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The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product

C Sub-store Marginal Distribution

* Locality Statistic Independence
Example

[x <= unif(n); y <= unif(n)] = U(x) * U(y)
—_———
x and y are uniform and independent

[x < unif(n); y + x] = U(x) * U(y)
([[X « unif(n);y < x] E U(x) A U(y))
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Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key < unif(n);
chip <+ msg @ key.

In PSL, the following judgment is derivable:

FpsL {D(msg)} OTP {D(msg) * U(chip)}

msg is defined perfect secrecy
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Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL
U Tensor Product Tensor Product
diCd di = Mx. Zy da(x,y) di =~ \x. Zy da(x,y)
-~

=

Every polytime distingusher has negligible
advantage on di and Ax.3>, da(x, y).

Theorem (Main Result)

The semantics of the separating conjunction (x) in CSL is
equivalent to Fay’s computational independence.
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Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Type system:

» A : Variables — Size (in terms of the security parameter n).
» A F P when P is polytime in its input.
» [A] = {distributions of polysize stores}

Semantics:

[AFP]:[A] — [A]

Programs are polytime in the security parameter by construction.
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CSL’s Syntax and Semantics

Atomic propositions:

A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

Formulas:

¢ = (A2 | (@ AY)A | (6% ¥)2

» We want to interpret formulas only on those distribution
where they have a meaning.

> d = (¢)2 means d € [A] and d = 6.
» The environments of ¢ and ¢ are always smaller than A

> They must also be disjoint for *.
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Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d':(b*dj = ddi,dos.t. ...
——

what is their domain?

» In PSL, we do not know which variables are independent.

» CSL formulas tell us which variables are independent.

((¢)" * (¥)®)2 is a formula = T and © have disjoint domains.
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CSL's Rules

Judgments

{(@%) AP {()%}
For every d € [A], if d |= ¢, then [A - P](d) = 9.

Rules
r & FV(e)

F{T)AYAF r+ e {(EQ(r,e))?}
F{(®)} TEP{W)}
F{((0) %(6)°)2} A FP {(()" * (§)°)4}

Asgn

Frame

in PSL:
r & FV(e)

F{T}r+ e{EQ(r,e)}

Asgn
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Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

Vi {o(i)} P {o(i + 1)}
F{#(0)} for i =0 to ndo P {¢(n)}

Example

o(i) := CU(e) e; is computationally uniform.
Assume:
= {CU(e)} P {CU(eit1)}-
N———— )
with negligible advantage n' /2"

After n iterations, the bound on the advantage is: n"/2".
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Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.
POTP := key < unif(n);
r < g(key);
chip < msg @ r.

g is a pseudorandom generator.

FesL {(T)2} A+ POTP {((T){m% « (CU(chip))ichie-1)2}
computational secrecy
FpsL {D(msg)} OTP {D(msg) * U(chip)}
N——

msg is defined perfect secrecy
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Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.

» CSL can be used to prove computational secrecy, thanks to
our Fay-style characterization.

Future work
» Extend the language supported by CSL with for-loops.



