On Separation Logic, Computational
Independence, and Pseudorandomness

Ugo Dal Lago Davide Davoli Bruce Kapron

37t IEEE Computer Security Foundations Symposium
July 8-12, 2024 — Enschede, The Netherlands

ECOLE UNIVERSITAIRE DE RECHERCHE

UNl\/ERS'TE ‘ SYSTEMES NUMERIQUES ey ’
COTEDAZUR | pOUR LHUMAIN RCJ hua/_

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

his ¢ x

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h}:(b*?/) =

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.
Separating conjunction:
hiE¢*xvy & Fhy,ho
hy h

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.
Separating conjunction:
hiE¢*xvy & Fhy, hy st h1 E¢and hy =9
hy hy

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h}:(ﬁ*?/) & dhy, hy st hl):gbandhg)zz/)
hy hy

hlliX:?) hg):Z::l

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

hiE¢*xvy & Fhy,hy st.hy U hy C hh = ¢ and hy E ¢

h ho

hlliX:?) hg):Z::l

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

hiE¢*xvy & Fhy,hy st.hy U hy C hh = ¢ and hy E ¢

h ho hi U ho h
e] [me
C |y: 4

’z 1 ‘ ’z 1 ‘ z: 1

Separation Logic [Reynolds and O'Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

hiE¢*xvy & Fhy,hy st.hy U hy C hh = ¢ and hy E ¢

h ho hi U ho h
e] [me
C |y: 4

’z 1 ‘ ’z 1 ‘ z: 1

hEx=3 hh =z=1 hEx=3%z=1

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

Store union

Sub-store

* M C

Locality

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

Store union Tensor Product

Sub-store

* M C

Locality

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product
C Sub-store Marginal Distribution
* Locality Statistic Independence

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product

C Sub-store Marginal Distribution

* Locality Statistic Independence
Example

[x <= unif(n); y <= unif(n)] = U(x) * U(y)

x and y are uniform and independent

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product

C Sub-store Marginal Distribution

* Locality Statistic Independence
Example

[x <= unif(n); y <= unif(n)] = U(x) * U(y)
—_———
x and y are uniform and independent

[x < unif(n); y + x] = U(x) * U(y)

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of LI and C determines the semantics of .

Heap model Distribution model
(O’Hearn et. al) (Barthe et al’s PSL)

u Store union Tensor Product

C Sub-store Marginal Distribution

* Locality Statistic Independence
Example

[x <= unif(n); y <= unif(n)] = U(x) * U(y)
—_———
x and y are uniform and independent

[x < unif(n); y + x] = U(x) * U(y)
([[X « unif(n);y < x] E U(x) A U(y))

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key < unif(n);
chip <+ msg @ key.

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key < unif(n);
chip <+ msg @ key.

In PSL, the following judgment is derivable:

FpsL {D(msg)} OTP {D(msg) * U(chip)}

msg is defined

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key < unif(n);
chip <+ msg @ key.

In PSL, the following judgment is derivable:

FpsL {D(msg)} OTP {D(msg) * U(chip)}

msg is defined perfect secrecy

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Towards a Computational Version of PSL

Property Characterization

Perfect Secrecy & Statistical Independence

v

[Shannon, 1940]

Computational Secrecy ?

Logic
PSL

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy Computational independence

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence

~

[Fay, 2015] (for families of polysize circuits)

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence

~

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence ?

~

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy & Statistical Independence PSL

~

[Shannon, 1940]

Computational Secrecy < Computational independence CSL

~

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

(N} Tensor Product Tensor Product

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

(N} Tensor Product Tensor Product

di C ds d; is a marginal of d;

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

(N} Tensor Product Tensor Product
dlgdg dlz)\X.Zydz(X7y)

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL

(N} Tensor Product Tensor Product
di C d> di = Ax. Zy da(x,y) di =~ Ax. Zy da(x,y)

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL
u Tensor Product Tensor Product
di C dp di = Ax.> 0, do(x, y) dl/z Ax. Y2, da(x,y)
=

Every polytime distingusher has negligible
advantage on di and Ax.3>, da(x, y).

Cryptographic Separation Logic (CSL)

The interpretation of LI and C determines the semantics of .

PSL CSL
U Tensor Product Tensor Product
diCd di = Mx. Zy da(x,y) di =~ \x. Zy da(x,y)
-~

=

Every polytime distingusher has negligible
advantage on di and Ax.3>, da(x, y).

Theorem (Main Result)

The semantics of the separating conjunction (x) in CSL is
equivalent to Fay’s computational independence.

Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Type system:

Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Type system:

» A : Variables — Size (in terms of the security parameter n).

Polytime Programs

Syntax:
P,R:= skip | r < e|P;P | if r thenP else P

Type system:

» A : Variables — Size (in terms of the security parameter n).

» A F P when P is polytime in its input.

Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Type system:

» A : Variables — Size (in terms of the security parameter n).
» A F P when P is polytime in its input.
» [A] = {distributions of polysize stores}

Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Type system:

» A : Variables — Size (in terms of the security parameter n).
» A F P when P is polytime in its input.
» [A] = {distributions of polysize stores}

Semantics:
[AFP]:[A] — [A]

Polytime Programs

Syntax:

P,R:= skip | r < e|P;P | if r thenP else P

Type system:

» A : Variables — Size (in terms of the security parameter n).
» A F P when P is polytime in its input.
» [A] = {distributions of polysize stores}

Semantics:

[AFP]:[A] — [A]

Programs are polytime in the security parameter by construction.

