Stable Vectorization of Multiparameter Persistent Homology

using Signed Barcodes as Measures

Motivation

Idea

The huge variety of dataset in the wild has brought many difficulties from a
statistical point of view, such as the so-called « curse of the dimensionality ».
Fortunately, data sets usually lie close to some hidden structure; which, if taken
into account in the learning pipeline, can help mitigate this effect.

Topological Data Analysis (TDA) is a strategy that aims for a solution to this
challenge, by providing compact descriptors inferring the topological features of
this hidden structure, such as connectivity, loops, cavities; with nice guarantees.
However, these main descriptors, the persistent modules, still suffers from some
technical limitations; for instance, in computational biology, there are, in some
cases no canonical way to compute them, as the input contains too much
information.

This motivates their generalization : Multiparameter Persistence Modules.

The price to pay for this generalization is their computational cost. In this work
we propose a strategy to encode these structure, as point signed measures.

By leveraging on the structure similarities with persistent modules we end up
with an easy to compute, and statistically robust topological encoding of datasets.

we look at the topology of the sublevelsets
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This construction can be generalized to « filter functions »;

Python package

Multipers :
https://github.com/DavidLapous/multipers
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Multiparameter Persistence

Some datasets contain more than geometric information, or have an interesting sam-
pling measure, which will not be taken into account in with PH. This motivates the
construction of Multiparameter Persistent Homology (MPH) which looks at the topo-
logical persistence of a multi-filtered function f : & — R".

A standard goal is to recover « topological features » from a dataset.
E.g., from points sampled on a circle, we want to retrieve this circle.
On this example, we look at the offsets of the dataset.

A Multiparameter Persistent Module M or an n-parameter persistent module is a
familly of vector spaces (My)yxerr With some linear maps M(x < y) : My — M,
for x < y € R”, satistying

Vx<y<z€R", My<z)oeM(x=<y)=M(x<z) and M(x<x)=id

The circle «lives » on this time interval !
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From Signed Barcodes to Signed Measures

Hilbert Decomposition Signed Measure
The dimension of any finitely presented n-parameter persistence module M

In that context, « growing balls » ~ take the is characterized by a unique signed point measure y; € M(R") such that

sublevelsets of the distance function to the dataset.

vx € R", dim(M,) = uy({y € R" : y < x})

f(x) < t}),cg for afunction f: X - R
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Euler Decomposition Signed Measure
The Euler Characteristic of any n-parameter finite simplicial complex filtration F
is characterized by a unique signed point measure pr € M(R") such that

vx € R", x(Fy)=pr({y €R" : y < x})

Stability theorem
Let n € N, let S be a finite simplicial complex, and let f, g :

A lot of points Alot of B's

Byproducts of TDA

The mathematical structure behind is the persistent homology, which encodes birth and

death time of each topological feature. It can be represented as a persistence diagram (Dgm).

Persistence diagram
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S — R" be monotonic.
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M(R™): The space of finite signed point measures on R".
Mo(R™) € M(R™): The space of measures of mass 0.

A potato tlme vn e {1,2},i e NN, lecry — ol < n-lf — gl
vn € NN, Iy = Bx@lwr < 1f =gl
Nice properties
Universality Signed Measures Representations
Any dataset having topological or geometrical signal can Convolution stability
fi:S—R K * gy  R2 = R

be used in this pipeline, and the output has always the

>0

same diagram structure.

Convergence
If X" = (X,,... n) ~ u®™ is a nice sampling of a space X, 0
Then Dgm (X(”)) b, ng( i)
Stability
For two functions f,g: X — R, I\ : e Sliced Wasserstein distance
! .
d (Dgm(f), Dgm(9)) < [If = gll. M) ) .
& f-/ \ O
Ve o oo

where 77

Sliced Wasserstein Kernel

Code link
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such that for any u,v € M,,
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For any n € IN, there exists a Hilbert space H and a map &g,

[ D¢ (1) = Psw Nl < 2a(S" ) | = vl

vx,y € R",

then, if 1, v € M(R") have the same total mass,

If a a kernel function K € L* (R" — Rx,), satisfies, for some positive ¢ > 0

[K(- = x) = K(- = )2 < ¢+ |x — vl

|K % p—K > vl <c-|p—vw

K o
~ da(6), and, kg

: My(R") - H,

For any measure @ on S™ !, and p, v € M(R") point measures of total mass 0, define
y H p

Wi = [

: R" — R is the orthogonal projection on the line of slope 6 .

w = exp(=SW*(p, v)).

and kg (p, v) = (Psw (1), Psw (V)3



