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Outline

P Introduction on separation logic.
> Barthe et al's separation logic for probabilistic programs.

» Qur contribution: a separation logic for computational cryptography.
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Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Probabilistic model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality Statistical Independence

Example

[x <= unif(n); y <= unif(n)] = U(x) * U(y)
x and y are uniform and independent

[x <= unif(n); y < x] = U(x) * U(y)

[x <= unif(n); y < x] = U(x) AU(y)
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Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL
U Tensor Product Tensor Product
diCd di = Mx. Zy da(x,y) di =~ Ax. Zy da(x,y)
-~

=

Every polytime distingusher has negligible
advantage on di and Ax.3>, da(x, y).

Theorem (Main Result)

The semantics of the separating conjunction (x) in CSL is equivalent to Fay's
computational independence.
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Polytime Programs

Syntax:
P,R = skip |r <« e|P;P|if r thenP else P

&8 1= ... polynomial in the security parameter

Type system:

» Assumption: A+ e : p(n) when e has size p(n) and is polytime-computable.
Consequence: A F P when P is polytime in its input.

> We only want those inputs that are polysize in the security parameter, so:
[A] = {distributions of polysize stores}.

Semantics:
[AFP]:[A] — [A]

Our semantics is polytime in the security parameter by definition.
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CSL’s Syntax and Semantics

A:=EQ(e, g) [e] and [g] are the same distribution
| Cl(e, g) [e] and [g] are indistinguishable ([e] =~ [g])

¢ = (A2 [ (e AY)2 | (¢ * )2
Environments constraint the interpretation of formulas to some specific distributions...
d = () whenever d € [A] and d = ¢

...that define all the variables of the formula, thanks to the following conditions:

> For (A(e,g))?, we impose AFe:7, Al g:T.
> For ()" A (x)®)2, T and © must be smaller than A.
*

(@)
> For ((#)" * (¢)®)2, T and © must also be disjoint.
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Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d):(;ﬁ*w = ddi,drs.t....
what is their domain?

» In PSL, we do not know which variables are independent.

» In CSL, independent variables are explicit in formulas.

dE (¢)" * (1)®)A = variables of I and © are independent in d.
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Deduction rules

Judgments:

{(@%} AP {@)%}
For every d € [A], if d = ¢, then [A + P](d) E ¥.

Rules:
r & FV(e)

F{T)2} AF r<+ e {(EQ(r,e))?}

Asgn

r & FV(e)

In PSL: F{T} r<« e{EQ(r,e)}

Asgn

F{(®) 3 TEP{(¥)}
F{(0) %(6)°)2F A FP{(()" * (§)°)*}

Frame
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Difficulty with loops

Vi F {o(1)} P {o(i + 1)}
F{¢(0)} for i =0 to ndo P {¢p(n)}

Soundness in classical Hoare logic:

[P] [P] [F] [P]
State: 0/\0/\0/—\.../—\"0
Property:  ¢(0) = ¢(1) = ¢ = ... = ¢

assumption assumption assumption assumption
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n is the security parameter

Vi - {#(i)} P {¢(i + 1)}
- {¢(0)} for i =0 to ndo P {¢(n)}/

In CSL:
¢(i) := a negligible function bounds the probability of distinguishing d; from unif

Pre-condition:

unif < Y - do )
assumption _n _n
unif «— 11— dy = [[P]](d()) Vi = on’ Vn = on

unif Vik di = [P](dk-1)
_ _ necessary for negligibility: nIl_)ngo v(n)=0
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Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of the One Time Pad.

POTP := key < unif(n);

r + g(key);
cyph < msg @ r.

g is a pseudorandom generator.

Fest {(T)2) A+ POTP {((T)Im8} & (CU(cyph))iorh-1)AY

computational secrecy
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Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.

» CSL can be used to prove computational secrecy, thanks to our Fay-style
characterization.

Future work
» Extend the language supported by CSL with for-loops.