CSL's Syntax and Semantics

Atomic propositions:

CSL's Syntax and Semantics

Atomic propositions:

A:=EQ(e, g) [e] and [g] are the same distribution

CSL's Syntax and Semantics

Atomic propositions:

A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

CSL's Syntax and Semantics

Atomic propositions:

A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

Formulas:

¢ = (A2 | (@ AY)A | (6% ¥)2

CSL’s Syntax and Semantics

Atomic propositions:

A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

Formulas:

¢ = (A2 | (@ AY)A | (6% ¥)2

» We want to interpret formulas only on those distribution
where they have a meaning.

CSL’s Syntax and Semantics

Atomic propositions:
A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

Formulas:

¢ = (A2 | (@ AY)A | (6% ¥)2

» We want to interpret formulas only on those distribution
where they have a meaning.

> d = (¢)2 means d € [A] and d = 6.

CSL’s Syntax and Semantics

Atomic propositions:
A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

Formulas:

¢ = (A2 | (@ AY)A | (6% ¥)2

» We want to interpret formulas only on those distribution
where they have a meaning.

> d = (¢)2 means d € [A] and d = 6.

» The environments of ¢ and ¢ are always smaller than A

CSL’s Syntax and Semantics

Atomic propositions:

A:=EQ(e,g) [e] and [g] are the same distribution
| Cl(e,g) [e] and [g] are indistinguishable ([e] =~ [g])

Formulas:

¢ = (A2 | (@ AY)A | (6% ¥)2

» We want to interpret formulas only on those distribution
where they have a meaning.

> d = (¢)2 means d € [A] and d = 6.
» The environments of ¢ and ¢ are always smaller than A

> They must also be disjoint for *.

Typed Separating Conjunctions

The standard interpretation of % is ambiguous:

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

h):(ﬁ*lb = dh1, hos.t. ...
——

what is their domain?

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d':(b*dj = ddi,dos.t. ...
——

what is their domain?

» In PSL, we do not know which variables are independent.

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d':(b*dj = ddi,dos.t. ...
——

what is their domain?

» In PSL, we do not know which variables are independent.

((¢)" * (¥)®)2 is a formula = T and © have disjoint domains.

Typed Separating Conjunctions

The standard interpretation of * is ambiguous:

d':(b*dj = ddi,dos.t. ...
——

what is their domain?

» In PSL, we do not know which variables are independent.

» CSL formulas tell us which variables are independent.

((¢)" * (¥)®)2 is a formula = T and © have disjoint domains.

CSL'’s Rules

Judgments

{(9)} AP {(v)?}

CSL'’s Rules

Judgments

{(@%) AP {()%}
For every d € [A], if d |= ¢, then [A - P](d) = 9.

CSL's Rules

Judgments

{(@%) AP {()%}
For every d € [A], if d |= ¢, then [A - P](d) = 9.

Rules
r & FV(e)

F{T)AYAF r+ e {(EQ(r,e))?}

Asgn

CSL's Rules

Judgments

{(@%) AP {()%}
For every d € [A], if d |= ¢, then [A - P](d) = 9.

Rules
r & FV(e)

F{T)AYAF r+ e {(EQ(r,e))?}

Asgn

in PSL:
r & FV(e)

F{T}r+ e{EQ(r,e)}

Asgn

CSL's Rules

Judgments

{(@%) AP {()%}
For every d € [A], if d |= ¢, then [A - P](d) = 9.

Rules
r & FV(e)

F{T)AYAF r+ e {(EQ(r,e))?}
F{(®)} TEP{W)}
F{((0) %(6)°)2} A FP {(()" * (§)°)4}

Asgn

Frame

in PSL:
r & FV(e)

F{T}r+ e{EQ(r,e)}

Asgn

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

vi. - {¢()} P {e(i+ 1)}
F{#(0)} for i =0 to ndo P {¢(n)}

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

vi. - {¢()} P {e(i+ 1)}
F{#(0)} for i =0 to ndo P {¢(n)}

Example

o(i) := CU(e) e; is computationally uniform.

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

Vi {o(i)} P {o(i + 1)}
F{#(0)} for i =0 to ndo P {¢(n)}

Example

o(i) := CU(e) e; is computationally uniform.

Assume:
= {CU(e)} P {CU(ei+1)}-
N———

with negligible advantage n’/2"

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

Vi {o(i)} P {o(i + 1)}
F{#(0)} for i =0 to ndo P {¢(n)}

Example

o(i) := CU(e) e; is computationally uniform.
Assume:
= {CU(e)} P {CU(eit1)}-
N————)
with negligible advantage n' /2"

After n iterations, the bound on the advantage is: n"/2".

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

OTP := key < unif(n);
chip < msg & key.

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

POTP := key <« unif(n);

r < g(key);
chip < msg @ r.

g is a pseudorandom generator.

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

POTP := key <« unif(n);

r < g(key);
chip < msg @ r.

g is a pseudorandom generator.

Fest {(T)2} A F POTP {((T) ™)+ (CU(chip))("P-1)4}

computational secrecy

Pseudo One Time Pad

The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.
POTP := key < unif(n);
r < g(key);
chip < msg @ r.

g is a pseudorandom generator.

FesL {(T)2} A+ POTP {((T){m% « (CU(chip))ichie-1)2}
computational secrecy
FpsL {D(msg)} OTP {D(msg) * U(chip)}
N——

msg is defined perfect secrecy

Conclusion and Future Work

Conclusion

» CSL is a separation logic for computational independence.

Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.

» The inference rules of CSL are similar to those of PSL.

Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.

» CSL can be used to prove computational secrecy, thanks to
our Fay-style characterization.

Conclusion and Future Work

Conclusion
» CSL is a separation logic for computational independence.
» The inference rules of CSL are similar to those of PSL.

» CSL can be used to prove computational secrecy, thanks to
our Fay-style characterization.

Future work
» Extend the language supported by CSL with for-loops.

