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Topological Data Analysis introduction
Formally

Topological Filtration

Xt = {x ∈ Rn : d(x, P) ≤ t} =
⋃
p∈P

B(x, t)

X =
{
(P = X0)

ι
↪→ · · · ι

↪→ Xr1

ι
↪→ · · · ι

↪→ Xr2

ι
↪→ · · ·

}

Persistent Homology or Persistent Module

PH•(X) =
{

H•(Xr0)
ι⋆→ · · · ι⋆→ H•(Xr1)

ι⋆→ · · · ι⋆→ H•(Xr2)
ι⋆→ · · ·

}
In general, a Persistent Module is a family of vector spaces V = (Vt)t∈R,
with linear maps vs→t : Vs → Vt , s.t.

vs→r ◦ vt→s = vt→r and vt→t ≡ idVt .
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Pillars of Topological Data Analysis

Theorem (Krull,Remak,Schmidt,Azumaya,Gabriel)
Let M be a pointwise finite dimensional persistence module.
Then, M is interval-decomposable, i.e.,

M ≃
⊕

i

k[bi,di).

Theorem (Cohen-Steiner, Edelsbrunner, Harer)
If X is a triangulable space, with continuous tame functions f , g : X → R,

dI (H⋆(Xf ),H⋆(Xg)) ≤ ∥f − g∥∞

where Xh := ({x ∈ X | h(x) ≤ t})t∈R.
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7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Multiparameter curse
Connected components

7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Multiparameter curse
Connected components

7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Multiparameter curse
Connected components

7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Multiparameter curse
Connected components

7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Multiparameter curse
Connected components

7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Multiparameter curse
Connected components

7/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 1-parameter pictures

8/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 1-parameter pictures

8/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 1-parameter pictures

8/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 1-parameter pictures

8/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 2-parameter pictures

9/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 2-parameter pictures

9/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 2-parameter pictures

9/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 2-parameter pictures

9/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Let’s forget about this matching : 2-parameter pictures

9/18



Persistent Holmology Multi-Persistence Signed Barcodes Distances and Stability Application to ML Conclusion Backup slides

Re-extension to Multiparameter Persistence

Definition (Hilbert decomposition signed measure)
For all finitely presentable multiparameter persistence module M , there
exists a unique discrete radon measure µM such that

∀x ∈ Rn, dim(Mx) = µM ({y ∈ Rn : y ≤ x})
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Re-extension to Multiparameter Persistence
Definition (Euler decomposition signed measure)
For a finite multi-filtered simplicial complex (S, f ),

µχ(f ) :=
∑
i∈N

(−1)iµHi(f ).
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Re-extension to Multiparameter Persistence
Definition (Rank decomposition signed measure)
For all finitely presentable multiparameter persistence module M , there
exists a unique discrete radon measure µM such that

∀x, y ∈ Rn, dim(M(x ≤ y)) = µM ({z ∈ Rn : z ≤ x} × {z ∈ Rn : z ≤ y})
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Distances

Let µ = µ+ − µ− be a zero mass discrete measure.

Define, if µ+ =
∑

i δxi and µ− =
∑

i δyi

∥µ∥ := dW 1(µ+, µ−) = min
σ∈S|µ+|

 ∑
1≤i≤|µ+|

∥∥xi − yσ(i)
∥∥

1


If ν is another such measure, then

µ− ν = (µ+ + ν−)− (µ− + ν+).

In particular, we can consider Wasserstein norms on signed measures

∥µ− ν∥K
1 := dW 1(µ+ + ν−, µ− + ν+)
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Stability

Theorem
Let n ∈ N, S be a finite simplicial complex and (S, f ), (S, g) two n-filtrations.

1. For n ∈ {1, 2} and i ∈ N,∥∥µHi(f ) − µHi(g)
∥∥K

1 ≤ n · ∥f − g∥1

2. For all n ∈ N, ∥∥µχ(f ) − µχ(g)
∥∥K

1 ≤ ∥f − g∥1

where
∥f − g∥1 =

∑
σ∈S

∥f (σ)− g(σ)∥1 .
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Convolutions

Proposition
Let K : Rn → R be a kernel satisfying

∥∥Kx − Ky
∥∥

2 ≲ ∥x − y∥2.
Then if µ, ν ∈ M have the same total mass,

∥K ∗ µ− K ∗ ν∥2 ≲ ∥µ− ν∥K
2

13/18
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Kernels with Wasserstein distances on slices

Definition (Sliced Wasserstein on signed measures)
For any measure α on Sn−1, and µ, ν ∈ M0, define

SWα(µ, ν) :=

∫ ∥∥πθ
∗µ− πθ

∗ν
∥∥K

1 dα(θ), and, kα
SW = exp(−SWα(µ, ν)).

where πθ : Rn → R is the orthogonal projection on the line of slope θ .

Proposition
For any n ∈ N, there exists a Hilbert space H and a map Φα

SW : M0(Rn) → H
such that, for any µ, ν ∈ M0,

∥Φα
SW(µ)− Φα

SW(ν)∥H ≤ 2α(Sn−1) ∥µ− ν∥K
2

and
kα

SW(µ, ν) = ⟨Φα
SW(µ), Φα

SW(ν)⟩H
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Outline
• By forgetting topological matchings we define signed measures based

on various topological invariants, e.g., dimension vector, Euler
characteristic, rank invariant,

• Nice stability properties,
• Diagram-like structure =⇒ easy vectorizations,
• Available at [arXiv:2306.03801]

Future work

• Differentiation of this construction,
• More machine learning technics on theses measures,
• Work on specific data, e.g., molecular data,
• More stability, and filtration dependent guarantees.

Code

• Python library, available as a extension at :
https://github.com/DavidLapous/multipers-signed-measure

16/18
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