On Separation Logic, Computational Independence, and Pseudorandomness

Ugo Dal Lago Davide Davoli Bruce Kapron

37<sup>th</sup> IEEE Computer Security Foundations Symposium July 8-12, 2024 – Enschede, The Netherlands



Ínnía-

Introduced to reason about *heap* manipulating programs.

Introduced to reason about *heap* manipulating programs.

Separating conjunction:

 $\pmb{h} \models \phi \ast \psi$ 

Introduced to reason about *heap* manipulating programs.

$$h \models \phi * \psi \quad :\Leftrightarrow \quad \exists h_1, h_2$$

Introduced to reason about *heap* manipulating programs.

#### Separating conjunction:

 $\begin{array}{ccc} h \models \phi \ast \psi & :\Leftrightarrow & \exists h_1, h_2 \\ \hline h_1 & & h_2 \\ \hline \mathbf{x} \colon \mathbf{3} & & \\ \hline \end{array}$ 

Introduced to reason about *heap* manipulating programs.

$$h \models \phi * \psi \quad :\Leftrightarrow \quad \exists h_1, h_2 \text{ s.t.} \qquad h_1 \models \phi \text{ and } h_2 \models \psi$$

$$h_1 \qquad h_2$$

$$\underline{x: 3}$$

$$\boxed{z: 1}$$

Introduced to reason about *heap* manipulating programs.

$$h \models \phi * \psi \quad :\Leftrightarrow \quad \exists h_1, h_2 \text{ s.t.} \qquad h_1 \models \phi \text{ and } h_2 \models \psi$$

$$h_1 \qquad h_2$$

$$\hline x: 3$$

$$z: 1$$

$$h_1 \models x = 3 \qquad h_2 \models z = 1$$

Introduced to reason about *heap* manipulating programs.

$$h \models \phi * \psi \quad :\Leftrightarrow \quad \exists h_1, h_2 \text{ s.t.} h_1 \sqcup h_2 \sqsubseteq h, h_1 \models \phi \text{ and } h_2 \models \psi$$

$$h_1 \qquad h_2$$

$$\hline x: 3$$

$$z: 1$$

$$h_1 \models x = 3 \qquad h_2 \models z = 1$$

Introduced to reason about *heap* manipulating programs.

Separating conjunction:

 $h \models \phi * \psi \quad :\Leftrightarrow \quad \exists h_1, h_2 \text{ s.t.} h_1 \sqcup h_2 \sqsubseteq h, h_1 \models \phi \text{ and } h_2 \models \psi$   $h_1 \qquad h_2 \qquad h_1 \sqcup h_2 \qquad h$   $x: 3 \qquad x: 3 \qquad x: 3 \qquad y: 4$   $z: 1 \qquad z: 1 \qquad z: 1$ 

 $h_1 \models x = 3$   $h_2 \models z = 1$ 

Introduced to reason about *heap* manipulating programs.

Separating conjunction:

 $h \models \phi * \psi \quad :\Leftrightarrow \quad \exists h_1, h_2 \text{ s.t.} h_1 \sqcup h_2 \sqsubseteq h, h_1 \models \phi \text{ and } h_2 \models \psi$   $h_1 \qquad h_2 \qquad h_1 \sqcup h_2 \qquad h$   $x: 3 \qquad x: 3 \qquad z: 1 \qquad z: 1 \qquad z: 1$   $h \models x = 3 \qquad h_2 \models z = 1 \qquad h \models x = 3 * z = 1$ 

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    |                                             |
| ⊑ | Sub-store                      |                                             |
| * | Locality                       |                                             |

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    | Tensor Product                              |
|   | Sub-store                      |                                             |
| * | Locality                       |                                             |

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    | Tensor Product                              |
| ⊑ | Sub-store                      | Marginal Distribution                       |
| * | Locality                       |                                             |

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    | Tensor Product                              |
| ⊑ | Sub-store                      | Marginal Distribution                       |
| * | Locality                       | Statistic Independence                      |

The interpretation of  $\sqcup$  and  $\sqsubseteq$  determines the semantics of \*.

