
1/ 13

On Separation Logic, Computational
Independence, and Pseudorandomness

Ugo Dal Lago Davide Davoli Bruce Kapron

37th IEEE Computer Security Foundations Symposium
July 8-12, 2024 – Enschede, The Netherlands

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2

s.t.

h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ

:⇔ ∃h1, h2

s.t.

h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2

s.t.h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2

s.t.h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t.

h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,

h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t.

h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,

h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t.h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t.h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

2/ 13

Separation Logic [Reynolds and O’Hearn, 2002]

Introduced to reason about heap manipulating programs.

Separating conjunction:

h |= ϕ ∗∗∗ ψ :⇔ ∃h1, h2 s.t.h1 ⊔⊔⊔ h2 ⊑⊑⊑ h,h1 |= ϕ and h2 |= ψ

x: 3

h1

z: 1

h2

h1 |= x = 3 h2 |= z = 1

x: 3

z: 1

h1 ⊔⊔⊔ h2

x: 3
y: 4

z: 1

h

⊑⊑⊑

h |= x = 3 ∗∗∗ z = 1

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union
⊑⊑⊑ Sub-store
∗∗∗ Locality

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store
∗∗∗ Locality

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistic Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistic Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistic Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)

(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

3/ 13

Probabilistic Separation Logic (PSL) (1/2)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

Heap model
(O’Hearn et. al)

Distribution model
(Barthe et al.’s PSL)

⊔⊔⊔ Store union Tensor Product
⊑⊑⊑ Sub-store Marginal Distribution
∗∗∗ Locality Statistic Independence

Example

Jx ← unif(n); y ← unif(n)K |= U(x) ∗∗∗ U(y)︸ ︷︷ ︸
x and y are uniform and independent

Jx ← unif(n); y ← xK ̸|= U(x) ∗∗∗ U(y)(
Jx ← unif(n); y ← xK |= U(x) ∧U(y)

)

4/ 13

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
chip ← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {}

4/ 13

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
chip ← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {}

4/ 13

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
chip ← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)}

4/ 13

Probabilistic Separation Logic (PSL) (2/2)

Probabilistic Separtation Logic can be used to support Hoare style
reasoning on cryptographic primitives.

Example (One Time Pad)
PSL can prove perfect secrecy.

OTP := key ← unif(n);
chip ← msg ⊕ key .

In PSL, the following judgment is derivable:

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)︸ ︷︷ ︸
perfect secrecy

}

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy ?

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)
This work (for polytime programs)

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔ ?

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)
This work (for polytime programs)

5/ 13

Towards a Computational Version of PSL

Property Characterization Logic

Perfect Secrecy Statistical Independence⇔ PSL

Computational Secrecy Computational independence⇔ CSL

[Shannon, 1940]

[Fay, 2015] (for families of polysize circuits)
This work (for polytime programs)

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product

d1 ⊑⊑⊑ d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 is a marginal of d2

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y)

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y) d1 ≈≈≈ λx .

∑
y d2(x , y)

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y) d1 ≈≈≈ λx .

∑
y d2(x , y)

Every polytime distingusher has negligible
advantage on d1 and λx .

∑
y d2(x , y).

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

6/ 13

Cryptographic Separation Logic (CSL)

The interpretation of ⊔⊔⊔ and ⊑⊑⊑ determines the semantics of ∗∗∗.

PSL CSL

⊔⊔⊔ Tensor Product Tensor Product
d1 ⊑⊑⊑ d2 d1 = λx .

∑
y d2(x , y) d1 ≈≈≈ λx .

∑
y d2(x , y)

Every polytime distingusher has negligible
advantage on d1 and λx .

∑
y d2(x , y).

Theorem (Main Result)
The semantics of the separating conjunction (∗∗∗) in CSL is
equivalent to Fay’s computational independence.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).
▶ ∆ ⊢ P when P is polytime in its input.
▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).
▶ ∆ ⊢ P when P is polytime in its input.
▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).

