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Contribution of the talk

There is hope of protecting kernels against speculative attacks.
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Memory corruption and layout randomization

Layout randomization is meant to contrast memory corruption, i.e., when memory can
be modified against the programmer’s expectations.

void s(){
. . . ;
(∗fp)();
}

The attacker controls fp.

void f(){do sth}

void g(){leak secret}

With Deterministic Layout
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The demise of layout randomization

2000 2005 2010 2015 2020
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▶ (Abadi and Plotkin, 2010): the probability of memory corruption is low.

▶ (Göktaş et. al., 2020): with speculative execution, layout randomization is broken.

Can we prevent speculative attacks on kernels?
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Main contributions

▶ We devise a semantics where side-channel and speculative attacks to kernel’s
layout randomization can be expressed as programs.

▶ If a kernel is safe against ordinary attacks, it is possible to protect it
against speculative attacks, systematically.
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Threat model

Victim:
▶ Kernel exposing functionalities to user space programs via system calls.
▶ Kernel space memory is not accessible to user space programs.

Attacker:
▶ User space program, interacts with the victim via system calls.

▶ Access to side-channel leaks.
▶ Controls direct branch speculation and store-to-load forwarding.

Attacker’s Goal:
▶ Trigger a system call to execute code or access data that it is not authorized to

access.
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Speculative code execution, despite layout randomization

Speculation introduces new vulnerabilities.

→→→

99K99K99K

→→→
→→→
→→→

void s(fp){ //victim syscall

if (fp points to f){
. . . ;
(∗fp)();

}}
for fp in Addresses { //attack (user space)

predict(branch true);
s(fp);
}

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp

←←← fp
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Protecting kernels in the presence of speculative execution (1/2)

Speculative execution introduces new behaviors, so reasoning about speculative attacks
is harder, but:

Theorem (Main result)
If a kernel is safe for ordinary attacks,

and we transform it in such a way that if a
speculative attack can exploit a system call an ordinary attack can also, then the
transformed kernel is safe for speculative attacks.

So layout randomization + transformation = no speculative attacks? No, see the
paper.
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Protecting kernels in the presence of speculative execution (2/2)
Does such transformation exist?

Yes: without indirect branch speculation, it is enough
to place an lfence before instructions that interact with the memory.

→→→
→→→

99K99K99K

void g(){leak secret}

void f(){do sth}

Randomized Kernel Memory

←←← fp
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Conclusions and ongoing work

Conclusions:
▶ There is hope of protecting kernels against speculative attacks.

▶ In the paper:

▶ semantics modeling speculative attacks,
▶ why side-channels are a threat for layout randomization,
▶ code transformation to protect kernels, . . .

Ongoing work:
▶ Model indirect branch speculation.
▶ Implementation of suitable program transformations.
▶ Performance overhead evaluation.
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Ongoing work
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