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    | Tensor Product                              |
| ⊑ | Sub-store                      | Marginal Distribution                       |
| * | Locality                       | Statistic Independence                      |

Example

$$\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow \mathsf{unif}(n) \rrbracket \models \underbrace{\mathsf{U}(x) * \mathsf{U}(y)}_{\bullet}$$

x and y are uniform and independent

The interpretation of  $\sqcup$  and  $\sqsubseteq$  determines the semantics of \*.

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    | Tensor Product                              |
| ⊑ | Sub-store                      | Marginal Distribution                       |
| * | Locality                       | Statistic Independence                      |

Example

$$\llbracket x \leftarrow \operatorname{unif}(n); y \leftarrow \operatorname{unif}(n) \rrbracket \models \underbrace{\mathbf{U}(x) * \mathbf{U}(y)}$$

x and y are uniform and independent

$$\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow x \rrbracket \not\models \mathbf{U}(x) * \mathbf{U}(y)$$

The interpretation of  $\sqcup$  and  $\sqsubseteq$  determines the semantics of \*.

|   | Heap model<br>(O'Hearn et. al) | Distribution model<br>(Barthe et al.'s PSL) |
|---|--------------------------------|---------------------------------------------|
| Ц | Store union                    | Tensor Product                              |
| ⊑ | Sub-store                      | Marginal Distribution                       |
| * | Locality                       | Statistic Independence                      |

Example

$$\llbracket x \leftarrow \operatorname{unif}(n); y \leftarrow \operatorname{unif}(n) \rrbracket \models \underbrace{\mathbf{U}(x) * \mathbf{U}(y)}$$

x and y are uniform and independent

$$\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow x \rrbracket \not\models \mathbf{U}(x) * \mathbf{U}(y)$$
$$\left(\llbracket x \leftarrow \mathsf{unif}(n); y \leftarrow x \rrbracket \models \mathbf{U}(x) \land \mathbf{U}(y)\right)$$

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Example (One Time Pad) PSL can prove perfect secrecy.

 $\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n); \\ chip \leftarrow msg \oplus key. \end{aligned}$ 

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Example (One Time Pad) PSL can prove perfect secrecy.

$$\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n); \\ chip \leftarrow msg \oplus key \end{aligned}$$

In PSL, the following judgment is derivable:

$$\vdash_{\mathsf{PSL}} \{\underbrace{\mathsf{D}(msg)}_{msg \text{ is defined}}\} \mathsf{OTP} \{\mathsf{D}(msg) * \mathsf{U}(chip)\}$$

Probabilistic Separtation Logic can be used to support Hoare style reasoning on cryptographic primitives.

Example (One Time Pad) PSL can prove perfect secrecy.

$$\begin{array}{l} \texttt{OTP} := \textit{key} \leftarrow \texttt{unif}(\textit{n});\\ \textit{chip} \leftarrow \textit{msg} \oplus \textit{key} \end{array}$$

In PSL, the following judgment is derivable:

$$\vdash_{\mathsf{PSL}} \{\underbrace{\mathsf{D}(msg)}_{msg \text{ is defined}} \} \mathsf{OTP} \{\underbrace{\mathsf{D}(msg) * \mathsf{U}(chip)}_{\mathsf{perfect secrecy}} \}$$











Computational Secrecy  $\Leftrightarrow$  *Computational* independence

[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)



[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)



[Fay, 2015] (for families of polysize circuits)

This work (for polytime programs)

| PSL | CSL |
|-----|-----|
|     |     |
|     |     |

|   | PSL            | CSL            |
|---|----------------|----------------|
| Ц | Tensor Product | Tensor Product |

|                       | PSL                          | CSL            |
|-----------------------|------------------------------|----------------|
| Ц                     | Tensor Product               | Tensor Product |
| $d_1 \sqsubseteq d_2$ | $d_1$ is a marginal of $d_2$ |                |

|                       | PSL                                 | CSL            |
|-----------------------|-------------------------------------|----------------|
| Ц                     | Tensor Product                      | Tensor Product |
| $d_1 \sqsubseteq d_2$ | $d_1 = \lambda x. \sum_y d_2(x, y)$ |                |