▶ ∆ ⊢ P when P is polytime in its input.
▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).
▶ ∆ ⊢ P when P is polytime in its input.

▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).
▶ ∆ ⊢ P when P is polytime in its input.
▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).
▶ ∆ ⊢ P when P is polytime in its input.
▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

7/ 13

Polytime Programs

Syntax:

P, R ::= skip | r ← e | P; P | if r then P else P

Type system:

▶ ∆ : Variables → Size (in terms of the security parameter n).
▶ ∆ ⊢ P when P is polytime in its input.
▶ J∆K = {distributions of polysize stores}

Semantics:
J∆ ⊢ PK : J∆K → J∆K

Programs are polytime in the security parameter by construction.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.

▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆

▶ They must also be disjoint for ∗∗∗.

8/ 13

CSL’s Syntax and Semantics

Atomic propositions:

A ::= EQ(e, g) JeK and JgK are the same distribution
| CI(e, g) JeK and JgK are indistinguishable (JeK ≈≈≈ JgK)

Formulas:

ϕ ::= (A)∆ | (ϕ ∧ ψ)∆ | (ϕ ∗∗∗ ψ)∆

▶ We want to interpret formulas only on those distribution
where they have a meaning.

▶ d |= (ϕ)∆ means d ∈ J∆K and d |= ϕ.
▶ The environments of ϕ and ψ are always smaller than ∆
▶ They must also be disjoint for ∗∗∗.

9/ 13

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

|= ϕ ∗∗∗ ψ :⇔ ∃ ︸︷︷︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.
▶ CSL formulas tell us which variables are independent.

((ϕ)Γ ∗∗∗ (ψ)Θ)∆ is a formula ⇒ Γ and Θ have disjoint domains.

9/ 13

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

h |= ϕ ∗∗∗ ψ :⇔ ∃ h1, h2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.
▶ CSL formulas tell us which variables are independent.

((ϕ)Γ ∗∗∗ (ψ)Θ)∆ is a formula ⇒ Γ and Θ have disjoint domains.

9/ 13

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

d |= ϕ ∗∗∗ ψ :⇔ ∃ d1, d2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.

▶ CSL formulas tell us which variables are independent.

((ϕ)Γ ∗∗∗ (ψ)Θ)∆ is a formula ⇒ Γ and Θ have disjoint domains.

9/ 13

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

d |= ϕ ∗∗∗ ψ :⇔ ∃ d1, d2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.

▶ CSL formulas tell us which variables are independent.

((ϕ)Γ ∗∗∗ (ψ)Θ)∆ is a formula ⇒ Γ and Θ have disjoint domains.

9/ 13

Typed Separating Conjunctions

The standard interpretation of ∗∗∗ is ambiguous:

d |= ϕ ∗∗∗ ψ :⇔ ∃ d1, d2︸ ︷︷ ︸
what is their domain?

s.t. . . .

▶ In PSL, we do not know which variables are independent.
▶ CSL formulas tell us which variables are independent.

((ϕ)Γ ∗∗∗ (ψ)Θ)∆ is a formula ⇒ Γ and Θ have disjoint domains.

10/ 13

CSL’s Rules

Judgments
{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

in PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

10/ 13

CSL’s Rules

Judgments
{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

in PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

10/ 13

CSL’s Rules

Judgments
{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

in PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

10/ 13

CSL’s Rules

Judgments
{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

in PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

10/ 13

CSL’s Rules

Judgments
{(ϕ)∆} ∆ ⊢ P {(ψ)∆}

For every d ∈ J∆K, if d |= ϕ, then J∆ ⊢ PK(d) |= ψ.

Rules
r ̸∈ FV(e)

⊢ {(⊤)∆} ∆ ⊢ r ← e {(EQ(r , e))∆}
Asgn

⊢ {(ϕ)Γ} Γ ⊢ P {(ψ)Γ}
⊢ {((ϕ)Γ∗∗∗(ξ)Θ)∆} ∆ ⊢ P {((ψ)Γ ∗∗∗ (ξ)Θ)∆}

Frame

in PSL:
r ̸∈ FV(e)

⊢ {⊤} r ← e {EQ(r , e)} Asgn

11/ 13

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Example

ϕ(i) := CU(ei) ei is computationally uniform.

