \nu_{k} \longrightarrow d_{k} = \llbracket \mathbb{P} \rrbracket (d_{k-1}) \\ \vdots & & \\ \end{array}$$

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \mathbb{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \mathbb{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

Pre-condition:

$$\begin{array}{c} unif \leftarrow \nu_0 \rightarrow \ d_0 \\ unif \leftarrow \nu_1 \longrightarrow \ d_1 = \llbracket \mathbb{P} \rrbracket(d_0) \end{array} \right\} \text{ assumption } \nu_i = \frac{n^i}{2^n}, \\ \vdots & \ddots \\ unif \leftarrow \cdots \\ \nu_k \longrightarrow \ d_k = \llbracket \mathbb{P} \rrbracket(d_{k-1}) \\ \vdots & \ddots \end{array}$$
 necessary for negligibility:
$$\lim_{n \to \infty} \nu(n) = 0$$

n is the security parameter

$$\frac{\forall i. \vdash \{\phi(i)\} \operatorname{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \operatorname{P} \{\phi(n)\}}$$

In CSL:

 $\phi(i) :=$ a negligible function bounds the probability of distinguishing d_i from unif

Pre-condition:

$$\begin{array}{c} unif \leftarrow \nu_0 \rightarrow \ d_0 \\ unif \leftarrow \nu_1 \longrightarrow \ d_1 = \llbracket \mathbb{P} \rrbracket(d_0) \end{array} \right\} \text{ assumption } \nu_i = \frac{n^i}{2^n}, \quad \nu_n = \frac{n^n}{2^n} \\ \vdots \\ unif \leftarrow \dots \\ \nu_k \longrightarrow \ d_k = \llbracket \mathbb{P} \rrbracket(d_{k-1}) \\ \vdots \\ \end{array}$$
 necessary for negligibility:
$$\lim_{n \rightarrow \infty} \nu(n) = \sum_{n \rightarrow \infty} \nu(n)$$

.

0

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

 $\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n); \\ cyph \leftarrow msg \oplus key. \end{aligned}$

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

```
POTP := key \leftarrow unif(n);

r \leftarrow g(key);

cyph \leftarrow msg \oplus r.
```

g is a *pseudorandom* generator.

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

```
POTP := key \leftarrow unif(n);

r \leftarrow g(key);

cyph \leftarrow msg \oplus r.
```

g is a *pseudorandom* generator.

$$\vdash_{\mathsf{CSL}} \{(\top)^{\Delta}\} \Delta \vdash_{\mathsf{POTP}} \{\underbrace{((\top)^{\{\mathit{msg:...}\}} * (\mathsf{CU}(\mathit{cyph}))^{\{\mathit{cyph:...}\}})^{\Delta}}_{\mathsf{computational secrecy}} \}$$

Conclusion

CSL is a separation logic for *computational independence*.

Conclusion

- **CSL** is a separation logic for *computational independence*.
- ▶ The inference rules of **CSL** are similar to those of **PSL**.

Conclusion

- **CSL** is a separation logic for *computational independence*.
- ▶ The inference rules of **CSL** are similar to those of **PSL**.
- CSL can be used to prove *computational secrecy*, thanks to our Fay-style characterization.

Conclusion

- ► CSL is a separation logic for *computational independence*.
- ► The inference rules of **CSL** are similar to those of **PSL**.
- CSL can be used to prove *computational secrecy*, thanks to our Fay-style characterization.

Future work

Extend the language supported by CSL with for-loops.