|                       | PSL                                 | CSL                                       |
|-----------------------|-------------------------------------|-------------------------------------------|
| Ц                     | Tensor Product                      | Tensor Product                            |
| $d_1 \sqsubseteq d_2$ | $d_1 = \lambda x. \sum_y d_2(x, y)$ | $d_1 \approx \lambda x. \sum_y d_2(x, y)$ |

|                                                                                                                  | PSL                                 | CSL                                       |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|
| Ц                                                                                                                | Tensor Product                      | Tensor Product                            |
| $d_1 \sqsubseteq d_2$                                                                                            | $d_1 = \lambda x. \sum_y d_2(x, y)$ | $d_1 \approx \lambda x. \sum_y d_2(x, y)$ |
| Every <i>polytime</i> distingusher has <i>negligible</i> advantage on $d_1$ and $\lambda x . \sum_y d_2(x, y)$ . |                                     |                                           |

The interpretation of  $\sqcup$  and  $\sqsubseteq$  determines the semantics of \*.

|                                                                                                       | PSL                                 | CSL                                       |
|-------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|
| Ц                                                                                                     | Tensor Product                      | Tensor Product                            |
| $d_1 \sqsubseteq d_2$                                                                                 | $d_1 = \lambda x. \sum_y d_2(x, y)$ | $d_1 \approx \lambda x. \sum_y d_2(x, y)$ |
| Every polytime distingusher has negligible<br>advantage on $d_1$ and $\lambda x . \sum_y d_2(x, y)$ . |                                     |                                           |

#### Theorem (Main Result)

The semantics of the separating conjunction (\*) in CSL is equivalent to Fay's computational independence.

#### **Polytime Programs**

#### Syntax:

$$ext{P,R} ::= ext{ skip } ig| extsf{r} \leftarrow e ig| extsf{P;P} ig| ext{ if } extsf{r} ext{ then P else P}$$
### Syntax:

$$P, R ::=$$
skip  $\mid r \leftarrow e \mid P; P \mid$ if  $r$  then P else P

#### Type system:

### Syntax:

$$P, R ::=$$
skip  $\mid r \leftarrow e \mid P; P \mid$ if  $r$  then P else P

#### Type system:

•  $\Delta$  : Variables  $\rightarrow$  Size (in terms of the security parameter *n*).

### Syntax:

$$P, R ::=$$
skip  $\mid r \leftarrow e \mid P; P \mid$ if  $r$  then P else P

#### Type system:

- $\Delta$  : Variables  $\rightarrow$  Size (in terms of the security parameter *n*).
- $\Delta \vdash P$  when P is polytime in its input.

### Syntax:

$$P, R ::=$$
skip  $\mid r \leftarrow e \mid P; P \mid$ if  $r$  then P else P

### Type system:

- $\Delta$  : Variables  $\rightarrow$  Size (in terms of the security parameter *n*).
- $\Delta \vdash P$  when P is polytime in its input.
- $\llbracket \Delta \rrbracket = \{ \text{distributions of } polysize \text{ stores} \}$

### Syntax:

$$P, R ::=$$
skip  $\mid r \leftarrow e \mid P; P \mid$ if  $r$  then P else P

### Type system:

- $\Delta$ : Variables  $\rightarrow$  Size (in terms of the security parameter *n*).
- $\Delta \vdash P$  when P is polytime in its input.

Semantics:

$$\llbracket \Delta \vdash \mathtt{P} \rrbracket : \llbracket \Delta \rrbracket \to \llbracket \Delta \rrbracket$$

### Syntax:

$$P, R ::= skip | r \leftarrow e | P; P | if r then P else P$$

### Type system:

- $\Delta$  : Variables  $\rightarrow$  Size (in terms of the security parameter *n*).
- $\Delta \vdash P$  when P is polytime in its input.
- $\llbracket \Delta \rrbracket = \{ \text{distributions of } polysize \text{ stores} \}$

Semantics:

$$\llbracket \Delta \vdash \mathtt{P} \rrbracket : \llbracket \Delta \rrbracket \to \llbracket \Delta \rrbracket$$

Programs are polytime in the security parameter by construction.