Assume:
|= {CU(ei)} P {CU(ei+1)︸ ︷︷ ︸

with negligible advantage ni/2n

}.

After n iterations, the bound on the advantage is: nn/2n.

11/ 13

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Example

ϕ(i) := CU(ei) ei is computationally uniform.

Assume:
|= {CU(ei)} P {CU(ei+1)︸ ︷︷ ︸

with negligible advantage ni/2n

}.

After n iterations, the bound on the advantage is: nn/2n.

11/ 13

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Example

ϕ(i) := CU(ei) ei is computationally uniform.

Assume:
|= {CU(ei)} P {CU(ei+1)︸ ︷︷ ︸

with negligible advantage ni/2n

}.

After n iterations, the bound on the advantage is: nn/2n.

11/ 13

Difficulty with loops

The standard Hoare rule for for-loops is unsound in CSL:

∀i . ⊢ {ϕ(i)} P {ϕ(i + 1)}
⊢ {ϕ(0)} for i = 0 to n do P {ϕ(n)}

Example

ϕ(i) := CU(ei) ei is computationally uniform.

Assume:
|= {CU(ei)} P {CU(ei+1)︸ ︷︷ ︸

with negligible advantage ni/2n

}.

After n iterations, the bound on the advantage is: nn/2n.

12/ 13

Pseudo One Time Pad
The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(chip)){chip:...})∆︸ ︷︷ ︸
computational secrecy

}

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)︸ ︷︷ ︸
perfect secrecy

}

12/ 13

Pseudo One Time Pad
The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

P

OTP := key ← unif(n);
chip ← msg ⊕ key .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(chip)){chip:...})∆︸ ︷︷ ︸
computational secrecy

}

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)︸ ︷︷ ︸
perfect secrecy

}

12/ 13

Pseudo One Time Pad
The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

POTP := key ← unif(n);
r ← g(key);
chip ← msg ⊕ r .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(chip)){chip:...})∆︸ ︷︷ ︸
computational secrecy

}

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)︸ ︷︷ ︸
perfect secrecy

}

12/ 13

Pseudo One Time Pad
The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

POTP := key ← unif(n);
r ← g(key);
chip ← msg ⊕ r .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(chip)){chip:...})∆︸ ︷︷ ︸
computational secrecy

}

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)︸ ︷︷ ︸
perfect secrecy

}

12/ 13

Pseudo One Time Pad
The Pseudo One Time Pad is the computationally secret variant of
the One Time Pad.

POTP := key ← unif(n);
r ← g(key);
chip ← msg ⊕ r .

g is a pseudorandom generator.

⊢CSL {(⊤)∆} ∆ ⊢ POTP {((⊤){msg :...} ∗∗∗ (CU(chip)){chip:...})∆︸ ︷︷ ︸
computational secrecy

}

⊢PSL {D(msg)︸ ︷︷ ︸
msg is defined

} OTP {D(msg) ∗∗∗ U(chip)︸ ︷︷ ︸
perfect secrecy

}

13/ 13

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.

▶ The inference rules of CSL are similar to those of PSL.
▶ CSL can be used to prove computational secrecy, thanks to

our Fay-style characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

13/ 13

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.
▶ The inference rules of CSL are similar to those of PSL.

▶ CSL can be used to prove computational secrecy, thanks to
our Fay-style characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

13/ 13

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.
▶ The inference rules of CSL are similar to those of PSL.
▶ CSL can be used to prove computational secrecy, thanks to

our Fay-style characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

13/ 13

Conclusion and Future Work

Conclusion
▶ CSL is a separation logic for computational independence.
▶ The inference rules of CSL are similar to those of PSL.
▶ CSL can be used to prove computational secrecy, thanks to

our Fay-style characterization.

Future work
▶ Extend the language supported by CSL with for-loops.

