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Python package
Multipers : 

https://github.com/DavidLapous/multipers

The huge variety of dataset in the wild has brought many di�culties from a 

statistical point of view, such as the so-called « curse of the dimensionality ».  

Fortunately, data sets usually lie close to some hidden structure; which, if taken 

into account in the learning pipeline, can help mitigate this e�ect.

Topological Data Analysis (TDA) is a strategy that aims for a solution to this 

challenge, by providing compact descriptors inferring the topological features of 

this hidden structure, such as connectivity, loops, cavities; with nice guarantees.

However, these main descriptors, the persistent modules,  still su�ers from some

technical limitations; for instance, in computational biology, there are, in some 

cases no canonical way to compute them, as the input contains too much 

information. 

This motivates their generalization : Multiparameter Persistence Modules.

The price to pay for this generalization is their computational cost. By leveraging 

on recent approximation technics, we propose a general framework, that take into 

account the majority of already known multiparameter persistent representations

as well as a new powerful family of representations, for multiparameter 

topological machine learning pipelines. 

Abstract Idea

A standard goal is to recover « topological features » from a dataset.

E.g., from points sampled on a circle, we want to retrieve this circle.

On this example, we look at the o�sets of the dataset. 

The circle «lives » on this time interval !

birth time death time

This construction can be generalized to « �lter functions »; 

we look at the topology of the sublevelsets 

In that context, « growing balls » ≈ take the 

sublevelsets of the distance function to the dataset. 

Byproducts of TDA

The mathematical structure behind is the persistent homology (PH), 

which encodes birth and death time of each topological feature. 

It can be represented as a persistence diagram (Dgm).

Nice properties

Stability

Convergence

Universality

Any dataset having topological or geometrical signal can 

be used in this pipeline, and the output has always the 

same diagram structure.

All scales at once !
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Multiparameter Persistence

General Framework for Decomposition Representation

Interval decomposition
Multiparameter Persistent Modules have, in general, a very 

complex structure. In order to simpli�cate our problem, we use 

previous work that approximate modules with interval 

decomposable modules.
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Application: Convergence Rates

This stablity along with known kernel density estimation, 
and persistence convergence rates,
allows us to have convergence rates to the ground truth, 
with respect to the number of sampling points.

In this example, the bi�ltration is given by

 • a density estimation of the red points, and

 • a density estimation of the blue points.

The (pointwise) theorical convergence rate is 

Stability result
Now, considering stable functions, e.g., 

One can consider 

Given an interval decomposable module 

An interval is a module that is convex and connected, i.e.,  

An interval decomposable module is a module that can be written

as a direct sum of interval modules, i.e.,
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