Atomic propositions:

### Atomic propositions:

 $A ::= \mathsf{EQ}(e,g)$   $\llbracket e \rrbracket$  and  $\llbracket g \rrbracket$  are the same distribution

### Atomic propositions:

$$\begin{array}{ll} A ::= \mathsf{EQ}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ & \mid \mathsf{CI}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable} \left( \llbracket e \rrbracket \approx \llbracket g \rrbracket \right) \end{array}$$

### Atomic propositions:

$$\begin{array}{ll} A ::= \mathbf{EQ}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ & \mid \mathbf{CI}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable } (\llbracket e \rrbracket \approx \llbracket g \rrbracket) \end{array}$$

Formulas:

$$\phi ::= (A)^{\Delta} \mid (\phi \land \psi)^{\Delta} \mid (\phi \ast \psi)^{\Delta}$$

#### Atomic propositions:

$$\begin{array}{ll} A ::= \mathsf{EQ}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ & \mid \mathsf{CI}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable} \left( \llbracket e \rrbracket \approx \llbracket g \rrbracket \right) \end{array}$$

Formulas:

$$\phi ::= (A)^{\Delta} \mid (\phi \land \psi)^{\Delta} \mid (\phi \ast \psi)^{\Delta}$$

We want to interpret formulas only on those distribution where they have a meaning.

#### Atomic propositions:

$$\begin{array}{ll} A ::= \mathsf{EQ}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ & \mid \mathsf{CI}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable} \left( \llbracket e \rrbracket \approx \llbracket g \rrbracket \right) \end{array}$$

Formulas:

$$\phi ::= (A)^{\Delta} \mid (\phi \land \psi)^{\Delta} \mid (\phi \ast \psi)^{\Delta}$$

We want to interpret formulas only on those distribution where they have a meaning.

• 
$$d \models (\phi)^{\Delta}$$
 means  $d \in \llbracket \Delta \rrbracket$  and  $d \models \phi$ .

### Atomic propositions:

$$\begin{array}{ll} A ::= \mathsf{EQ}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ & \mid \mathsf{CI}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable} \left( \llbracket e \rrbracket \approx \llbracket g \rrbracket \right) \end{array}$$

Formulas:

$$\phi ::= (A)^{\Delta} \mid (\phi \land \psi)^{\Delta} \mid (\phi \ast \psi)^{\Delta}$$

We want to interpret formulas only on those distribution where they have a meaning.

• 
$$d \models (\phi)^{\Delta}$$
 means  $d \in \llbracket \Delta \rrbracket$  and  $d \models \phi$ .

 $\blacktriangleright$  The environments of  $\phi$  and  $\psi$  are always smaller than  $\Delta$ 

### Atomic propositions:

$$\begin{array}{ll} A ::= \mathsf{EQ}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are the same distribution} \\ & \mid \mathsf{CI}(e,g) & \llbracket e \rrbracket \text{ and } \llbracket g \rrbracket \text{ are indistinguishable} \left( \llbracket e \rrbracket \approx \llbracket g \rrbracket \right) \end{array}$$

Formulas:

$$\phi ::= (A)^{\Delta} \mid (\phi \land \psi)^{\Delta} \mid (\phi \ast \psi)^{\Delta}$$

We want to interpret formulas only on those distribution where they have a meaning.

• 
$$d \models (\phi)^{\Delta}$$
 means  $d \in \llbracket \Delta \rrbracket$  and  $d \models \phi$ .

- $\blacktriangleright$  The environments of  $\phi$  and  $\psi$  are always smaller than  $\Delta$
- They must also be disjoint for \*.

The standard interpretation of **\*** is ambiguous:

The standard interpretation of **\*** is ambiguous:

$$h \models \phi * \psi$$
 :  $\Leftrightarrow$   $\exists \underbrace{h_1, h_2}_{\text{what is their domain?}}$  s.t...

The standard interpretation of **\*** is ambiguous:

$$d \models \phi * \psi \qquad :\Leftrightarrow \qquad \exists \underbrace{d_1, d_2}_{\text{what is their domain?}} \text{s.t.} \dots$$

▶ In PSL, we do not know which variables are independent.

