
On Kernel’s Safety in the Spectre Era
(And KASLR is Formally Dead)

Davide Davoli1,2 Martin Avanzini1,2 Tamara Rezk1,2

1Université Côte d’Azur

2Inria

15th October 2024 – ACM Conference on Computer and Communications Security

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 1/10



Contribution of the talk

There is hope of protecting kernels against speculative attacks.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 2/10



Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

void f(){do sth}

void g(){leak secret}

With Deterministic Layout

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 3/10



Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

void f(){do sth}

void g(){leak secret}

With Deterministic Layout

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 3/10



Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

Attack: fp = 1; s().

void f(){do sth}

void g(){leak secret}

With Deterministic Layout

0:

1:

2:

3:

4:

5:

6:

7:

←←←

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 3/10



Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

Attack: fp = ?; s().

void f(){do sth}

void g(){leak secret}

Randomized Layout

0:

1:

2:

3:

4:

5:

6:

7:

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 3/10



Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

Attack: fp = 6; s().

void f(){do sth}

void g(){leak secret}

Randomized Layout

0:

1:

2:

3:

4:

5:

6:

7:

←←←

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 3/10



Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

Attack: fp = 6; s().

void f(){do sth}

void g(){leak secret}

Randomized Layout

0:

1:

2:

3:

4:

5:

6:

7:

←←←CRASH

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 3/10



The demise of layout randomization

2000 2005 2010 2015 2020

Int
rod

uce
d by

PaX

Defa
ult

in
Lin

ux

Fo
rm

al
pro

of
of

its
effi

cac
y

Sp
ect

re
Atta

ck

Blin
dS

ide
att

ack

▶ (Abadi and Plotkin, 2010): the probability of memory corruption is low.

▶ (Göktaş et. al., 2020): with speculative execution, layout randomization is broken.

Can we prevent speculative attacks on kernels?

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 4/10



The demise of layout randomization

2000 2005 2010 2015 2020

Int
rod

uce
d by

PaX

Defa
ult

in
Lin

ux

Fo
rm

al
pro

of
of

its
effi

cac
y

Sp
ect

re
Atta

ck

Blin
dS

ide
att

ack

▶ (Abadi and Plotkin, 2010): the probability of memory corruption is low.
▶ (Göktaş et. al., 2020): with speculative execution, layout randomization is broken.

Can we prevent speculative attacks on kernels?

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 4/10



The demise of layout randomization

2000 2005 2010 2015 2020

Int
rod

uce
d by

PaX

Defa
ult

in
Lin

ux

Fo
rm

al
pro

of
of

its
effi

cac
y

Sp
ect

re
Atta

ck

Blin
dS

ide
att

ack

▶ (Abadi and Plotkin, 2010): the probability of memory corruption is low.
▶ (Göktaş et. al., 2020): with speculative execution, layout randomization is broken.

Can we prevent speculative attacks on kernels?

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 4/10



Main contributions

▶ We devise a semantics where side-channel and speculative attacks to kernel’s
layout randomization can be expressed as programs.

▶ If a kernel is safe against ordinary attacks, it is possible to protect it
against speculative attacks, systematically.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 5/10



Main contributions

▶ We devise a semantics where side-channel and speculative attacks to kernel’s
layout randomization can be expressed as programs.

▶ If a kernel is safe against ordinary attacks, it is possible to protect it
against speculative attacks, systematically.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 5/10



Threat model

Victim:
▶ Kernel exposing functionalities to user space programs via system calls.
▶ Kernel space memory is not accessible to user space programs.

Attacker:
▶ User space program, interacts with the victim via system calls.

▶ Access to side-channel leaks.
▶ Controls direct branch speculation and store-to-load forwarding.

Attacker’s Goal:
▶ Trigger a system call to execute code or access data that it is not authorized to

access.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 6/10



Threat model

Victim:
▶ Kernel exposing functionalities to user space programs via system calls.
▶ Kernel space memory is not accessible to user space programs.

Attacker:
▶ User space program, interacts with the victim via system calls.

▶ Access to side-channel leaks.
▶ Controls direct branch speculation and store-to-load forwarding.

Attacker’s Goal:
▶ Trigger a system call to execute code or access data that it is not authorized to

access.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 6/10



Threat model

Victim:
▶ Kernel exposing functionalities to user space programs via system calls.
▶ Kernel space memory is not accessible to user space programs.

Attacker:
▶ User space program, interacts with the victim via system calls.
▶ Access to side-channel leaks.

▶ Controls direct branch speculation and store-to-load forwarding.

Attacker’s Goal:
▶ Trigger a system call to execute code or access data that it is not authorized to

access.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 6/10



Threat model

Victim:
▶ Kernel exposing functionalities to user space programs via system calls.
▶ Kernel space memory is not accessible to user space programs.

Attacker:
▶ User space program, interacts with the victim via system calls.
▶ Access to side-channel leaks.
▶ Controls direct branch speculation and store-to-load forwarding.

Attacker’s Goal:
▶ Trigger a system call to execute code or access data that it is not authorized to

access.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 6/10



Threat model

Victim:
▶ Kernel exposing functionalities to user space programs via system calls.
▶ Kernel space memory is not accessible to user space programs.

Attacker:
▶ User space program, interacts with the victim via system calls.
▶ Access to side-channel leaks.
▶ Controls direct branch speculation and store-to-load forwarding.

Attacker’s Goal:
▶ Trigger a system call to execute code or access data that it is not authorized to

access.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 6/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→

→→→

→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→

→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

speculatively corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→

→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→

→→→

→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→

→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp

speculatively corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 7/10



Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks,

and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also, then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks? No, see the
paper.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 8/10



Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks,

and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also, then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks? No, see the
paper.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 8/10



Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks, and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also,

then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks? No, see the
paper.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 8/10



Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks, and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also, then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks? No, see the
paper.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 8/10



Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks, and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also, then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks?

No, see the
paper.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 8/10



Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks, and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also, then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks? No, see the
paper.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 8/10



Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist?

Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→
→→→

99K99K99K

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 9/10



Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist? Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→
→→→

99K99K99K

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
lfence;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(true);
s(fp);

}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 9/10



Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist? Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→
→→→

99K99K99K

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
lfence;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 9/10



Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist? Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→

→→→

99K99K99K

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
lfence;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 9/10



Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist? Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→

→→→

99K99K99K

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
lfence;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 9/10



Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist? Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→

→→→

99K99K99K

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
lfence;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

not corrupted

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 9/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.

▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.
▶ In the paper:

▶ semantics modeling speculative attacks,

▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.
▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,

▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.
▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.
▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.

▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.
▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.

▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.
▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10



Ongoing work

execl File copy Communication Process creation Shell script getpid
0

2

4

6

8

10

No
rm

al
ize

d 
ru

n 
tim

e

UnixBench Benchmark
Off-the-shelf Instrumented No Speculation

perlbench gcc mcf omnetpp xalancbmk x264 deepsjeng leela exchange2 xz
0.98

1.00

1.02

1.04

1.06

1.08

No
rm

al
ize

d 
ru

n 
tim

e

SPEC® cpu2017 intspeed Benchmark
Off the shelf
our transformation with eibrs

nospec with eibrs

On Kernel’s Safety in the Spectre Era (And KASLR is Formally Dead), Davide Davoli et. al. 10/10


