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Outline

▶ Introduction on separation logic.
▶ Barthe et al.’s separation logic for probabilistic programs.
▶ Our contribution: a separation logic for computational cryptography.
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Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t. h1 |= ϕ, h2 |= ψ, and h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3
z: 1

h1 ⊔⊔⊔ h2

x: 3
z: 1
y: 4

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1
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Probabilistic Separation Logic (PSL) (1/2)
The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Probabilistic model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union
⊑⊑⊑ Sub-store
∗∗∗ Locality

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)
Jx ← unif(n); y ← xK |= U(x) ∧U(y)
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Probabilistic Separation Logic (PSL) (2/2)
Probabilistic Separtation Logic can be used to support Hoare style reasoning on
cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
cyph← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {}
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Towards a Computational Version of PSL

Property Characterization Logic
Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔

[Shannon, 1940]

[Fay, 2015] (polysize circuits)
?
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Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is equivalent to Fay’s
computational independence.
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Polytime Programs
Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

e, g ::= . . .

Type system:

▶ Assumption: ∆ ⊢ e : p(n) when e has size p(n) and is polytime-computable.

Consequence: ∆ ⊢ P when P is polytime in its input.

▶ We only want those inputs that are polysize in the security parameter, so:

J∆K = {distributions of polysize stores}.

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Our semantics is polytime in the security parameter by definition.
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CSL’s Syntax and Semantics

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Environments constraint the interpretation of formulas to some specific distributions...

d |= (ϕ)∆ whenever d ∈ J∆K and d |= ϕ

...that define all the variables of the formula, thanks to the following conditions:

▶ For (A(e, g))∆, we impose ∆ ⊢ e : τ , ∆ ⊢ g : τ .
▶ For ((ϕ)Γ ∧ (ψ)Θ)∆, Γ and Θ must be smaller than ∆.
▶ For ((ϕ)Γ ∗∗∗ (ψ)Θ)∆, Γ and Θ must also be disjoint.
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Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

h |= ϕ ∗∗∗ ψ :⇔ ∃ h1, h2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.
▶ In CSL, independent variables are explicit in formulas.

d |= ((ϕ)Γ ∗∗∗ (ψ)Θ)∆ ⇒ variables of Γ and Θ are independent in d .
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Deduction rules
Judgments:

{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules:
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame
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Difficulty with loops

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Soundness in classical Hoare logic:
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