The standard interpretation of \* is ambiguous:

$$d \models \phi * \psi \qquad :\Leftrightarrow \qquad \exists \underbrace{d_1, d_2}_{\text{what is their domain?}} \text{s.t.} \dots$$

▶ In PSL, we do not know which variables are independent.

 $((\phi)^{\Gamma} * (\psi)^{\Theta})^{\Delta}$  is a formula  $\Rightarrow \Gamma$  and  $\Theta$  have disjoint domains.

The standard interpretation of **\*** is ambiguous:

$$d \models \phi * \psi \qquad :\Leftrightarrow \qquad \exists \underbrace{d_1, d_2}_{\text{what is their domain?}} \text{s.t.} \dots$$

In PSL, we do not know which variables are independent.
 CSL *formulas* tell us which variables are independent.

 $((\phi)^{\Gamma} * (\psi)^{\Theta})^{\Delta}$  is a formula  $\Rightarrow \Gamma$  and  $\Theta$  have disjoint domains.

### Judgments

$$\{(\phi)^{\Delta}\} \Delta \vdash \mathtt{P} \{(\psi)^{\Delta}\}$$

### Judgments

$$\{(\phi)^{\Delta}\} \Delta \vdash \mathbb{P} \{(\psi)^{\Delta}\}$$
  
For every  $d \in \llbracket \Delta \rrbracket$ , if  $d \models \phi$ , then  $\llbracket \Delta \vdash \mathbb{P} \rrbracket(d) \models \psi$ .

### Judgments

$$\{(\phi)^{\Delta}\} \Delta \vdash P \{(\psi)^{\Delta}\}$$
  
For every  $d \in \llbracket \Delta \rrbracket$ , if  $d \models \phi$ , then  $\llbracket \Delta \vdash P \rrbracket(d) \models \psi$ .  
Rules

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{(\top)^{\Delta}\} \Delta \vdash r \leftarrow e \{(\mathsf{EQ}(r, e))^{\Delta}\}} \text{ Asgn}$$

#### Judgments

 $\{(\phi)^{\Delta}\} \Delta \vdash \mathbb{P} \{(\psi)^{\Delta}\}$ For every  $d \in \llbracket \Delta \rrbracket$ , if  $d \models \phi$ , then  $\llbracket \Delta \vdash \mathbb{P} \rrbracket(d) \models \psi$ . Rules

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{(\top)^{\Delta}\} \Delta \vdash r \leftarrow e \{(\mathsf{EQ}(r, e))^{\Delta}\}} \text{ Asgn}$$

in PSL:

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{\top\} \ r \leftarrow e \ \{\mathsf{EQ}(r,e)\}} \text{ Asgn}$$

#### Judgments

 $\{(\phi)^{\Delta}\} \Delta \vdash \mathbb{P} \{(\psi)^{\Delta}\}$ For every  $d \in \llbracket \Delta \rrbracket$ , if  $d \models \phi$ , then  $\llbracket \Delta \vdash \mathbb{P} \rrbracket(d) \models \psi$ . **Rules** $\frac{r \notin \mathsf{FV}(e)}{\vdash \{(\top)^{\Delta}\} \Delta \vdash r \leftarrow e \{(\mathsf{EQ}(r, e))^{\Delta}\}} \text{ Asgn}$  $\frac{\vdash \{(\phi)^{\Gamma}\} \Gamma \vdash \mathbb{P} \{(\psi)^{\Gamma}\}}{\vdash \{((\phi)^{\Gamma} \ast (\xi)^{\Theta})^{\Delta}\} \Delta \vdash \mathbb{P} \{((\psi)^{\Gamma} \ast (\xi)^{\Theta})^{\Delta}\}} \text{ Frame}$ 

in PSL:

$$\frac{r \notin \mathsf{FV}(e)}{\vdash \{\top\} \ r \leftarrow e \ \{\mathsf{EQ}(r,e)\}} \ \mathsf{Asgn}$$

The standard Hoare rule for for-loops is *unsound* in CSL:

$$\frac{\forall i. \vdash \{\phi(i)\} \mathbb{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \mathbb{P} \{\phi(n)\}}$$

The standard Hoare rule for for-loops is *unsound* in CSL:

$$\frac{\forall i. \vdash \{\phi(i)\} \mathbb{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \mathbb{P} \{\phi(n)\}}$$

### Example

 $\phi(i) := \mathbf{CU}(e_i)$   $e_i$  is computationally uniform.

The standard Hoare rule for for-loops is *unsound* in CSL:

$$\frac{\forall i. \vdash \{\phi(i)\} \mathbb{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \mathbb{P} \{\phi(n)\}}$$

### Example

 $\phi(i) := \mathbf{CU}(e_i)$   $e_i$  is computationally uniform.

Assume:

$$\models \{ \mathbf{CU}(e_i) \} \mathbb{P} \{ \underbrace{\mathbf{CU}(e_{i+1})}_{\text{with negligible advantage } n^i/2^n} \}.$$

The standard Hoare rule for for-loops is *unsound* in CSL:

$$\frac{\forall i. \vdash \{\phi(i)\} \mathbb{P} \{\phi(i+1)\}}{\vdash \{\phi(0)\} \text{ for } i = 0 \text{ to } n \text{ do } \mathbb{P} \{\phi(n)\}}$$

### Example

 $\phi(i) := \mathbf{CU}(e_i)$   $e_i$  is computationally uniform. Assume:

$$\models \{ \mathbf{CU}(e_i) \} \mathbb{P} \{ \underbrace{\mathbf{CU}(e_{i+1})}_{\text{with negligible advantage } n^i/2^n} \}.$$

After *n* iterations, the bound on the advantage is:  $n^n/2^n$ .

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

 $\begin{aligned} \texttt{OTP} &:= key \leftarrow \texttt{unif}(n);\\ chip \leftarrow msg \oplus key. \end{aligned}$ 

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

```
POTP := key \leftarrow unif(n);

r \leftarrow g(key);

chip \leftarrow msg \oplus r.
```

g is a pseudorandom generator.

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

 $POTP := key \leftarrow unif(n);$   $r \leftarrow g(key);$  $chip \leftarrow msg \oplus r.$ 

g is a *pseudorandom* generator.

$$\vdash_{\mathsf{CSL}} \{(\top)^{\Delta}\} \Delta \vdash_{\mathsf{POTP}} \{\underbrace{((\top)^{\{\mathsf{msg:...}\}} * (\mathsf{CU}(\mathsf{chip}))^{\{\mathsf{chip:...}\}})^{\Delta}}_{\mathsf{computational correct}}\}$$

computational secrecy

The Pseudo One Time Pad is the *computationally secret* variant of the One Time Pad.

 $POTP := key \leftarrow unif(n);$   $r \leftarrow g(key);$  $chip \leftarrow msg \oplus r.$ 

g is a pseudorandom generator.

$$\vdash_{\mathsf{CSL}} \{(\top)^{\Delta}\} \Delta \vdash_{\mathsf{POTP}} \{\underbrace{((\top)^{\{\mathit{msg}:...\}} * (\mathsf{CU}(\mathit{chip}))^{\{\mathit{chip}:...\}})^{\Delta}}_{\mathsf{computational secrecy}} \}$$

$$\vdash_{\mathsf{PSL}} \{\underbrace{\mathsf{D}(\mathit{msg})}_{\mathit{msg} \text{ is defined}} \} \text{ OTP } \{\underbrace{\mathsf{D}(\mathit{msg}) * \mathsf{U}(\mathit{chip})}_{\mathsf{perfect secrecy}} \}$$

Conclusion and Future Work

#### Conclusion

► CSL is a separation logic for *computational independence*.

## Conclusion and Future Work

### Conclusion

- ► CSL is a separation logic for *computational independence*.
- ▶ The inference rules of CSL are similar to those of PSL.

## Conclusion and Future Work

### Conclusion

- ► CSL is a separation logic for *computational independence*.
- ▶ The inference rules of CSL are similar to those of PSL.
- CSL can be used to prove *computational secrecy*, thanks to our Fay-style characterization.
## Conclusion and Future Work

## Conclusion

- ► CSL is a separation logic for *computational independence*.
- ► The inference rules of CSL are similar to those of PSL.
- CSL can be used to prove *computational secrecy*, thanks to our Fay-style characterization.

## Future work

Extend the language supported by CSL with for-loops.